ON DEFINING RELATIONS OF CERTAIN INFINITE-DIMENSIONAL LIE ALGEBRAS ${ }^{1}$

BY OFER GABBER AND VICTOR G. KAC

Abstract

In this note we prove a conjecture stated in [2] about defining relations of the so-called Kac-Moody Lie algebras. In the finite-dimensional case this is Serre's theorem [5]. The basic idea is to map the ideal of relations into a Verma module and then to use the (generalized) Casimir operator (cf. [3, 4]).

1. The main statements. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix over a field \mathbf{F}. Denote by $\tilde{\mathfrak{g}}(A)$ the Lie algebra over \mathbf{F} with $3 n$ generators $e_{i}, f_{i}, h_{i}, i \in I=\{1, \ldots, n\}$ and the following defining relations $(i, j \in I)$:

$$
\begin{equation*}
\left[e_{i}, f_{j}\right]-\delta_{i j} h_{i}, \quad\left[h_{i}, h_{j}\right], \quad\left[h_{i}, e_{j}\right]-a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]+a_{i j} f_{j} \tag{1}
\end{equation*}
$$

Set $\Gamma=Z^{n}, \Gamma_{+}=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \Gamma \mid k_{i} \geqslant 0\right\} \backslash\{0\}$ and let $\Pi=\left\{\alpha_{1}, \ldots\right.$, α_{n} \} be the standard basis of Γ. Setting $\operatorname{deg} e_{i}=-\operatorname{deg} f_{i}=\alpha_{i}$ for $i \in I$ defines a Γ-gradation $\tilde{\mathfrak{g}}(A)=\bigoplus_{\alpha \in \Gamma} \tilde{\mathfrak{g}}_{\alpha}$. Let $\tilde{\mathfrak{n}}_{ \pm}=\bigoplus_{\alpha \in \Gamma+} \tilde{\mathfrak{g}}_{ \pm \alpha}$ and $\mathfrak{h}=\tilde{\mathfrak{g}}_{0}$. Then $\tilde{\mathrm{n}}_{+}$and $\tilde{\mathrm{n}}_{-}$are free Lie algebras over \mathbf{F} with systems of free generators e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n}, respectively, and $\widetilde{\mathfrak{g}}(A)=\tilde{\mathfrak{n}}_{-} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{+}$(direct sum of vector spaces), so that $\tilde{\mathrm{g}}_{\alpha_{i}}=\mathbf{F} e_{i}, \boldsymbol{g}_{-\alpha_{i}}=\mathbf{F} f_{i}$ for $i \in I$, and $\mathfrak{h}=\bigoplus_{i} \mathbf{F} h_{i}$ [2, Chapter I]. Define $(\alpha \mapsto \bar{\alpha}) \in \operatorname{Hom}_{Z}\left(\Gamma, \mathfrak{h}^{*}\right)$ by $\bar{\alpha}_{i}\left(h_{j}\right)=a_{j i}$ for $i, j \in I$.

Let \mathfrak{r} be the sum of all graded ideals in $\widetilde{\mathfrak{g}}(A)$ intersecting \mathfrak{h} trivially. We have the induced gradation $\mathfrak{r}=\bigoplus_{\alpha \in \Gamma} \mathfrak{r}_{\alpha}$. Setting $\mathfrak{r}_{ \pm}=\mathfrak{r} \cap \tilde{\mathfrak{n}}_{ \pm}$, we obtain that $\mathfrak{r}=\mathfrak{r}_{+} \oplus \mathfrak{r}_{-}$is a direct sum of ideals.

Our main result is the following.
Theorem 1. For $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \Gamma$ set

$$
T_{\alpha}=\sum_{1 \leqslant i<j \leqslant n} a_{i j} k_{i} k_{j}+\sum_{1 \leqslant i \leqslant n} a_{i i} \frac{1}{2}\left(k_{i}^{2}-k_{i}\right)
$$

and assume that the matrix A is symmetric. Then the ideal \mathfrak{r}_{+}(resp. \mathfrak{r}_{-}) is generated as an ideal in $\tilde{\mathfrak{n}}_{+}\left(\right.$resp. $\left.\tilde{\mathfrak{n}}_{-}\right)$by those $\mathfrak{r}_{\alpha}\left(\right.$ resp. $\left.\mathfrak{r}_{-\alpha}\right)$ for which $\alpha \in \Gamma_{+} \backslash \Pi$ and $T_{\alpha}=0$.

