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SINGULAR CONVOLUTION OPERATORS 

ON THE HEISENBERG GROUP1 

BY D. GELLER AND E. M. STEIN 

1. Statement of results and outline of method. The purpose of this note 
is to announce results dealing with convolution operators on the Heisenberg 
group. As opposed to the well-known situation where the kernels are homogene
ous and C°° away from the origin, the kernels we study are homogeneous but 
have singularities on a hyperplane. Convolution operators with such kernels arise 
in the study of the 3-Neumann problem, as we indicate below. The main fea
ture of our study will be an analysis which has no direct analogue in the case of 
the usual (abelian) convolution operators, but is instead based on the noncom-
mutative Fourier analysis of the Heisenberg group. 

Let En denote the Heisenberg group, the Lie group with underlying mani
fold Cn x R and multiplication (z, t) • (z', t') = (z + z',t 4- t' + 21m z • z'), 
where z - z~r = Xz.l'.. Un possesses dilations: let Dr(z, t) = (r2z, rt). A func
tion/is homogeneous of degree k if ƒ ° Dr — rkf and there is a dual notion 
for distributions. Suppose A"' is a homogeneous distribution of degree ~2n - 2 
which agrees with a function away from the origin. Assume that this function 
is smooth on Hw - {0}, or more generally that it satisfies an Z^-Dini condition 
there. Then it is known [3, Theorem 2.1] that the convolution operator A': 
C °̂(HW) ~-> C°°(H") given by A'f = ƒ * K' extends to a bounded operator from 
LP to Lp for 1 < p < oo if it is bounded on L2. Here * denotes group convolu
tion. 

It is our intention to study more singular convolution operators. Thus, let 
/(z) be a homogeneous distribution of degree ~2n on C", which agrees with a 
smooth function away from the origin, and define the distribution K on Hw by 
K(zy t) - J(z)d(t). Here 8(t) is the Dirac delta function in the t variable. Then 
K is homogeneous of degree - 2n - 2 and we assert 

THEOREM . The operator A : C~(H") - * C°°(H") given by Af = ƒ * K 
extends to a bounded operator from Lp to Lp for 1 < p < °°. 

The analogue of the theorem for Euclidean convolution is immediate, 
since one can convolve on each hyperplane t = constant separately. No such 
argument is available for H". Our strategy in proving the theorem is to use 
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interpolation, and as such we shall study convolution operators on L2 which 
are even more singular than A, operators whose Euclidean analogues are un
bounded on L2. As the simplest example of this, we make a key observation. 

OBSERVATION. The operator B: C~(HW) --> C~(HW) given byBf^f* TnS(t) 
extends to a bounded operator on L2 ; in fact it is unitary up to a constant multiple. 
HereT=b/bt 

PROOF. For/GC0°°, Tnf * 0(0 = fc„Tnf(z -z\t - 21m z -z')dz'dz' 
= fcnT

nf(z ', t + 2 Im z - l')dz'dl'. Let Fc denote Fourier transform in t alone, 
and F Euclidean Fourier transform in both t and z. We have 

FJBf)(z, X) = r eiXtBf(zt t)dt = (H\y f e-4iKlmz'r¥c f(z', X)dzW 
j — oo J ~n 

= (-/X)nF/(2*Xz, X) 

since 2/XIm z • z' = Re(2/Xz) • z'. Then | |£/| |2 = (2TT)-1 | |FC?(5/)I|1 = 
(27r)~(2w + 1>2-2w | |/| |2 as required. 

In fact the same proof gives the same result with TnS(t) replaced by 
Tn8(t - i//(z)) where \p: Cn —> R is any measurable function. 

If one makes the reasonable assumption that a convolution operator with 
singularity weaker than B is also bounded on L2 , one can hope to prove the 
theorem as follows. Consider the distribution^^) = r(7/2)~1kl~1 + T on 
CQ(R). Here 7 G C, Re 7 > 0. Now g has an analytic continuation to all 
7G C, and for kei+,gy--+ ckT

2kÔ(t) as 7-^~2k, where ck * 0. In the no
tation of Theorem 1, suppose J(z) = P.V.(0(z)/|z|2w) and let us set Ky(z, t) = 
P.V.[ft(z)#7(0/(|z|4 + f2)(«+7)/2] Further let Ay denote the operation of 
convolution with K . Then KQ = K. Motivated by the above considerations we 
expect that Ay is bounded on L2 for -n < Re 7. If Re 7 > 0, the Z^-Dini con
dition is satisfied and therefore Ay is bounded on Lp. Interpolation then would 
prove the theorem. (It would also give the by-product that, if -n < Re 7 < 0, 
A is bounded on a certain range of LP -spaces.) 

2. The group Fourier transform. To carry out this plan to prove the theo
rem, it will suffice to examine the group Fourier transform (F.T.) of a certain 
modification of K , for ~n < Re 7. We discuss this F.T. 

For each X E R* (= R - {0}) let Hx be a separable Hilbert space with 
fixed orthonormal basis {EatK} G(z+)n where Z+ = {0, 1, 2, . . . } . On the al
gebraic span of this basis, we define the weighted shift (annihilation and creation) 
operators WkX, w£x for 1 < k < n as follows: 

WkEa = (2ak\\\)
v>Ea_ek, zero if ah = 0. 

