ON DEFINING RELATIONS OF CERTAIN INFINITE-DIMENSIONAL LIE ALGEBRAS¹

BY OFER GABBER AND VICTOR G. KAC

ABSTRACT. In this note we prove a conjecture stated in [2] about defining relations of the so-called Kac-Moody Lie algebras. In the finite-dimensional case this is Serre's theorem [5]. The basic idea is to map the ideal of relations into a Verma module and then to use the (generalized) Casimir operator (cf. [3, 4]).

1. The main statements. Let $A = (a_{ij})$ be an $n \times n$ matrix over a field F. Denote by $\widetilde{\mathfrak{g}}(A)$ the Lie algebra over F with 3n generators $e_i, f_i, h_i, i \in I = \{1, \ldots, n\}$ and the following defining relations $(i, j \in I)$:

(1)
$$[e_i, f_j] - \delta_{ij}h_i, [h_i, h_j], [h_i, e_j] - a_{ij}e_j, [h_i, f_j] + a_{ij}f_j.$$

Set $\Gamma = \mathbb{Z}^n$, $\Gamma_+ = \{(k_1, \ldots, k_n) \in \Gamma | k_i \ge 0\} \setminus \{0\}$ and let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be the standard basis of Γ . Setting deg $e_i = -\deg f_i = \alpha_i$ for $i \in I$ defines a Γ -gradation $\widetilde{\mathfrak{g}}(A) = \bigoplus_{\alpha \in \Gamma} \widetilde{\mathfrak{g}}_{\alpha}$. Let $\widetilde{\mathfrak{n}}_{\pm} = \bigoplus_{\alpha \in \Gamma_+} \widetilde{\mathfrak{g}}_{\pm \alpha}$ and $\mathfrak{h} = \widetilde{\mathfrak{g}}_0$. Then $\widetilde{\mathfrak{n}}_+$ and $\widetilde{\mathfrak{n}}_-$ are free Lie algebras over F with systems of free generators e_1, \ldots, e_n and f_1, \ldots, f_n , respectively, and $\widetilde{\mathfrak{g}}(A) = \widetilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_+$ (direct sum of vector spaces), so that $\widetilde{\mathfrak{g}}_{\alpha_i} = Fe_i$, $\mathfrak{g}_{-\alpha_i} = Ff_i$ for $i \in I$, and $\mathfrak{h} = \bigoplus_i Fh_i$ [2, Chapter I]. Define $(\alpha \mapsto \overline{\alpha}) \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathfrak{h}^*)$ by $\overline{\alpha}_i(h_i) = a_{ii}$ for $i, j \in I$.

Let \mathfrak{r} be the sum of all graded ideals in $\mathfrak{g}(A)$ intersecting \mathfrak{h} trivially. We have the induced gradation $\mathfrak{r} = \bigoplus_{\alpha \in \Gamma} \mathfrak{r}_{\alpha}$. Setting $\mathfrak{r}_{\pm} = \mathfrak{r} \cap \widetilde{\mathfrak{n}}_{\pm}$, we obtain that $\mathfrak{r} = \mathfrak{r}_{+} \oplus \mathfrak{r}_{-}$ is a direct sum of ideals.

Our main result is the following.

THEOREM 1. For $\alpha = (k_1, \ldots, k_n) \in \Gamma$ set

$$T_{\alpha} = \sum_{1 \le i < j \le n} a_{ij} k_i k_j + \sum_{1 \le i \le n} a_{ii} \frac{1}{2} (k_i^2 - k_i)$$

and assume that the matrix A is symmetric. Then the ideal \mathfrak{r}_+ (resp. \mathfrak{r}_-) is generated as an ideal in $\widetilde{\mathfrak{n}}_+$ (resp. $\widetilde{\mathfrak{n}}_-$) by those \mathfrak{r}_{α} (resp. $\mathfrak{r}_{-\alpha}$) for which $\alpha \in \Gamma_+ \setminus \Pi$ and $T_{\alpha} = 0$.

COROLLARY [4, THEOREM 1]. If $T_{\alpha} \neq 0$ for all $\alpha \in \Gamma_+ \setminus \Pi$, then $\mathfrak{r} = 0$.

