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1. Introduction. Marston Morse was born in 1892, so that he was 33 years 
old when in 1925 his paper Relations between the critical points of a real-val­
ued function of n independent variables appeared in the Transactions of the 
American Mathematical Society. Thus Morse grew to maturity just at the 
time when the subject of Analysis Situs was being shaped by such masters2 as 
Poincaré, Veblen, L. E. J. Brouwer, G. D. Birkhoff, Lefschetz and Alexander, 
and it was Morse's genius and destiny to discover one of the most beautiful 
and far-reaching relations between this fledgling and Analysis; a relation 
which is now known as Morse Theory. 

In retrospect all great ideas take on a certain simplicity and inevitability, 
partly because they shape the whole subsequent development of the subject. 
And so to us, today, Morse Theory seems natural and inevitable. However 
one only has to glance at these early papers to see what a tour de force it was 
in the 1920's to go from the mini-max principle of Birkhoff to the Morse 
inequalities, let alone extend these inequalities to function spaces, so that by 
the early 30's Morse could establish the theorem that for any Riemann 
structure on the w-sphere, there must be an infinite number of geodesies 
joining any two points. 

This whole flight of ideas was of course acclaimed by the mathematical 
world. It brought him to the Institute for Advanced Study in 1935, when, at 
43, he also delivered the Colloquium Lectures of the Mathematical Society 
and wrote his monumental book on the Calculus of Variations in the Large; 
it eventually earned him practically every honor of the mathematical com­
munity, over twenty honorary degrees, the National Science Medal, the 
Legion of Honor of F r a n c e , . . . . 

Nevertheless, when I first met Marston in 1949 he was in a sense a solitary 
figure, battling the algebraic topology, into which his beloved Analysis Situs 
had grown. For Marston always saw topology from the side of Analysis, 
Mechanics, and Differential geometry. The unsolved problems he proposed 
had to do with dynamics-the three body problem, the billiard ball problem, 
and so on. The development of the algebraic tools of topology, or the project 
of bringing order into the vast number of homology theories which had 
sprung up in the thirties-and which was eventually accomplished by the 
Eilenberg-Steenrod axioms-these had little interest for him. "The battle 
between algebra and geometry has been waged from antiquity to the present" he 
wrote in his address Mathematics and the Arts at Kenyon College in 1949, and 
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again, a few lines later: "Forever the foundation and never the Cathedral." 
Poincaré's interest in Analysis Situs had two distinct sources: Dynamics 

and Algebraic Geometry. And these two mainsprings of Topology were 
magnificently represented by G. D. Birkhoff and S. Lefschetz respectively, in 
the early part of this century. Through his teacher, G. D. Birkhoff, Morse had 
inherited the dynamical tradition-in no uncertain terms- and it was in this 
framework that he understood Analysis Situs. 

There was thus a natural ambivalence to him to the sibling algebraic 
branch which had evolved so strongly around Lefschetz in Princeton. I 
distinctly recall an afternoon in 1949 when he reminisced about his appoint­
ment at the I. A. S. and spoke wistfully about how differently things would 
look if he had gone to the University and Lefschetz had taken on the post at 
the Institute. His wrath, I should hasten to add, was never personal-and 
certainly not directed at Lefschetz's achievements in algebraic geometry. 
Rather, he resented the omnipresence of algebra in the topological scene at 
that time. And certainly it was true that in 1949 the Geometric tradition of 
topology was not nearly as well represented as it is, say, today. And it is also 
true that at decisive moments it was precisely the Morse Theory-in the highly 
geometric setting of Smale-which overcame the greatest obstacles. On the 
other hand the late forties and early fifties were exciting years for homotopy 
theory; for with the advent of the algebraic tools of the Steenrod Algebra and 
Serre's application of the Leray Spectral Sequence homotopy theory had 
become tamed, and it is not surprising that this development temporarily 
eclipsed all others. 

