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TWO WEIGHTS WITH ORTHOGONAL SUPPORTS 

BUT EQUAL ON A DENSE *-SUBALGEBRA 

BY A. VAN DAELE 

ABSTRACT. We construct two normal semifinite weights <£ and \jj on 
8(H) with orthogonal supports and such that y(x) — \}J(X) for x in a weakly 
dense *-subalgebra MQ contained in Uk and 1^. The example is based on the 
existence of a pair of positive self-adjoint operators h and k on H with orthog­
onal supports and such that \\h%\\ = \\k%\\ for £ in a dense subspace VQ contained 
in V(h) D V(k). 

By a slight modification we obtain two commuting faithful normal semi-
finite weights on B(H) that agree on a weakly dense *-subalgebra. This shows 
that the condition of invariance of this subalgebra for the modular automorphism 
group may not be omitted in the theorem of Pedersen and Takesaki on equality 
of weights [2, Proposition 5.9]. 

Let M be a von Neumann algebra. If <p is a normal semifinite weight on M 
denote9^ = {x EM\<f(x*x) < °°} and 99?̂ , =91*9^. It is well known in the 
theory of weights that *JÎ is a left ideal and that 3W is a *-subalgebra spanned 
by its positive part 5ft* which is equal to {x GM+|</?(x) < °°}. The weight has 
a unique extension, which we still denote by <p, to a linear functional on 3D? . 
Because <p is assumed to be semifinite, the subalgebra 90?̂  is weakly dense. 

We will only be concerned with weights on the von Neumann algebra 8(H) 
of all bounded linear operators on a Hubert space H. In the next proposition we 
will use the notation £ ® r? for the rank one operator on H defined by (£ ® r?)f = 
<f, r?>£ whenever £, 7?, f G f/. 

1. PROPOSITION. There is a one-to-one correspondence between the set of 
positive selfadjoint operators h on H and the set of normal semifinite weights y 
on B(H) given by <fâ ® %) = \\h$\\2 if ? e VQi) and <p(£ ® Ö = °° if %& W). 

This result essentially follows from the work of Pedersen and Takesaki [2] 
but can also be proved directly using a technique as in Lemma 1.4 of [1]. More­
over we have that ^ is faithful if and only if h is nonsingular, and in that case 
the modular automorphisms are given by ot(x) = h2ltxh~2lt for all x G 8(H) 
and all t G R. 

To prove our main result we need a pair of positive selfadjoint operators 
with certain properties. The existence of such a pair was shown already in [3]. 
The proof is short and simple and we also give it here for completeness. 
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2. PROPOSITION. There exists a pair of positive self adjoint operators h 
and k with orthogonal supports and such that \\h%\\ = \\k%\\ for £ in a dense sub-
space V0 contained in V(h) n V(k). 

PROOF. Let a and b be two selfadjoint operators on a Hubert space f/0 

such that Via) n p ( ó ) = { 0 } . If we replace a and b by a*a + 1 and b*b + 1 
we may assume, if necessary, that a and b are positive with bounded inverses 
satisfying 0 < a~l < 1 and 0 < b'1 < 1. 

Consider H = f/0 ® f/0 and define the operators /z and A; on tf by 

P(A)={(f,i?)l«eO(fl),T?€Ho}, 

£(*)= { ( t r? ) l ?GH 0 ^e i? (o )} 

and fc({, rj) = (a?, 0) if (*, n) E V(h) and fc«, t?) = (0, or?) if (f, T?) G fl(*). 
Then /* and fc are positive selfadjoint operators with orthogonal supports. 

If we also let V0 = {(«~1r?, fc"1^ E H0> then V0 £ V(h) n fl(*) and 
II Will = ll&?ll for all £ E P0. To prove that V0 is dense we assume that (r^, r?2) 
is a pair in H such that (r^, T?2) 1 (a~l% b~lri) for all r? E H0. Then 
<a~1T71 4- b~1r)2, rj) = (T^, tf_1T?> 4- <T?2, Z>-1T?> = 0 for all T? E f/0 so that 
a~~xr\x = -b~lr\2. Because Via) n fl(Z>) = {0} it follows that a~lr\x = b~lr\2 

= 0 and nx — n2 = 0 . This completes the proof. 
It is now easy to obtain our main result. 

3. THEOREM. There exists a pair of normal semifînite weights y and \p 
on B(tf) with orthogonal supports such that y{x) = \p(x) for x in a weakly dense 
*-subalgebra M0 of B(H) contained in 2ft̂  and 9W .̂ 

PROOF. Choose a pair of positive selfadjoint operators h and k on H with 
orthogonal supports but such that \\h%\\ = \\k%\\ for all | in a dense subspace V0 

contained in VQi) n V(k). Let <p and \p be the corresponding weights on B(f0-

If e is the support projection of h then (1 - e)H C p(ft) and h{\ - e) = 0. 
And if {£<Ja E 4̂} is an orthonormal basis for H we get 

*1 ~ e) = Z tfO - *X« ® (! - *)U = £ H*(l " «KJI2 = 0 
oiE:A a^A 

so that the support of y is contained in e. Therefore \p and \jj will have orthog­
onal supports. Now let M0 be the algebra of linear combinations of the opera­
tors {{ ® r?|J, n G p 0 } . If * e p0 then <̂ (£ ® £) = ||/2?||2 = ||*fl|2 = <Kf ® £) 
and by linearity and some kind of polarization we obtain ip(x) = i//(*) for all 
x E | l | 0 , And finally because V0 is dense in H also M0 will be norm dense in the 
algebra of finite rank operators, and so weakly dense in B(H). 
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Pedersen and Takesaki have considered the problem of equality of two 
normal semifinite weights when they coincide on a dense *-subalgebra. They 
showed that \p and t// are equal if they commute (i.e. if \jj is invariant for the 
modular automorphisms of y) and if they agree on a dense *-subalgebra which 
is invariant under the modular automorphisms of ^. Our next result shows that 
the invariance of the subalgebra cannot be omitted, and only a small modifica­
tion to the example in Theorem 3 has to be made. 

4. THEOREM. There exists a pair of different faithful normal semifinite 
weights y and \p on B(H) such that \p is invariant for the modular automorphisms 
of ip and such that \p(x) = (p(x) for x in a weakly dense *-subspace M0 contained 

PROOF. Again let h and k be as in Proposition 2. Then consider ht = 
(h2 + l ) 1 / 2 and kx = (k2 + l ) 1 / 2 and let \p and \p be the weights associated to 
hx and kx respectively. The weights will be faithful as now the operators are 
nonsingular. Because h and k have orthogonal supports it also follows easily that 
hx and kt will commute. Then \jj will be invariant for the modular automor­
phisms of if given by ot(x) = h\ltxh^2lt when x G B(H) and t ER. We also 
get ll/^H2 = H^ll2 + ||£||2 = II^H2 + HSU2 = Hfĉ H2 for any f € V0 and so if 
as before M0 is the algebra spanned by the operators £ <8> r? with | , r? E V0 then 
\p(x) = <p(x) for all x G M0-
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