TWO WEIGHTS WITH ORTHOGONAL SUPPORTS BUT EQUAL ON A DENSE *-SUBALGEBRA

BY A. VAN DAELE

ABSTRACT. We construct two normal semifinite weights φ and ψ on B(H) with orthogonal supports and such that $\varphi(x)=\psi(x)$ for x in a weakly dense *-subalgebra M_0 contained in \mathfrak{A}_{φ} and \mathfrak{A}_{ψ} . The example is based on the existence of a pair of positive self-adjoint operators h and k on H with orthogonal supports and such that $\|h\xi\|=\|k\xi\|$ for ξ in a dense subspace \mathcal{D}_0 contained in $\mathcal{D}(h)\cap\mathcal{D}(k)$.

By a slight modification we obtain two commuting faithful normal semifinite weights on $\mathcal{B}(\mathcal{H})$ that agree on a weakly dense *-subalgebra. This shows that the condition of invariance of this subalgebra for the modular automorphism group may not be omitted in the theorem of Pedersen and Takesaki on equality of weights [2, Proposition 5.9].

Let M be a von Neumann algebra. If φ is a normal semifinite weight on M denote $\mathfrak{R}_{\varphi} = \{x \in M | \varphi(x^*x) < \infty\}$ and $\mathfrak{M}_{\varphi} = \mathfrak{R}_{\varphi}^*\mathfrak{R}_{\varphi}$. It is well known in the theory of weights that \mathfrak{R}_{φ} is a left ideal and that \mathfrak{M}_{φ} is a *-subalgebra spanned by its positive part \mathfrak{M}_{φ}^+ which is equal to $\{x \in M^+ | \varphi(x) < \infty\}$. The weight has a unique extension, which we still denote by φ , to a linear functional on \mathfrak{M}_{φ} . Because φ is assumed to be semifinite, the subalgebra \mathfrak{M}_{φ} is weakly dense.

We will only be concerned with weights on the von Neumann algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} . In the next proposition we will use the notation $\xi \otimes \eta$ for the rank one operator on \mathcal{H} defined by $(\xi \otimes \eta)\zeta = \langle \zeta, \eta \rangle \xi$ whenever $\xi, \eta, \zeta \in \mathcal{H}$.

1. Proposition. There is a one-to-one correspondence between the set of positive selfadjoint operators h on H and the set of normal semifinite weights φ on $\mathcal{B}(H)$ given by $\varphi(\xi \otimes \xi) = \|h\xi\|^2$ if $\xi \in \mathcal{D}(h)$ and $\varphi(\xi \otimes \xi) = \infty$ if $\xi \notin \mathcal{D}(h)$.

This result essentially follows from the work of Pedersen and Takesaki [2] but can also be proved directly using a technique as in Lemma 1.4 of [1]. Moreover we have that φ is faithful if and only if h is nonsingular, and in that case the modular automorphisms are given by $\sigma_t(x) = h^{2it}xh^{-2it}$ for all $x \in \mathcal{B}(\mathcal{H})$ and all $t \in \mathbf{R}$.

To prove our main result we need a pair of positive selfadjoint operators with certain properties. The existence of such a pair was shown already in [3]. The proof is short and simple and we also give it here for completeness.

Received by the editors April 2, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L10, 46L50.

2. PROPOSITION. There exists a pair of positive selfadjoint operators h and k with orthogonal supports and such that $||h\xi|| = ||k\xi||$ for ξ in a dense subspace \mathcal{D}_0 contained in $\mathcal{D}(h) \cap \mathcal{D}(k)$.

PROOF. Let a and b be two selfadjoint operators on a Hilbert space \mathcal{H}_0 such that $\mathcal{D}(a) \cap \mathcal{D}(b) = \{0\}$. If we replace a and b by $a^*a + 1$ and $b^*b + 1$ we may assume, if necessary, that a and b are positive with bounded inverses satisfying $0 \le a^{-1} \le 1$ and $0 \le b^{-1} \le 1$.

Consider $H = H_0 \oplus H_0$ and define the operators h and k on H by

$$\mathcal{D}(h) = \{(\xi, \eta) | \xi \in \mathcal{D}(a), \eta \in \mathcal{H}_0 \},\$$

$$\mathcal{D}(k) = \{(\xi, \eta) | \xi \in \mathcal{H}_0, \eta \in \mathcal{D}(b) \}$$

and $h(\xi, \eta) = (a\xi, 0)$ if $(\xi, \eta) \in \mathcal{D}(h)$ and $k(\xi, \eta) = (0, b\eta)$ if $(\xi, \eta) \in \mathcal{D}(k)$. Then h and k are positive selfadjoint operators with orthogonal supports.