The next sections will be devoted to a more detailed account of the Morse 
theory and other aspects of Morse's work, but before going on, I find the urge 
to reminisce-once indulged in-too strong to be denied. It was my good 
fortune to come to the Institute for Advanced Study in Princeton in 1949, 
largely through the good offices of my teacher R. Duffin at Carnegie Institute 
of Technology and of H. Weyl, who had befriended me there in Pittsburgh 
while visiting Carnegie on a lecture tour. The general plan of my appointment 
as I understood it, was that I was to write a book on network theory at the 
Institute. 

I suppose that a young prospective knight approaching King Arthur's table 
for the first time must have felt as I did when I first walked into Fuld Hall 
and took possession of my small office on the third floor. The professors of 
Mathematics at that time were Oswald Veblen, Hermann Weyl, John Von 
Neumann, Carl Ludwig Siegel, Marston Morse and James W. Alexander. On 
the ground floor you passed Einstein's office and you were welcomed upon 
arrival by J. Robert Oppenheimer. The permanent members were Kurt 
Gödel, Deane Montgomery, and Atlè Selberg. The officer in charge of the 
temporary members that year was Marston Morse and it was in that capacity 
that I first met him. His office was also on the third floor and I had seen him 
bounding up the stairs several times before my official "reporting to work", 
so to speak, occurred. 

The overwhelming impression which remains with me to this day is the vast 
energy which Marston somehow radiated. I compute now—with amaze-
ment-that he must have been fifty-seven at that time, and recall with some 
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humiliation that a few weeks later at a party at our house, he easily beat me 
in a hundred yard dash to which he had-characteristically-challenged me. 
But to return to my "reporting to work". I approached this interview with 
some nervousness, because in the few weeks which I had spent at Princeton 
before it took place, the whole mysterious world of pure mathematics had 
burst upon me and all I wanted to do was explore it. In no way did I want to 
write the book. 

Well, after five minutes with Marston all my uneasiness had vanished. First 
of all I found that I really did not have to say very much! I think it is a fair 
statement that in all conversations with Marston, one only had to do twenty 
percent of the talking. His energy was such that it just naturally took over. He 
immediately dismissed my fears of having to write a book. It was a matter of 
course to him that at the Institute a young man should only do what he 
wanted to do; that this was the place where a young man should find himself, 
and the last place in the world for performing a chore. And once this 
technical part of our interview was over he immediately, again characteristi­
cally I think, started to speak about the subject that absorbed his interest at 
the time. Actually, in 1949 this subject had nothing to do with critical point 
theory. Rather, he was deeply involved in his work with Transue, on func­
tions of bounded variations. In any case, I remember leaving this interview 
with a light heart, newly liberated and buoyed by the energy and optimism I 
had just encountered. I was also elated by the directness of Marston's 
manner. There was not the slightest condescension in it. Although he 
dominated-I expect-all encounters, he treated everyone as an equal, with 
complete honesty, and in personal matters he showed great kindness and 
generosity. 

Mathematically, Marston and I did not communicate too well, and I don't 
think we could have collaborated. I also recall really only one private lecture 
on critical point theory from him. His primary interests were elsewhere at the 
time. But on the personal side we got on right from the start, even though we 
often disagreed. 

Marston loved music and played the piano beautifully and effortlessly. He 
was devoted to Bach and very knowledgeable about all aspects of music, and 
so music was our first and quite natural bond. But beyond that and quite 
apart from certain affinities of taste, I think I immediately sensed and revered 
his spiritual nature. Marston was a deeply reUgious man, yet I never heard 
him "preach". One was conscious of this aspect of his life only indirectly and 
quite marvelously. His daughter-in-law, Terry Morse, put it better than I 
every could. 

"His personality had a light and a force which was very spiritual and 
mysterious. I think it was because he welcomed the ultimate mystery of life, 
embraced it, and took great joy in it, that we always came away from being 
with him feeling a heightened sense of awareness of the beauty and the 
possibilities in life," she wrote to Louise Morse after his death. 