W+E= [2(afc+ 1)|X|] 1/2£a+ ek> 
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for X > 0. The right sides are to be reversed if X < 0. Here and elsewhere we 
frequently drop the X subscript. 

One may extend Wk, W% to a domain on which - z • W+ + z • W is es
sentially skew-adjoint for all z G Cw, so that V* = exp[-z • W* + z • W] is 
unitary on H. The Weyl transform Gx: L

l(Cn) —* B(HX) is defined by GKF = 
ScnV}P(z)dzdz. 

One can prove [2] an analogue of Hecke's identity (see e.g. [5]) for G, as 
follows. Let P = S | p | = p j 7 | = ( / a p 7 z^F y be a harmonic polynomial on Cn of 
bidegree (p, q). Set K = p + qr, and 

For a > 0, put F(z) = e-fl|z|2i>(z). Then 

(2) (GF)Ea = (-l)**" [(1 + a)|X|] -<fl + K>(fttfy r-^^a . 

Here a = a/\\\\ s = (a - l)/(a + 1); / / = p if X > 0, q if X < 0, and TV = |a|. 
Note that (GF)Ea = 0 if N < p', for then W(P) shifts £ a to zero. 

The F.T. on H" is defined as follows. For X G R*, define F*: L^H") 
-*Lx(Qn) by (F*/)(z) = S-~eIXtf(z, t)dt. Then/, the F.T. of/, is defined 
to be the family of operators (/(X)) where f(\) = G^(F£ƒ). 

To prove the theorem we use a consequence of (2) to demonstrate the 
boundedness of the F.T. of a modification of the K given above. To see the 
relevance of (2), note for example, 

(rô(t)f(X)Ea = (-i\)"Gx(l)Ea = (-ni sgn XftlfEa 

by (2), giving another proof of the Observation. For another consequence of 
(2), write w = |z|2 - it, w = |z|2 + it. Then [2] : if P is as in (2), - 1 < s < 1, 
f(zf t) = (sw + vv)~*P(z), then 

(3)f(\)Ea = ei)<?7rn + 1 2 1 - " - f c r (« + ic - ƒ + I)" Mxr^ l - sy~l W(P)^~ P X 

if X > 0; /(X) = 0 if X < 0. The formulae for X > 0, X < 0 are reversed if we 
replace sw + w by sw + w. Here / + & = /2 + K + 1 and 0 < k <n + K/2 + 1 
with ƒ interpreted as a PV distribution when k = n + K/2 + \. Note that (3) is 
particularly useful when one can write 

K' = 

(4) 

^~(sw + w~)~kf(s)dsjP(z) 

Ço(sw + wTkf(s) + j*(sw + w)-fy*)&J*(s) 
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where g(s) = f(l/s)sk~~2. Note that the right side of (4) is not directly defined 
for z = 0, for then sw + w = 0 when s = 1. Generally speaking, the behavior 
of K as z —> 0 is the same as that of ƒ as s —• 1. Thus K' is (resp.) smooth or 
real analytic if and only if ƒ is (resp.) smooth or real analytic at 1. As an ex
ample of an application of formula (4) and its F.T., the case f(s) = s7"1, k = 
n + K/2 yields (see [2] ) the fundamental solution to the differential operators 
la given in [1]. 

Returning now to the notation of §1, let us assume £2(z) = P(z/|zQ-
otherwise one must expand £1 as an infinite sum. We shall write our modifica
tion of Ky essentially in the form [/^(sw + w)"^n+l + li/2)f(s)ds]P(z). Since 
sw + w — 0 in the integrand only if t = 0 and s = - 1 , we expect to capture 
the behavior of Kas t —>• 0 in the behavior of ƒ at s = - 1 . 

Briefly, then, we are able to prove the theorem by computing and esti
mating the F.T. of 

( 5 ) [ i°^Ssw + w)Hn+l+K,2)f7(s)ds + j ^ ( s w + W)- ( W + 1 + K / 2 V 7 ( 5 ) ^ 1 P ( Z ) 

where f (s) = (1 + s)n+y + Kl2~l{\ - s)~7', since as can be shown (5) behaves 
essentially like Ky. 

3. Applications. Let Je(z) = /(z), when \z\ > e, and Je(z) = 0 otherwise, 
where / is as in the theorem. Define K€(z, t) = Je(z)d(t)9 and A€(f) = ƒ * K€. 
A simple modification of the proof of the theorem then gives us the following: 

COROLLARY. The operators Ae are bounded on Lp, 1 < p < °°, with 
norms independent of e. 

Operators closely related to those treated here arise in the 3-Neumann 
problem. This reduction and its consequences are studied in [4], so we shall 
content ourselves here with one illustration. One wishes to prove that the oper
ator 

ƒ-+ (J ( L(y~x • x, p + M) /0 , H)dy du 

maps Lp(Hn x R + ) into itself, where e.g. 

L(x, p) = zfzk(\z\2 + t2 + p2yn-\\z\2 + p - it)'2. 

This is then reducible to the uniform boundedness (on Lp(Hn)) of the operators 
of convolution with z.zk(\z\2 4- e2)~n~1d(t)i which in turn is reducible to the 
corollary. 
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