© 1981 American Mathematical Society 0002-9904/81/0000-0407/\$02.25

Received by the editors March 12, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 17B65.

¹ The hospitality of IHES where this work was done is gratefully acknowledged.

The next corollary is, in fact, the purpose of the note. An $n \times n$ matrix $A = (a_{ij})$ over a field F of characteristic 0 is called a *Cartan matrix* iff it satisfies the following properties:

(i) $a_{ii} = 2$, a_{ij} are nonpositive integers for $i \neq j$, and $a_{ij} = 0$ implies $a_{ji} = 0$, $i, j \in I$;

(ii) there exists a nondegenerate diagonal $n \times n$ matrix D such that the matrix DA is symmetric.

Define automorphisms s_i , $i \in I$, of the lattice Γ by $s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i$, $j \in I$; let $W \subset \text{Aut } \Gamma$ denote the group generated by s_i , $i \in I$ [2].

THEOREM 2. Let char $\mathbf{F} = 0$ and let A be a Cartan matrix. Then the elements

(2) $(ade_i)^{-a_{ij}+1}e_j$ for $i, j \in I, i \neq j$, (3) $(adf_i)^{-a_{ij}+1}f_j$ for $i, j \in I, i \neq j$,

lie in r and generate the ideals r_+ and r_- , respectively.

PROOF. It is well known that the property (i) of A implies that all the elements (2) and (3) lie in r (see, e.g., [2, Lemma 9]).

In order to prove that these elements generate r_{\pm} , note that replacing h_i by $d_i h_i$, $d_i \in F^*$ and e_i by $d_i^{-1} e_i$ is equivalent to replacing A by the matrix $B = \text{diag}(d_1, \ldots, d_n)A$. Therefore, by the property (ii) of A we can identify the Lie algebras $\tilde{\mathfrak{g}}(A)$ and $\tilde{\mathfrak{g}}(B)$, where $B = (b_{ij})$ is a symmetric matrix; it is also clear that we can choose d_i 's so that b_{ii} are positive rational numbers.

Define a symmetric bilinear form (,) on Γ by $(\alpha_i, \alpha_j) = b_{ij}$, $i, j \in I$. Then we have $a_{ij} = 2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i)$. Denote by \mathfrak{g} the quotient of $\widetilde{\mathfrak{g}}(A)$ by the ideal generated by all elements (2) and (3), let $\mathfrak{g} = \bigoplus \mathfrak{g}_{\alpha}$ be the induced gradation and $\overline{\mathfrak{r}}_{\pm}$ denote the image of \mathfrak{r}_{\pm} in \mathfrak{g} . We have the induced gradation $\overline{\mathfrak{r}}_{\pm} = \bigoplus_{\alpha \in \Gamma_+} \overline{\mathfrak{r}}_{\pm \alpha}$.

Recall that there exists $\widetilde{s}_i \in \operatorname{Aut} \mathfrak{g}$ such that [2, Lemma 10]

 $\widetilde{s}_i(\mathfrak{g}_\alpha) = \mathfrak{g}_{s_i(\alpha)}$ and $\widetilde{s}_i(\overline{\mathfrak{r}}_{\pm}) = \overline{\mathfrak{r}}_{\pm}$.

Now suppose that $\overline{\mathbf{r}}_{+} \neq 0$ (the case $\overline{\mathbf{r}}_{-}$ is similar). From among $\alpha = (k_1, \ldots, k_n) \in \Gamma_+$ such that $\overline{\mathbf{r}}_{\alpha} \neq 0$ choose one of minimal height (i.e., $\Sigma_i k_i$ is minimal). Then height $s_i(\alpha) \ge$ height α for all $i \in I$. It follows that $(\alpha, \alpha_i) \le 0$ for all $i \in I$, and hence $(\alpha, \alpha) \le 0$. Hence $2T_{\alpha} = \Sigma_{i,j} b_{ij} k_i k_j - \Sigma_i b_{ij} k_i < 0$. This is a contradiction with Theorem 1.