Corollary [4, Theorem 1]. If $T_{\alpha} \neq 0$ for all $\alpha \in \Gamma_{+} \backslash \Pi$, then $r=0$.

[^0]The next corollary is, in fact, the purpose of the note. An $n \times n$ matrix $A=\left(a_{i j}\right)$ over a field \mathbf{F} of characteristic 0 is called a Cartan matrix iff it satisfies the following properties:
(i) $a_{i i}=2, a_{i j}$ are nonpositive integers for $i \neq j$, and $a_{i j}=0$ implies $a_{j i}=$ $0, i, j \in I$;
(ii) there exists a nondegenerate diagonal $n \times n$ matrix D such that the matrix $D A$ is symmetric.

Define automorphisms $s_{i}, i \in I$, of the lattice Γ by $s_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i}, j \in I$; let $W \subset$ Aut Γ denote the group generated by $s_{i}, i \in I$ [2].

Theorem 2. Let char $\mathbf{F}=0$ and let A be a Cartan matrix. Then the elements
(2) $\left(a d e_{i}\right)^{-a_{i j}+1} e_{j}$ for $i, j \in I, i \neq j$,
(3) $\left(a d f_{i}\right)^{-a_{i j}+1} f_{j}$ for $i, j \in I, i \neq j$, lie in \mathfrak{r} and generate the ideals \mathfrak{r}_{+}and \mathfrak{r}_{-}, respectively.

Proof. It is well known that the property (i) of A implies that all the elements (2) and (3) lie in \mathfrak{r} (see, e.g., [2, Lemma 9]).

In order to prove that these elements generate $r_{ \pm}$, note that replacing h_{i} by $d_{i} h_{i}, d_{i} \in \mathrm{~F}^{*}$ and e_{i} by $d_{i}^{-1} e_{i}$ is equivalent to replacing A by the matrix $B=$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) A$. Therefore, by the property (ii) of A we can identify the Lie algebras $\tilde{\mathfrak{g}}(A)$ and $\tilde{\mathfrak{g}}(B)$, where $B=\left(b_{i j}\right)$ is a symmetric matrix; it is also clear that we can choose d_{i} 's so that $b_{i i}$ are positive rational numbers.

Define a symmetric bilinear form (,) on Γ by $\left(\alpha_{i}, \alpha_{j}\right)=b_{i j}, i, j \in I$. Then we have $a_{i j}=2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)$. Denote by g the quotient of $\widetilde{\mathfrak{g}}(A)$ by the ideal generated by all elements (2) and (3), let $g=\bigoplus g_{\alpha}$ be the induced gradation and $\overline{\mathfrak{r}}_{ \pm}$denote the image of $\mathfrak{r}_{ \pm}$in \mathfrak{g}. We have the induced gradation $\overline{\mathfrak{r}}_{ \pm}=$ $\bigoplus_{\alpha \in \Gamma_{+} \bar{r}_{ \pm \alpha}}$.

Recall that there exists $\tilde{s}_{i} \in \operatorname{Autg}$ such that [2, Lemma 10]

$$
\tilde{s}_{i}\left(g_{\alpha}\right)=\mathrm{g}_{s_{i}(\alpha)} \quad \text { and } \quad \tilde{s}_{i}\left(\bar{r}_{ \pm}\right)=\overline{\mathfrak{r}}_{ \pm}
$$

Now suppose that $\overline{\mathbf{r}}_{+} \neq 0$ (the case $\overline{\mathrm{r}}_{-}$is similar). From among $\alpha=\left(k_{1}, \ldots, k_{n}\right)$ $\in \Gamma_{+}$such that $\overline{\mathfrak{r}}_{\alpha} \neq 0$ choose one of minimal height (i.e., $\Sigma_{i} k_{i}$ is minimal). Then height $s_{i}(\alpha) \geqslant$ height α for all $i \in I$. It follows that $\left(\alpha, \alpha_{i}\right) \leqslant 0$ for all $i \in$ I, and hence $(\alpha, \alpha) \leqslant 0$. Hence $2 T_{\alpha}=\Sigma_{i, j} b_{i j} k_{i} k_{j}-\Sigma_{i} b_{i i} k_{i}<0$. This is a contradiction with Theorem 1.

