CYCLIC ELEMENTS IN SOME SPACES OF ANALYTIC FUNCTIONS

BY BORIS KORENBLUM¹

DEFINITIONS. 1. A^{-p} (p > 0) is the Banach space of analytic functions f(z) in $U = \{z \in \mathbb{C} | |z| < 1\}$ that satisfy $|f(z)| = o[(1 - |z|)^{-p}] (|z| \rightarrow 1)$ with the norm $||f|| = \max\{|f(z)|(1 - z)^p\} (z \in U)$. Note that $f_n \rightarrow f$ in A^{-s} and $g_n \rightarrow g$ in A^{-t} implies $f_n g_n \rightarrow fg$ in $A^{-(s+t)}$.

2. \mathcal{B}^p (p > 0) is the Bergman space, i.e., the "analytic" subspace of $L^p(rdrd\theta)$ in U.

3. $A^{-\infty} = \bigcup A^{-p} = \bigcup B^p$ (p > 0). $A^{-\infty}$ is a linear topological space [1].

4. P is the set of all algebraic polynomials P(z). P is dense in any of the spaces A^{-p} , B^p , $A^{-\infty}$.

5. Let A be any of the spaces A^{-p} , B^p , $A^{-\infty}$ and let $f \in A$. The *ideal* generated by f in A is defined by

$$I(f; A) = \operatorname{clos} \{ fP | P \in P \}.$$

If f is bounded, then also $I(f; A) = clos \{ fg | g \in A \}$.

6. An $f \in A$ is called *cyclic in* A if I(f; A) = A.

7. A closed set $E \subset \partial U$ is called a *Carleson set* if its Lebesgue measure |E| = 0 and $\sum_n |I_n| \log(2\pi/|I_n|) < \infty$, where I_n are the components of $\partial U \setminus E$.

THEOREM. A singular inner function

$$s(z) = \exp\left\{-\frac{\zeta+z}{\zeta-z}d\nu(\zeta)\right\},\,$$

where v is a nonnegative singular measure on ∂U , is cyclic in any (and hence in all) of the spaces $A^{-\infty}$, A^{-p} , B^p if and only if v(E) = 0 for all Carleson sets E.

The "only if" part is due to H. S. Shapiro [2]. The case $A^{-\infty}$ was treated in [3]. Some partial results in a different direction are due to Daniel H. Luecking.

Since every A^{-p} is a dense subset of some $B^{p'}$, and vice versa, it suffices to prove the Theorem for A^{-p} . Now we use the following result from [3]; it is, roughly, equivalent to the above Theorem for $A^{-\infty}$.

Received by the editors March 18, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30H05.

¹This research was supported by NSF grants MCS78-01878 and MCS80-03413.

^{© 1981} American Mathematical Society 0002-9904/81/0000-0504/\$01.50

PROPOSITION. Let v be as described in the Theorem. Then there exists a sequence of functions $\{g_m(z)\}_{1}^{\infty}$, each belonging to $A^{-\infty}$, such that

(a) $g_m(z) \neq 0$ ($z \in U$; m = 1, 2, ...). (b) $h_m = sg_m$ (m = 1, 2, ...) belong to A^{-N} for some fixed N > 0. (c) $||1 - h_m||_{-N} \rightarrow 0$ ($m \rightarrow \infty$). To use this result for A^{-p} we need the following LEMMA. If $g \in A^{-\infty}$, $g(z) \neq 0$ ($z \in U$), and $sg \in A^{-N}$, then $sg \in I(s; A^{-N})$. PROOF OF THE LEMMA. Since |s(z)| < 1, we have for 0 < t < 1, $|s(z)(g(z))^t| \leq |(s(z)g(z))^t|$ and thus $sg^t \in A^{-Nt}$ ($0 < t \leq 1$). Let $F = \{t \mid 0 \leq t \leq 1, sg^t \in I(s; A^{-N})\}$. F is closed and $0 \in F$. Let $t_0 = \max F$. If $t_0 < 1$, choose a $\delta > 0$ so that $g^{\delta} \in A^{-(1-t_0)N}$ and a sequence of polynomials $\{P_m\}_1^{\infty}$ so that $P_m \rightarrow g^{\delta}$ in $A^{-(1-t_0)N}$. We have $sg^{t_0}P_m \rightarrow sg^{t_0+\delta}$ in A^{-N} and, since $sg^{t_0}P_m \in I(s; A^{-N})$, we obtain $sg^{t_0+\delta} \in I(s; A^{-N})$ and thus $t_0 + \delta \in F$. Therefore $t_0 = 1$. Q.E.D.

PROOF OF THE THEOREM. Fix an arbitrary p > 0 and show that $l \in I(s; A^{-p})$. By the Proposition and Lemma, $1 \in I(s; A^{-N})$ for some N, i.e., s is cyclic in some A^{-N} . Let k > 1 be an arbitrary integer. We have $s^{1/k}g_m^{1/k} \to 1$ in $A^{-N/k}$, and hence $sg_m^{1/k} \to s^{(k-1)/k}$ in $A^{-N/k}$. By the Lemma this implies $s^{(k-1)/k} \in I(s; A^{-N/k})$. For the same reason $s^{(k-1)/k}g_m^{1/k} \to s^{(k-2)k} \in I(s; A^{-N/k})$. After k steps we obtain $1 \in I(s; A^{-N/k})$, and thus s is cyclic in $A^{-N/k}$. Since k is arbitrary, s is cyclic in all A^{-p} (p > 0). Q.E.D.

REFERENCES

1. B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219.

2. H. S. Shapiro, Weakly invertible elements in certain function spaces, and generators in l_1 , Michigan Math. J. 11 (1964), 161–165.

3. B. Korenblum, A Beurling-type theorem, Acta Math. 138 (1977), 265-293.

DEPARTMENT OF MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12222