COROLLARY 1. Let char $\mathbf{F} = 0$ and let A be an indecomposable Cartan matrix. Let $\mathbf{g}(A) = \bigoplus_{\alpha \in \Gamma} \mathbf{g}_{\alpha}$ be the Lie algebra with generators e_i , f_i , h_i , $i \in I$, and defining relations (1), (2), (3), and the gradation induced from $\widetilde{\mathbf{g}}(A)$. Set $\mathbf{c} = \{h \in \mathbf{g}_0 = \mathfrak{h} | \overline{\alpha}_i(h) = 0 \text{ for all } i \in I\}$. Then

(a) c is the center of g(A) and any proper graded ideal of g(A) lies in c.

(b) Provided that A is not one of the affine matrices from Tables 1–3 [1], the Lie algebra g(A)/c is simple.²

PROOF. (a) follows from Theorem 2 and [2, Lemma 1]. (b) follows from (a), [2, Lemma 6], which gives a sufficient condition for nonexistence of a non-graded ideal in $\tilde{g}(A)/r$, and [1, §2, Exercise 8b], which implies that this condition holds unless A is affine.

COROLLARY 2. Let $A = (a_{ij})$ be a Cartan matrix and let n(A) denote the Lie algebra over a field of characteristic 0 with generators e_1, \ldots, e_n and defining relations $(ade_i)^{1-a_{ij}}e_j = 0, i \neq j$. Setting deg $e_i = \alpha_i$ defines a Γ_+ -gradation $n(A) = \bigoplus_{\alpha} n_{\alpha}$. For $w \in W$ denote by s(w) the (finite) sum of the $\alpha \in \Gamma_+$ for which $-w^{-1}(\alpha) \in \Gamma_+$. Then

$$\prod_{\alpha\in\Gamma_+} (1-e^{\alpha})^{\dim\mathfrak{n}_{\alpha}} = \sum_{w\in W} (\det w) e^{s(w)}.$$

PROOF. This follows from Theorem 2 and the "denominator" identity proved in [3]. We remark that the proof in [3] works for the Lie algebra $\tilde{\mathfrak{g}}(A)/\mathfrak{r}$ (but not $\mathfrak{g}(A)$). Thus the last corollary of [3] (in which Theorem 2 is claimed) remained there unproven.

2. Proof of Theorem 1. First, we prove a simple general result on Lie algebras and then apply it to our situation. For a Lie algebra \mathfrak{p} over \mathbf{F} , $U(\mathfrak{p})$ will denote its universal enveloping algebra and $U_0(\mathfrak{p}) \subset U(\mathfrak{p})$ the augmentation ideal.

Let $\widetilde{\mathfrak{p}}$ be a Lie algebra over \mathbf{F} , \mathfrak{a} an ideal, $\mathfrak{p} = \widetilde{\mathfrak{p}}/\mathfrak{a}$ and $\pi: \widetilde{\mathfrak{p}} \to \mathfrak{p}$ the canonical map. The injection $\mathfrak{a} \to U_0(\widetilde{\mathfrak{p}})$ and the map π induce homomorphisms of left \mathfrak{p} -modules, respectively $\lambda:\mathfrak{a}/[\mathfrak{a},\mathfrak{a}] \to U_0(\widetilde{\mathfrak{p}})/\mathfrak{a}U_0(\widetilde{\mathfrak{p}})$ and $\phi: U_0(\widetilde{\mathfrak{p}})/\mathfrak{a}U_0(\widetilde{\mathfrak{p}}) \to U(\mathfrak{p})$, so that Im $\phi = U_0(\mathfrak{p})$.