Corollary 1. Let char $\mathrm{F}=0$ and let A be an indecomposable Cartan matrix. Let $\mathrm{g}(A)=\bigoplus_{\alpha \in \Gamma} \mathfrak{g}_{\alpha}$ be the Lie algebra with generators $e_{i}, f_{i}, h_{i}, i \in I$, and defining relations (1), (2), (3), and the gradation induced from $\widetilde{\mathfrak{g}}(A)$. Set $\mathfrak{c}=\left\{h \in \mathfrak{g}_{0}=\mathfrak{h} \mid \bar{\alpha}_{i}(h)=0\right.$ for all $\left.i \in I\right\}$. Then
(a) \mathfrak{c} is the center of $\mathfrak{g}(A)$ and any proper graded ideal of $\mathfrak{g}(A)$ lies in \mathbf{c}.
(b) Provided that A is not one of the affine matrices from Tables 1-3 [1], the Lie algebra $\mathrm{g}(A) / \mathrm{c}$ is simple. ${ }^{2}$

Proof. (a) follows from Theorem 2 and [2, Lemma 1]. (b) follows from (a), [2, Lemma 6], which gives a sufficient condition for nonexistence of a nongraded ideal in $\widetilde{\mathfrak{g}}(A) / \mathrm{r}$, and [1, §2, Exercise 8 b$]$, which implies that this condition holds unless A is affine.

Corollary 2. Let $A=\left(a_{i j}\right)$ be a Cartan matrix and let $\mathfrak{n}(A)$ denote the Lie algebra over a field of characteristic 0 with generators e_{1}, \ldots, e_{n} and defining relations $\left(a d e_{i}\right)^{1-a_{i j}} e_{j}=0, i \neq j$. Setting deg $e_{i}=\alpha_{i}$ defines $a \Gamma_{+}$gradation $\mathfrak{n}(A)=\bigoplus_{\alpha} \mathfrak{n}_{\alpha}$. For $w \in W$ denote by $s(w)$ the (finite) sum of the $\alpha \in \Gamma_{+}$ for which $-w^{-1}(\alpha) \in \Gamma_{+}$. Then

$$
\prod_{\alpha \in \Gamma_{+}}\left(1-e^{\alpha}\right)^{\operatorname{dim} \mathfrak{n}_{\alpha}}=\sum_{w \in W}(\operatorname{det} w) e^{s(w)} .
$$

Proof. This follows from Theorem 2 and the "denominator" identity proved in [3]. We remark that the proof in [3] works for the Lie algebra $\widetilde{\mathfrak{g}}(A) / \mathfrak{r}$ (but not $\mathfrak{g}(A)$). Thus the last corollary of [3] (in which Theorem 2 is claimed) remained there unproven.
2. Proof of Theorem 1. First, we prove a simple general result on Lie algebras and then apply it to our situation. For a Lie algebra \mathfrak{p} over $\mathbf{F}, U(p)$ will denote its universal enveloping algebra and $U_{0}(p) \subset U(p)$ the augmentation ideal.

Let $\tilde{\mathfrak{p}}$ be a Lie algebra over \mathbf{F}, \mathfrak{a} an ideal, $\mathfrak{p}=\widetilde{p} / \mathfrak{a}$ and $\pi: \widetilde{p} \longrightarrow \mathfrak{p}$ the canonical map. The injection $\mathfrak{a} \longrightarrow U_{0}(\widetilde{p})$ and the map π induce homomorphisms of left \mathfrak{p}-modules, respectively $\lambda: \mathfrak{a} /[\mathfrak{a}, \mathfrak{a}] \rightarrow U_{0}(\widetilde{p}) / a U_{0}(\widetilde{\mathfrak{p}})$ and $\phi: U_{0}(\widetilde{p}) / a U_{0}(\widetilde{\mathfrak{p}}) \rightarrow$ $U(p)$, so that $\operatorname{Im} \phi=U_{0}(p)$.

Lemma 1. The following sequence of \mathfrak{p}-modules is exact

$$
\begin{equation*}
0 \rightarrow \mathfrak{a} /[\mathfrak{a}, \mathfrak{a}] \xrightarrow{\lambda} U_{0}(\widetilde{\mathfrak{p}}) / a U_{0}(\tilde{\mathfrak{p}}) \xrightarrow{\phi} U_{0}(\mathfrak{p}) \rightarrow 0 . \tag{4}
\end{equation*}
$$