And then, there was his wonderful wife Louise, to whom we-indeed all of 
us new green Ph.D.'s-were immediately drawn, and who was such a natural 
complement to Marston. The Morses took their stewardship of the mathe­
matical community very seriously and it was to them we turned in times of 



910 RAOUL BOTT 

need. Of course Marston's advice could be disheartening. I remember calling 
on him for suggestions concerning a summer job in 1950. After some 
reflection he recommended mowing lawns or baby sitting! When it came time 
to move on in 1951, he would recommend the mathematical wasteland. "Get 
away from Princeton and the mathematical centers. Have your own thoughts 
in peace and quiet," he would say. "Look what Lefschetz did in Kansas." 

But it is time to hear different memories of the past than mine. Maurice 
Heins, who knew Marston as a student and collaborator and friend, writes as 
follows: 

"My first encounter with Marston was as a sophomore in what was then 
Mathematics 5 at Harvard. It was his last year at Harvard. Characteristic of 
his lectures were lucidity, simplicity and eloquence. One felt that one was in 
the presence of a master. He shared with Heinz Hopf a strongly tactile 
presentation. It was as if they were sculptors in their ateliers. In this connec­
tion, I recall that Marston thought that his experience with carpentry contrib­
uted to his geometric sense greatly. In 1934 the curriculum of a course like 
Math 5 was extremely rigid. Marston conveyed very beautifully and intui­
tively without belaboring the e's the import and the essential ideas of the 
proofs of such theorems as the implicit function theorem, the Sturm separa­
tion theorem (curriculum not withstanding), the Euler-Lagrange condition. 
One has to keep in mind the quasitotal absence of mathematical sophistica­
tion of the part of his hearers." 

"What was very impressive about Marston in the 20's and 30's was that he 
was devoid of the bigotry that paraded in the guise of gentility during that 
period. He valued one's worth and integrity, not the accidentals of birth. He 
had enormous drive and the physical capacity for many hours of work. 
Twenty hour work days were common." 

'The intensity of his devotion to scholarship was coupled with un­
compromising standards of rigor imposed both on himself and his collabora­
tors. Working with him was a very intense experience." 

"Our collaborative work was proposed by Marston who wanted to bring 
critical point theory to bear on the theory of harmonic functions and analytic 
functions, or, more generally, the pseudoharmonic functions and light interior 
transformations. The physical circumstances of the collaboration may appear 
surprising but exemplify some of the things said above about Marston's 
temperament. At the tme he was in Washington as a scientific consultant to 
the then War Department, Office Chief of Ordnance. I was a P-4 mathemati­
cian working with him and W. R. Transue. After the normal work day 
Marston and I worked on the joint papers from 7 to 11, Monday through 
Thursday. He wrote drafts of the work on the weekends back in 
Princeton..." 

I quote next from William Transue9s reminiscences: 
"In the fall of 1942 I went to the Institute as Marston's assistant. I was a 

fresh Ph.D., with dissertation on subharmonic functions, but with no set 
direction except for the broad field of analysis. At that time Marston had the 
idea of applying topological methods to obtain information on the 3-body 
problem, and he set me to work reading F. R. Moulton's Celestial mechanics 
and a paper of G. D. Birkhoff in this area. However, Marston was at this time 
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a consultant to the Office of the Chief of Ordnance and spent more and more 
time in Washington. In the spring of 1943 I moved to Washington and all of 
my attention and most of his was devoted to military problems. These were 
"applied" mathematics of the dirtiest sort, applied to whatever difficulties the 
Ordnance Department was encountering, but came to center principally on 
the area known as terminal ballistics-the study of the destructive effects of 
bombs and shells. The mathematics involved were usually of the most 
elementary sort, generally numerical integrations, and we were delighted 
when we could bring in something as sophisticated as the icosahedron. This 
was before the day of the computer, and our computations were done by a 
small staff using keyboard machines to add and subtract, multiply and divide. 
Programming computations for such a staff was roughly equivalent to pro­
gramming a present-day computer. Marston's capacity for sheer hard, and 
usually dull, work on these problems was unbelievable. After the offices were 
closed in the evening we would go on for a couple of hours. I remember 
particularly one set of data on land mine explosions which seemed to make 
no good sense. The rest of us were ready to give up, but Marston returned to 
the attack again and again, determined to beat some kind of order into the 
data, and we did finally put out some kind of analysis." 