If we also let $\mathcal{D}_0=\{(a^{-1}\eta,\,b^{-1}\eta)|\eta\in\mathcal{H}_0\}$ then $\mathcal{D}_0\subseteq\mathcal{D}(h)\cap\mathcal{D}(k)$ and $\|h\xi\|=\|k\xi\|$ for all $\xi\in\mathcal{D}_0$. To prove that \mathcal{D}_0 is dense we assume that $(\eta_1,\,\eta_2)$ is a pair in \mathcal{H} such that $(\eta_1,\,\eta_2)\perp(a^{-1}\eta,\,b^{-1}\eta)$ for all $\eta\in\mathcal{H}_0$. Then $(a^{-1}\eta_1+b^{-1}\eta_2,\,\eta)=\langle\eta_1,\,a^{-1}\eta\rangle+\langle\eta_2,\,b^{-1}\eta\rangle=0$ for all $\eta\in\mathcal{H}_0$ so that $a^{-1}\eta_1=-b^{-1}\eta_2$. Because $\mathcal{D}(a)\cap\mathcal{D}(b)=\{0\}$ it follows that $a^{-1}\eta_1=b^{-1}\eta_2=0$ and $\eta_1=\eta_2=0$. This completes the proof.

It is now easy to obtain our main result.

3. THEOREM. There exists a pair of normal semifinite weights φ and ψ on $\mathcal{B}(\mathcal{H})$ with orthogonal supports such that $\varphi(x) = \psi(x)$ for x in a weakly dense *-subalgebra M_0 of $\mathcal{B}(\mathcal{H})$ contained in \mathfrak{M}_{φ} and \mathfrak{M}_{ψ} .

PROOF. Choose a pair of positive selfadjoint operators h and k on H with orthogonal supports but such that $||h\xi|| = ||k\xi||$ for all ξ in a dense subspace \mathcal{D}_0 contained in $\mathcal{D}(h) \cap \mathcal{D}(k)$. Let φ and ψ be the corresponding weights on $\mathcal{B}(H)$.

If e is the support projection of h then $(1-e)H \subseteq \mathcal{D}(h)$ and h(1-e)=0. And if $\{\xi_{\alpha} | \alpha \in A\}$ is an orthonormal basis for H we get

$$\varphi(1-e) = \sum_{\alpha \in A} \varphi((1-e)\xi_{\alpha} \otimes (1-e)\xi_{\alpha}) = \sum_{\alpha \in A} ||h(1-e)\xi_{\alpha}||^2 = 0$$

so that the support of φ is contained in e. Therefore φ and ψ will have orthogonal supports. Now let M_0 be the algebra of linear combinations of the operators $\{\xi \otimes \eta | \xi, \eta \in \mathcal{D}_0\}$. If $\xi \in \mathcal{D}_0$ then $\varphi(\xi \otimes \xi) = \|h\xi\|^2 = \|k\xi\|^2 = \psi(\xi \otimes \xi)$ and by linearity and some kind of polarization we obtain $\varphi(x) = \psi(x)$ for all $x \in M_0$. And finally because \mathcal{D}_0 is dense in H also M_0 will be norm dense in the algebra of finite rank operators, and so weakly dense in $\mathcal{B}(H)$.

Pedersen and Takesaki have considered the problem of equality of two normal semifinite weights when they coincide on a dense *-subalgebra. They showed that φ and ψ are equal if they commute (i.e. if ψ is invariant for the modular automorphisms of φ) and if they agree on a dense *-subalgebra which is invariant under the modular automorphisms of φ . Our next result shows that the invariance of the subalgebra cannot be omitted, and only a small modification to the example in Theorem 3 has to be made.

4. Theorem. There exists a pair of different faithful normal semifinite weights φ and ψ on $\mathcal{B}(\mathcal{H})$ such that ψ is invariant for the modular automorphisms of φ and such that $\psi(x) = \varphi(x)$ for x in a weakly dense *-subspace M_0 contained in $\mathfrak{M}_{\varphi} \cap \mathfrak{M}_{\psi}$.

PROOF. Again let h and k be as in Proposition 2. Then consider $h_1=(h^2+1)^{1/2}$ and $k_1=(k^2+1)^{1/2}$ and let φ and ψ be the weights associated to h_1 and k_1 respectively. The weights will be faithful as now the operators are nonsingular. Because h and k have orthogonal supports it also follows easily that h_1 and k_1 will commute. Then ψ will be invariant for the modular automorphisms of φ given by $\sigma_t(x)=h_1^{2it}xh_1^{-2it}$ when $x\in\mathcal{B}(\mathcal{H})$ and $t\in\mathbf{R}$. We also get $\|h_1\xi\|^2=\|h\xi\|^2+\|\xi\|^2=\|k\xi\|^2+\|\xi\|^2=\|k_1\xi\|^2$ for any $\xi\in\mathcal{D}_0$ and so if as before M_0 is the algebra spanned by the operators $\xi\otimes\eta$ with $\xi,\eta\in\mathcal{D}_0$ then $\psi(x)=\varphi(x)$ for all $x\in M_0$.

REFERENCES

- 1. U. Haagerup, Operator valued weights on von Neumann algebras. I, J. Funct. Anal. 32 (1979), 175-206.
- 2. G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53-87.
 - 3. A. Van Daele, On pairs of closed operators, preprint (1981).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEUVEN, CELESTIJNEN-LAAN 200 B, B-3030 HEVERLEE, BELGIUM