Proof. The inclusion $\operatorname{Im} \lambda \subset \operatorname{Ker} \phi$ is clear. To show the other inclusion note that $U(\mathfrak{p})=U(\widetilde{\mathfrak{p}}) / \mathfrak{a} U(\widetilde{\mathfrak{p}})$. Hence

$$
\operatorname{Ker} \phi=\left(U_{0}(\widetilde{\mathfrak{p}}) \cap \mathfrak{a} U(\widetilde{\mathfrak{p}})\right) / \mathfrak{a} U_{0}(\widetilde{\mathfrak{p}})=\mathfrak{a} U(\widetilde{\mathfrak{p}}) / \mathfrak{a} U_{0}(\widetilde{\mathfrak{p}}) .
$$

As $U(\widetilde{\mathfrak{p}})=\mathbf{F} \oplus U_{0}(\widetilde{\mathfrak{p}})$, we see that $\operatorname{Ker} \phi \subset \operatorname{Im} \lambda$.
Finally, we show that $\operatorname{Ker} \lambda=0$. This is equivalent to $\mathfrak{a} \cap \mathfrak{a} U_{0}(\widetilde{\mathfrak{p}})=[\mathfrak{a}, \mathfrak{a}]$. A standard Poincaré-Birkhoff-Witt theorem argument gives that this is equivalent to $\mathfrak{a} \cap U_{0}(\mathfrak{a})^{2}=[a, a]$ (in $U(a)$). The inclusion \supset is obvious, and the other inclusion is shown by passage to $U(\mathfrak{a} /[\mathfrak{a}, \mathfrak{a}])$.

[^1] shows that (b) fails in this case.

Recall that if V is a left module over a Lie algebra a, then given a Lie algebra homomorphism $\psi: \mathfrak{a} \longrightarrow \boldsymbol{b}$, one defines the induced left \mathfrak{b}-module

$$
\operatorname{Ind}_{a}^{b} V=\left(U(\mathfrak{b}) \otimes_{F} V\right) / \Sigma_{a, b, V} \mathbf{F}(b \psi(a) \otimes v-b \otimes a \cdot v)
$$

where $b \in U(\mathfrak{b}), a \in \mathfrak{a}, v \in V$, with an obvious action of \mathfrak{b}.
Now we turn to the Lie algebra $\widetilde{\mathfrak{g}}=\widetilde{\mathfrak{g}}(A)$ associated to a symmetric matrix $A=\left(a_{i j}\right)$. Set $\mathfrak{g}^{\prime}=\widetilde{\mathfrak{g}} / \mathfrak{r}$; denote by π the canonical homomorphism $\widetilde{\mathfrak{g}} \rightarrow \mathfrak{g}^{\prime}$. We have the induced gradation $\boldsymbol{g}^{\prime}=\bigoplus_{\alpha \in \Gamma} \mathfrak{g}_{\alpha}^{\prime}$ and induced decomposition $\boldsymbol{g}^{\prime}=$ $\mathfrak{n}_{-}^{\prime} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}^{\prime}$ (we identify \mathfrak{h} with $\pi(\mathfrak{h})=\mathfrak{g}_{0}^{\prime}$), so that $\mathfrak{g}_{-\alpha_{i}}^{\prime}=\mathbf{F} \pi\left(f_{i}\right), \mathfrak{g}_{\alpha_{i}}^{\prime}=$ $\mathrm{F} \pi\left(e_{i}\right)$ for $i \in I$. Define a symmetric bilinear form on Γ by $\left(\alpha_{i}, \alpha_{j}\right)=a_{i j}$ for $i, j \in I$.

For $\alpha \in \Gamma$ define a $\tilde{\mathfrak{g}}$-module $\tilde{M}(\alpha)=\operatorname{Ind} \frac{\tilde{\mathfrak{g}}}{\tilde{\mathfrak{g}}} \tilde{\mathfrak{n}}_{+} \mathbf{F}_{\alpha}$, where \mathbf{F}_{α} is a 1-dimensional module with underlying space \mathbf{F} defined by $\tilde{\mathrm{n}}_{+}(1)=0, h(1)=\bar{\alpha}(h)$ for $h \in \mathfrak{h}$. Denote the image of $1 \otimes 1$ in $\widetilde{M}(\alpha)$ by \widetilde{v}_{α} and let $\widetilde{M}(\alpha)_{\alpha}=\mathbf{F} \cdot \widetilde{v}_{\alpha}$. The Γ gradation of $\widetilde{\mathfrak{g}}$ induces a gradation $\widetilde{M}(\alpha)=\bigoplus_{\eta \in \Gamma_{+} \cup\{0\}^{\widetilde{M}}(\alpha)_{\alpha-\eta}}$, so that $\widetilde{\mathfrak{g}}_{\beta} \widetilde{M}(\alpha)_{\gamma} \subset \widetilde{M}(\alpha)_{\beta+\gamma}$. Further on, by a "module" we mean a Γ-graded module. $\widetilde{M}(\alpha)$ contains a unique proper maximal submodule which is denoted by $\widetilde{M}^{1}(\alpha)$. Similarly, we define the \mathfrak{g}^{\prime}-module $M(\alpha)=\operatorname{Ind}_{\mathfrak{b} \oplus \mathfrak{n}_{+}^{\prime}}^{g^{\prime}} \mathbf{F}_{\alpha}$, its gradation $M(\alpha)=$ $\bigoplus_{\eta} M(\alpha)_{\alpha-\eta}$, the canonical generator v_{α}, the submodule $M^{1}(\alpha)$, etc.