LEMMA 1. The following sequence of p-modules is exact

(4)

$$0 \longrightarrow \mathfrak{a}/[\mathfrak{a}, \mathfrak{a}] \xrightarrow{\Lambda} U_0(\widetilde{\mathfrak{p}})/\mathfrak{a}U_0(\widetilde{\mathfrak{p}}) \xrightarrow{\varphi} U_0(\mathfrak{p}) \longrightarrow 0.$$

PROOF. The inclusion Im $\lambda \subset \text{Ker } \phi$ is clear. To show the other inclusion note that $U(\mathfrak{p}) = U(\widetilde{\mathfrak{p}})/\mathfrak{a}U(\widetilde{\mathfrak{p}})$. Hence

$$\operatorname{Ker} \phi = (U_0(\widetilde{\mathfrak{p}}) \cap \mathfrak{a} U(\widetilde{\mathfrak{p}}))/\mathfrak{a} U_0(\widetilde{\mathfrak{p}}) = \mathfrak{a} U(\widetilde{\mathfrak{p}})/\mathfrak{a} U_0(\widetilde{\mathfrak{p}}).$$

As $U(\widetilde{\mathfrak{p}}) = \mathbf{F} \oplus U_0(\widetilde{\mathfrak{p}})$, we see that Ker $\phi \subset \text{Im } \lambda$.

Finally, we show that Ker $\lambda = 0$. This is equivalent to $\mathfrak{a} \cap \mathfrak{a} U_0(\tilde{\mathfrak{p}}) = [\mathfrak{a}, \mathfrak{a}]$. A standard Poincaré-Birkhoff-Witt theorem argument gives that this is equivalent to $\mathfrak{a} \cap U_0(\mathfrak{a})^2 = [\mathfrak{a}, \mathfrak{a}]$ (in $U(\mathfrak{a})$). The inclusion \supset is obvious, and the other inclusion is shown by passage to $U(\mathfrak{a}/[\mathfrak{a}, \mathfrak{a}])$.

 $[\]frac{1}{2}$ For an affine matrix A there is an explicit construction of g(A)/c [2], which shows that (b) fails in this case.

Recall that if V is a left module over a Lie algebra \mathfrak{a} , then given a Lie algebra homomorphism $\psi : \mathfrak{a} \longrightarrow \mathfrak{b}$, one defines the *induced* left \mathfrak{b} -module

$$\operatorname{Ind}_{\mathfrak{a}}^{\mathfrak{g}}V = (U(\mathfrak{b}) \otimes_{\mathbf{F}} V) / \Sigma_{a,b,V} \mathbf{F} (b\psi(a) \otimes v - b \otimes a \cdot v),$$

where $b \in U(b)$, $a \in a$, $v \in V$, with an obvious action of b.

Now we turn to the Lie algebra $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}(A)$ associated to a symmetric matrix $A = (a_{ij})$. Set $\mathfrak{g}' = \tilde{\mathfrak{g}}/\mathfrak{r}$; denote by π the canonical homomorphism $\tilde{\mathfrak{g}} \to \mathfrak{g}'$. We have the induced gradation $\mathfrak{g}' = \bigoplus_{\alpha \in \Gamma} \mathfrak{g}'_{\alpha}$ and induced decomposition $\mathfrak{g}' = \mathfrak{n}'_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}'_{+}$ (we identify \mathfrak{h} with $\pi(\mathfrak{h}) = \mathfrak{g}'_{0}$), so that $\mathfrak{g}'_{-\alpha_{i}} = F\pi(f_{i}), \mathfrak{g}'_{\alpha_{i}} = F\pi(e_{i})$ for $i \in I$. Define a symmetric bilinear form on Γ by $(\alpha_{i}, \alpha_{j}) = a_{ij}$ for $i, j \in I$.