"Several years later we undertook the study of integral representation of 
bilinear functionals and allied topics which continued for some years. I spent 
one full year at the Institute and many summers with him at various 
places-Princeton, Cape Cod, Maine. Working with Marston (for me at least) 
meant being completely taken over, spending almost all waking hours with 
him, talking mathematics all day, including during many meals taken with the 
Morse household, and continuing late into the evening. He was a real bear for 
work. In Princeton we usually worked in his bedroom (Richard Arens once 
remarked that he couldn't concentrate with someone else's pants hanging in 
the closet!), and in Maine sometimes in the car. Louise was always extremely 
good about finding him a quiet place to work, but with the number of 
children about, this was not always easy. For his part, he was a very 
considerate husband and father, and the Morse household, which I got to 
know pretty intimately, was a very happy and harmonious one." 

"The stamp of his Maine upbringing was pretty heavy on him, and he 
retained not only the industry, but the frugality which characterizes the 
Maine citizen. Although he gave his money generously, he spent it carefully. 
He was equally generous with his time. I recall one evening in Princeton, 
when Louise and the children were out of town and we were doing our own 
cooking. In the midst of warming our soup, the telephone rang and a reporter 
from Time magazine wanted Marston to explain the theory of relativity. Well, 
he did! He could never refuse to teach anyone." 

"He was a great Francophile and liked most to think of himself as a 
mathematical descendant of Poincaré. His conversion to Catholicism brought 
him also particularly close to Italy. Of course, his position made him widely 
known in the international community of mathematics, but his feelings for 
France and Italy were special . . ." 

Finally I quote from a letter by S. Cairns, a life long friend and collabora-
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tor, in which he gives a brief chronological account of Morse's career, as well 
as some personal remembrances. 

"In the fall of 1926, after the completion of undergraduate work at 
Harvard, I made the acquaintance of Marston Morse. He had just joined the 
faculty of Harvard University. During the ensuing academic year, he con­
ducted a lively seminar in topology. This subject, then in a relatively primitive 
stage, was essential to the research in global analysis on which he had 
embarked. In the following year, Morse suggested to me, as subject for a 
doctoral dissertation, the triangulation of the differentiable manifold, with the 
enticing comment that I could start on it at once because there was no 
literature to read. Thus commenced more than fifty years of professional 
association and personal friendship, culminating in collaboration during the 
last twelve years of Morse's life." 

"As teacher and research worker for nine years at Harvard, Morse was a 
stimulating source of enlightenment and inspiration. He saw mathematics as 
a challenging thing of beauty and imparted his enthusiasm to others." 

"Morse was born in 1892 in Waterville, Maine, where he had his early 
education and where he completed his undergraduate work in 1914 at Colby 
College. Three years later he received the degree of Ph.D. from Harvard, 
having meanwhile published his first research paper in 1916." 

"World War I interrupted his career. He served with distinction in the 
American Expeditionary Force and was awarded the Croix de Guerre with 
Silver Star for bravery under fire." 

"Resuming the academic life, Morse taught at Cornell, 1920-1925, and at 
Brown, 1925-1926, before his appointment to Harvard University." 

"In 1935, Morse accepted a professorship at the Institute for Advanced 
Study, which had just been established in Princeton to provide an ideal 
environment for the most active and distinguished scholars in a broad 
spectrum of disciplines. Morse retired in 1962 as professor emeritus, but, for 
the rest of his eighty-five years, continued his research with extraordinary vigor 
and creativity." 