An element $v \in M_{\gamma}$ in a Γ-graded g^{\prime}-module M is called primitive of weight γ iff there exists a g^{\prime}-submodule $V \subset M(\alpha)$ such that $v \notin V$ but $\mathfrak{n}_{+}^{\prime}(v)=0 \bmod V$; then we call $\gamma \in \Gamma$ a primitive weight of M.

Lemma 2. If $\alpha-\beta$ is a primitive weight for the $\mathrm{g}^{\prime}-$ module $M(\alpha)$, then $T_{\beta}=$ (α, β).

Proof. Define the (generalized) Casimir operator Ω on $M(\alpha)$ by

$$
\Omega(v)=\left(T_{\eta}-(\alpha, \eta)\right) v+\sum_{\gamma \in \Gamma_{+}} \sum_{i} e_{-\gamma}^{(i)} e_{\gamma}^{(i)}(v) \quad \text { if } v \in M(\alpha)_{\alpha-\eta},
$$

where $e_{\gamma}^{(i)}$ is a basis of $\mathbf{g}_{\gamma}^{\prime}$ and $e_{-\gamma}^{(i)}$ is a dual basis of $\boldsymbol{g}_{-\gamma}^{\prime}$ with respect to the invariant symmetric bilinear form on g^{\prime} as in [4, p. 313]. This has been introduced in a slightly different form in [3] and differs from the version in [4] only by a factor $1 / 2$ (we do it in order to include the case char $\mathbf{F}=2$). As usual, one shows by a direct computation that Ω commutes with e_{i} and f_{i} action, and as $\Omega\left(v_{\alpha}\right)=0$, obtains that $\Omega=0$. On the other hand, by the definition of Ω, a primitive vector $v \in M(\alpha)_{\alpha-\beta}$ is an Ω-eigenvector modulo a submodule, with eigenvalue $T_{\beta}-(\alpha, \beta)$. Hence, this eigenvalue is 0 .

Now we are able to complete the proof of Theorem 1. We apply the exact sequence (4) to $\widetilde{p}=\tilde{n}_{-}$and $\mathfrak{p}=\eta_{-}^{\prime}$. We clearly have the following isomorphisms of $\tilde{\mathfrak{n}}_{-}$-modules: $U_{0}\left(\tilde{\mathfrak{n}}_{-}\right)=\widetilde{M}^{1}(0)=\bigoplus_{i=1}^{n} \widetilde{M}\left(-\alpha_{i}\right)$; the last isomorphism (of $\widetilde{\mathfrak{g}}$-modules, actually) is due to the fact that $\tilde{\mathfrak{n}}_{-}$is a free Lie algebra and hence
$U\left(\tilde{\mathrm{n}}_{-}\right)$is freely generated by $f_{i}, i \in I$. We also have the following isomorphisms of n_{-}^{\prime}-modules: $U_{0}\left(\mathrm{n}_{-}^{\prime}\right)=M^{1}(0)$ and $U_{0}\left(\tilde{\mathfrak{n}}_{-}\right) / \mathrm{r}_{-} U_{0}\left(\tilde{\mathfrak{n}}_{-}\right)=U\left(\mathrm{n}_{-}^{\prime}\right)$ $\otimes_{U\left(\tilde{\mathrm{n}}_{-}\right)} U_{0}\left(\widetilde{\mathrm{n}}_{-}\right)=U\left(\mathrm{n}_{-}^{\prime}\right) \otimes_{U\left(\tilde{\mathrm{n}}_{-}\right)} \widetilde{M}^{1}(0)=U\left(\mathrm{n}_{-}^{\prime}\right) \otimes_{U\left(\tilde{n}_{-}\right)}\left(\bigoplus_{i=1}^{n} \widetilde{M}\left(-\alpha_{i}\right)\right)=$ $\bigoplus_{i=1}^{n} M\left(-\alpha_{i}\right)$. Hence (4) gives an exact sequence of n_{-}^{\prime}-modules,

$$
\begin{equation*}
0 \rightarrow \mathfrak{r}_{-} /\left[\mathfrak{r}_{-}, \mathfrak{r}_{-}\right] \xrightarrow{\lambda} \bigoplus_{i=1}^{n} M\left(-\alpha_{i}\right) \xrightarrow{\phi} M^{1}(0) \rightarrow 0 \tag{5}
\end{equation*}
$$