For $\alpha \in \Gamma$ define a $\widetilde{\mathfrak{g}}$ -module $\widetilde{M}(\alpha) = \operatorname{Ind}_{\mathfrak{h}\oplus\widetilde{\mathfrak{n}}+}^{\widetilde{\mathfrak{g}}} \mathbf{F}_{\alpha}$, where \mathbf{F}_{α} is a 1-dimensional module with underlying space \mathbf{F} defined by $\widetilde{\mathfrak{n}}_{+}(1) = 0$, $h(1) = \overline{\alpha}(h)$ for $h \in \mathfrak{h}$. Denote the image of $1 \otimes 1$ in $\widetilde{M}(\alpha)$ by \widetilde{v}_{α} and let $\widetilde{M}(\alpha)_{\alpha} = \mathbf{F} \cdot \widetilde{v}_{\alpha}$. The Γ -gradation of $\widetilde{\mathfrak{g}}$ induces a gradation $\widetilde{M}(\alpha) = \bigoplus_{\eta \in \Gamma_{+} \cup \{0\}} \widetilde{M}(\alpha)_{\alpha-\eta}$, so that $\widetilde{\mathfrak{g}}_{\beta}\widetilde{M}(\alpha)_{\gamma} \subset \widetilde{M}(\alpha)_{\beta+\gamma}$. Further on, by a "module" we mean a Γ -graded module. $\widetilde{M}(\alpha)$ contains a unique proper maximal submodule which is denoted by $\widetilde{M}^{1}(\alpha)$. Similarly, we define the \mathfrak{g}' -module $M(\alpha) = \operatorname{Ind}_{\mathfrak{h}\oplus\mathfrak{n}'_{+}}^{\mathfrak{g}'} \mathbf{F}_{\alpha}$, its gradation $M(\alpha) = \bigoplus_{\eta} M(\alpha)_{\alpha-\eta}$, the canonical generator v_{α} , the submodule $M^{1}(\alpha)$, etc.

An element $v \in M_{\gamma}$ in a Γ -graded g'-module M is called *primitive of weight* γ iff there exists a g'-submodule $V \subset M(\alpha)$ such that $v \notin V$ but $\mathfrak{n}'_+(v) = 0 \mod V$; then we call $\gamma \in \Gamma$ a *primitive weight* of M.

LEMMA 2. If $\alpha - \beta$ is a primitive weight for the g'-module $M(\alpha)$, then $T_{\beta} = (\alpha, \beta)$.

PROOF. Define the (generalized) Casimir operator Ω on $M(\alpha)$ by

$$\Omega(v) = (T_{\eta} - (\alpha, \eta))v + \sum_{\gamma \in \Gamma_{+}} \sum_{i} e_{-\gamma}^{(i)} e_{\gamma}^{(i)}(v) \quad \text{if } v \in M(\alpha)_{\alpha - \eta},$$

where $e_{\gamma}^{(i)}$ is a basis of \mathbf{g}_{γ}' and $e_{-\gamma}^{(i)}$ is a dual basis of $\mathbf{g}_{-\gamma}'$ with respect to the invariant symmetric bilinear form on \mathbf{g}' as in [4, p. 313]. This has been introduced in a slightly different form in [3] and differs from the version in [4] only by a factor $\frac{1}{2}$ (we do it in order to include the case char $\mathbf{F} = 2$). As usual, one shows by a direct computation that Ω commutes with e_i and f_i action, and as $\Omega(v_{\alpha}) = 0$, obtains that $\Omega = 0$. On the other hand, by the definition of Ω , a primitive vector $v \in M(\alpha)_{\alpha-\beta}$ is an Ω -eigenvector modulo a submodule, with eigenvalue $T_{\beta} - (\alpha, \beta)$. Hence, this eigenvalue is 0.

Now we are able to complete the proof of Theorem 1. We apply the exact sequence (4) to $\tilde{\mathfrak{p}} = \tilde{\mathfrak{n}}_{-}$ and $\mathfrak{p} = \mathfrak{n}'_{-}$. We clearly have the following isomorphisms of $\tilde{\mathfrak{n}}_{-}$ -modules: $U_0(\tilde{\mathfrak{n}}_{-}) = \widetilde{M}^1(0) = \bigoplus_{i=1}^n \widetilde{M}(-\alpha_i)$; the last isomorphism (of $\tilde{\mathfrak{g}}$ -modules, actually) is due to the fact that $\tilde{\mathfrak{n}}_{-}$ is a free Lie algebra and hence