"In World War II, Morse was a consultant in the Office of the Chief of 
Ordnance. His invaluable work on military applications of mathematics was 
recognized by a Meritorious Service Award, conferred in 1944 by President 
Roosevelt." 

"After the war, he was a prime mover in the creation of the National 
Science Foundation. President Truman appointed him to serve on its first 
board from 1950 to 1954." 

"In 1952, Morse was a representative of the Vatican at the Atoms for Peace 
Conference of the United Nations." 

"He was president of the American Mathematical Society, 1940-1942; a 
vice president of the International Mathematical Union, starting in 1958; 
chairman of the Division of Mathematics of the National Research Council, 
1951-1952. The list of such offices could be continued. In his community he 
served on the boards of two private schools and of the Princeton Chapter of 
Recording for the Blind." 

"Many honors were bestowed on Morse, among them honorary degrees 
from twenty institutions in the U.S.A., Austria, France and Italy. These 



914 RAOUL BOTT 

included the University of Paris (1946), Pisa (1948), Vienna (1952), Harvard 
(1965) and Modena (1975). In 1952, he became a Chevalier of the French 
Legion of Honor. He was elected in 1932 to the National Academy of 
Sciences and in 1956, as an associate member, to the French Academy of 
Sciences. His affinity for France made the honors from that country particu­
larly gratifying. He also cherished his election as a corresponding member of 
the Italian National Academy Lincei. A National Medal of Science was 
awarded to him in 1964 and presented by President Johnson at the White 
House in 1965. Again the list could be prolonged." 

"A year or two after his retirement, in a conversation, Morse outlined to 
me the problems he hoped to solve, if only he could live twenty years more 
and keep on doing research. It has been gratifying to see a substantial part of 
his hope fulfilled and to collaborate with him in its implementation." 

"Essential to the remarkable prolongation of his long and brilliant career 
was the devoted care and sympathetic understanding of Mrs. Morse. She was 
the mistress of their home, the mother of their five children and a charming 
hostess to countless colleagues and friends. Also, with tender skill, she helped 
conserve her husband's health in his advancing years." 

"Besides Mrs. Morse and their children Julia, William, Elizabeth, Peter and 
Louise there survives one of the two offspring of an earlier marriage, Dr. 
Dryden Morse. Meroë, his eldest daughter, died in 1969." 

"Morse's cultural interests extended far beyond the boundaries of his 
profession. Music, in particular, was a lifelong avocation. He played the 
piano with consummate skill and sensitivity. His repertory of classical music 
was large and was increasing up to the end . . . . " 

"Science, philosophy, religion and the arts were objects of Morse's inquir­
ing mind. He recognized the fundamental unity of creativity in all these areas. 
A stimulating treatment of this subject is to be found in his paper, Mathe­
matics and the Arts, Bulletin of the Atomic Scientists 9 (1959), 55-59, based 
on his lecture at Kenyon College in 1949, during a conference honoring 
Robert Frost " 

A moment I will always cherish occurred upon Marston's return from his 
lecture at Kenyon. He met me as he came bounding up the stairs to our third 
floor, and immediately took me into his office to tell me what a marvelous 
speech he had given: "The speaker before me had a terrible voice," he 
remarked, "And really didn't have much to say, so when I finished, I brought 
the house down." 

And of course he is quite right; his essay is a masterpiece, and had indeed 
brought the house down.-There was no modesty in Marston; he told it as he 
saw it. 

His life was gentle, and the elements 
So mixed in him that nature might stand up 
And say to all the world, "This was a man". 

2. The works of Marston Morse. It would be impossible to comment in 
detail on the bulk of Morse's work. His bibliography has 180 entries, and 
includes seven books. Rather, I have selected eight topics which played a 
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central role at various stages of his career and I will attempt to explain some 
aspects of each of these in detail. 

Morse had many collaborators, and I have therefore included the names of 
his principal collaborators in the various subjects as well as a rough indica­
tion of the time when this work was done in the following list of the topics. 