Now we show that (5) is, in fact, an exact sequence of g^{\prime}-modules. For the map ϕ this is clear. To show that λ is a g^{\prime}-module homomorphism we describe it more explicitly. Define $\psi: \mathfrak{r} \rightarrow \widetilde{M}^{1}(0)$ by $\psi(a)=a\left(\widetilde{v_{0}}\right)$. This induces $\lambda_{1}: \mathfrak{r} \rightarrow$ $U\left(g^{\prime}\right) \otimes_{U(\widetilde{g})} \widetilde{M}^{1}(0)$ such that $\lambda_{1}\left(r_{+}\right)=0, \lambda_{1}\left(\left[r_{-}, r_{-}\right]\right)=0$, which gives us the map λ. We have to check that λ_{1} is a homomorphism of \tilde{g}-modules. Indeed, for $a \in \mathfrak{r}$ and $x \in \widetilde{g}$ one has

$$
\begin{aligned}
\lambda_{1}([x, a]) & =1 \otimes\left(x a \widetilde{v}_{0}-a x \widetilde{v}_{0}\right)=\pi(x) \otimes \widetilde{v_{0}}-\pi(a) \otimes x \widetilde{v}_{0} \\
& =\pi(x) \otimes \widetilde{v_{0}}=\pi(x) \lambda_{1}(a) .
\end{aligned}
$$

Now let $-\alpha$ be a primitive weight of the \mathfrak{g}^{\prime}-module $\mathfrak{r}_{-} /\left[\mathfrak{r}_{-}, \mathfrak{r}_{-}\right]$. Then, since (5) is an exact sequence of g^{\prime}-modules, we deduce that $-\alpha$ is also a primitive weight of one of the g^{\prime}-modules $M\left(-\alpha_{i}\right)$ and hence of the g^{\prime}-module $M(0)$. Hence, by Lemma 2, we obtain that $T_{\alpha}=0 . \alpha \notin \Pi$ since no f_{i} lies in r . As the \mathfrak{n}^{\prime}-module $\mathfrak{r}_{-} /\left[\mathfrak{r}_{-}, \mathfrak{r}_{-}\right]$is generated by primitive vectors (because a homogeneous vector v is not primitive iff $\left.v \in U\left(\mathfrak{n}_{-}^{\prime}\right) U\left(\mathfrak{n}_{+}^{\prime}\right) \mathfrak{n}_{+}^{\prime} \cdot v\right)$ we obtain that the ideal \mathfrak{r}_{-}in $\tilde{\mathfrak{n}}_{-}$is generated by those $\mathfrak{r}_{-\alpha}$ for which $\alpha \in \Gamma_{+} \backslash \Pi$ and $T_{\alpha}=0$, as required. The result for \mathfrak{r}_{+}follows by applying the involution θ of $\widetilde{\mathfrak{g}}$ defined by $\theta\left(e_{i}\right)=-f_{i}, \theta\left(f_{i}\right)=-e_{i}, \theta\left(h_{i}\right)=-h_{i}, i \in I$.

BIBLIOGRAPHY

1. N. Bourbaki, Groupes et algèbres de Lie, Chapter V, Hermann, Paris, 1968.
2. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-

Izv. 2 (1968), 1271-1311.
3. \longrightarrow, Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl. 8 (1974), 68-70.
4. On simplicity of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 311-314.
5. J.-P. Serre, Algèbres de Lie semi-simple complexes, Benjamin, New York and Amsterdam, 1966.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL

DEPARTMENT OF MATHEMATICS, MASSACHUSETS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

[^0]: Received by the editors March 12, 1980.
 1980 Mathematics Subject Classification. Primary 17B65.
 ${ }^{1}$ The hospitality of IHES where this work was done is gratefully acknowledged.

[^1]: ${ }^{2}$ For an affine matrix A there is an explicit construction of $g(A) / c$ [2], which