 $U(\widetilde{\mathfrak{n}}_{-})$ is freely generated by f_i , $i \in I$. We also have the following isomorphisms of \mathfrak{n}'_{-} -modules: $U_0(\mathfrak{n}'_{-}) = M^1(0)$ and $U_0(\widetilde{\mathfrak{n}}_{-})/\mathfrak{r}_{-}U_0(\widetilde{\mathfrak{n}}_{-}) = U(\mathfrak{n}'_{-})$ $\otimes_{U(\widetilde{\mathfrak{n}}_{-})} U_0(\widetilde{\mathfrak{n}}_{-}) = U(\mathfrak{n}'_{-}) \otimes_{U(\widetilde{\mathfrak{n}}_{-})} \widetilde{M}^1(0) = U(\mathfrak{n}'_{-}) \otimes_{U(\widetilde{\mathfrak{n}}_{-})} (\bigoplus_{i=1}^n \widetilde{M}(-\alpha_i)) = \bigoplus_{i=1}^n M(-\alpha_i)$. Hence (4) gives an exact sequence of \mathfrak{n}'_{-} -modules,

(5)
$$0 \to \mathfrak{r}_{-}/[\mathfrak{r}_{-}, \mathfrak{r}_{-}] \xrightarrow{\lambda} \bigoplus_{i=1}^{n} M(-\alpha_{i}) \xrightarrow{\phi} M^{1}(0) \to 0.$$

Now we show that (5) is, in fact, an exact sequence of \mathfrak{g}' -modules. For the map ϕ this is clear. To show that λ is a \mathfrak{g}' -module homomorphism we describe it more explicitly. Define $\psi: \mathfrak{r} \longrightarrow \widetilde{M}^1(0)$ by $\psi(a) = a(\widetilde{v_0})$. This induces $\lambda_1: \mathfrak{r} \longrightarrow U(\mathfrak{g}') \otimes_{U(\widetilde{\mathfrak{g}})} \widetilde{M}^1(0)$ such that $\lambda_1(\mathfrak{r}_+) = 0$, $\lambda_1([\mathfrak{r}_-, \mathfrak{r}_-]) = 0$, which gives us the map λ . We have to check that λ_1 is a homomorphism of $\widetilde{\mathfrak{g}}$ -modules. Indeed, for $a \in \mathfrak{r}$ and $x \in \widetilde{\mathfrak{g}}$ one has

$$\lambda_1([x, a]) = 1 \otimes (xa\widetilde{v}_0 - ax\widetilde{v}_0) = \pi(x) \otimes a\widetilde{v}_0 - \pi(a) \otimes x\widetilde{v}_0$$
$$= \pi(x) \otimes a\widetilde{v}_0 = \pi(x)\lambda_1(a).$$

Now let $-\alpha$ be a primitive weight of the g'-module $r_{-}[r_{-}, r_{-}]$. Then, since (5) is an exact sequence of g'-modules, we deduce that $-\alpha$ is also a primitive weight of one of the g'-modules $M(-\alpha_i)$ and hence of the g'-module M(0). Hence, by Lemma 2, we obtain that $T_{\alpha} = 0$. $\alpha \notin \Pi$ since no f_i lies in r. As the n'-module $r_{-}/[r_{-}, r_{-}]$ is generated by primitive vectors (because a homogeneous vector v is not primitive iff $v \in U(n'_{-})U(n'_{+})n'_{+} \cdot v)$ we obtain that the ideal r_{-} in \tilde{n}_{-} is generated by those $r_{-\alpha}$ for which $\alpha \in \Gamma_{+} \setminus \Pi$ and $T_{\alpha} = 0$, as required. The result for r_{+} follows by applying the involution θ of \tilde{g} defined by $\theta(e_i) = -f_i$, $\theta(f_i) = -e_i$, $\theta(h_i) = -h_i$, $i \in I$.

BIBLIOGRAPHY

1. N. Bourbaki, Groupes et algèbres de Lie, Chapter V, Hermann, Paris, 1968.

2. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv. 2 (1968), 1271-1311.

3. _____, Infinite-dimensional Lie algebras and Dedekind's η -function, Functional Anal. Appl. 8 (1974), 68-70.

4. _____, On simplicity of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 311-314.

5. J.-P. Serre, *Algèbres de Lie semi-simple complexes*, Benjamin, New York and Amsterdam, 1966.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL

DEPARTMENT OF MATHEMATICS, MASSACHUSETS INSTITUTE OF TECHNOL-OGY, CAMBRIDGE, MASSACHUSETTS 02139