(3) Dynamics, geodesic flow (Hedlund, (1917-1940's)) 
(4) Morse theory (1921-1978) 
(5) Minimal Surfaces (Tompkins, 1940's) 
(6) Topological methods in a single complex variable (M. Heins, 1940's) 
(7) Integral representations (Transue, 1940's, 1950's) 
(8) Pseudoharmonic functions (Jenkins, 1950's) 
(9) Differential topology (Hubsch, Cairns, 1960's-1970's) 
Finally a word of thanks to the many colleagues who have helped in this 

enterprise. I am especially indebted to the collaborators of Morse already 
mentioned as well as: G. Mackey, D. Gromoll, J. Mather, D. Kazhdan, M. 
Brin, T. Goodwilly and N. Hingston. 

3. Dynamics-geodesic flow. There are two outstanding results in Morse's 
work on this subject, and I will report on them under two headings- The 
Morse Trajectory, and Instability implies transitivity. 

3.1. The Morse Trajectory. This discovery goes back to Morse's thesis of 
1917 and was published under the title, Recurrent geodesic on a surface of 
negative curvature [3]. 

In 1944, Hedlund and Morse collaborated on a paper [60] where this same 
construction solves a problem in unending chess and in the theory of 
semigroups. This "Morse trajectory" also occurs in Novikov's disproof of the 
Frobenius-Burnside conjecture [Nl] and was there attributed to a Russian 
mathematician writing in 1939. The trajectory in question occurs in the paper 
cited above dealing with the behavior of geodesies on surfaces of negative 
curvature imbedded in three-space. In this context this trajectory solves a 
problem posed by Birkhoff [Bl] in 1912. 

The surfaces which Morse considers are of the type indicated in Figure 1, 
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and in contemporary language are 2-manifolds with boundary, smoothly 
embedded in a compact region of R3 so as to inherit negative curvature 
except possibly at a finite number of points. The boundary circles are taken 
to be closed geodesies, and the genus of S is assumed to be not less than 2 

X(S) > 2. 

Using the basic existence theorems of Hadamard [H], Morse gives a 
completely combinatorial description of those geodesies g which lie entirely on 
S. Precisely, such a geodesic is then a map 

g:R->S 

satisfying the geodesic differential equation. 
To every such "completely extended'' geodesic Morse now assigns an 

object which nowadays we might call an infinite word in the generators of the 
fundamental group TTX(S). Morse's strategy for doing this is to introduce 
geodesic segments hl9 h2 as indicated above. Cut along these and S becomes 
simply connected. Now any geodesic g must cut these segments transversally 
at all points of intersection, and using this fact Morse assigns to g a sequence 
of symbols 

• • • C_2C_XC0CXC2 • • • 

indexed by the integers, with each C ranging over the set gx, g2gx
l, g?, with 

the understanding that a gt is never followed by a g/"1 and a gjx is never 
followed by a g,. Morse calls such a sequence a Normal set and shows that 
modulo translation the Normal set gives a one-to-one representation of the 
geodesies entirely on S. 

A slightly different, but quite equivalent description of the geodesic flow on 
S had already been given by Morse in [2], but this normal set representation 
is the most useful for the purposes of this paper. 

In modern language, this representation can be thought of this way: We 
first interpret the symbols gx and g2 as generators of irx(S; P), the fundamen­
tal group of S based at P; thus think of gx as shorthand for the loop 
Af1 ° S\ ° hv etc- Then, once a starting point has been selected, g gives rise to 
a nested sequence of geodesic segments with endpoints on hx and h2, and thus 
to elements in irx(S

l; P). These now have unique representations in the g, and 
so result in the unending normal sequence in question. I say in modern 
language, because in the papers under discussion one never encounters terms 
such as: Manifold, covering space, universal covering, group, or fundamental 
group, Euler Characteristic, etc. All these concepts were of course profoundly 
understood by the author and his contemporaries, but they do not seem to 
have crystallized into words at that time. Of course Morse had, in any case, 
an aversion to using technical terms which he did not coin himself. 

But to return to the paper on recurrent geodesies, let me say one word of 
explanation about the inverse problem of constructing a geodesic g from a 
given normal sequence. 
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The proof of this fact depends on the following fundamental result of 
Hadamard: "Given a curve c(t), 0 < t < 1, on S there is one and only one 
geodesic joining the endpoints of c on S, which is homotopic to c (with 
end points fixed). Furthermore this geodesic is of minimal length in its 
homotopy class". At this point the negative curvature of course enters vitally; 
this result is patently incorrect, say on the sphere. 

The description of the geodesic flow on S furnished by the Normal 
Sequences is the starting point of a discipline called "symbolic dynamics". It 
seems to have been independently discovered by various authors-but as far 
as I can see, always considerably later and usually in connection with 
surfaces of constant negative curvature. Marston Morse and Hedlund took up 
this subject in considerable detail much later in [39] and [43], where they 
developed delicate combinatorial criteria for symbolic trajectories; and of 
course by now this subject is well established in all aspects of the study of 
dynamical systems, see for instance [S4], [S5]. 

Some of the early consequences which Morse deduced from his representa­
tion are the following. 

THEOREM. Every geodesic wholly on S is the limit of closed geodesies. 

DEFINITION. A set R of geodesies wholly on S is called minimal if every 
element of R has every other element of R but no other geodesic as a Umit 
geodesic. 

Thus a closed geodesic is the simplest example of a minimal set. On the 
other hand Morse shows that 

THEOREM. Every minimal set other than a closed geodesic has the power of 
the continuum. 

And he then goes on to construct a nontrivial minimal set. By the way, he 
defines a geodesic to be recurrent if it is a member of such a minimal set. Thus 
in this terminology he constructs a recurrent geodesic which is not closed. 

His method is of course to translate all these concepts into combinatorial 
form first, and then to construct a normal sequence with the desired combina­
torial properties. The pertinent definitions are as follows. 

A sequence 

• • • R_2R_xRzRxR2 • • • (3.1) 

indexed by the integers is called recurrent if for every positive integer r there 
is a positive integer s such that every "segment" of length r 

RmRm+\ ' * ' Rm+r 

in (3.1) is contained in every segment of length s 

KK+l-Rn+s 
of (3.1). 

With this concept understood, Morse then constructs his ingenious Morse 
Trajectory on two symbols which he denotes 1 and 2-by the following 
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inductive procedure (I quote verbatim): "Set 

«0 

h 
<*\ 

* i 

as 

= 

= 
= 

1 
2 

0(A) 
b0a0 

an + l = an'bn 
bn+2 = K ' an* 

We introduce the set of symbols 

• • • d_2d_xd0dxd2 • • • (3*2) 

of which dQdx - - - d2» are defined respectively as the T integers of an\ further 
if m is any positive integer, d_m is defined as equal to dm_x. The set (2.2) so 
defined will be proved to be recurrent without being periodic". 

Explicitly 

a0 = 1 , ax = 12, a2 = 1221, a3 - 1221 2112, 

60 = 2, * ! - 2 1 , 62 = 2112, 63 = 2112 1221. 

Note that if we replace 1 and 2 by gx and g2 respectively, this Morse 
trajectory corresponds to a geodesic on the surface S of Figure 1 and thus 
constitutes the first example of a set of "recurrent motions of discontinuous 
type" in the sense of Birkhoff [B2]. 

A final explicit result of the paper under discussion is the following. 

THEOREM. On a surface S of genus > 2 of the type we are considering, every 
geodesic wholly on S is the limit of a recurrent but not periodic geodesic. 

3.2. Instability and transitivity. On a Riemann manifold Af, the "geodesic 
flow" defines an action of the real numbers R on the unit tangent bundle 
Tx M of M : The real number r assigns to a tangent vector Xm the unit tangent 
vector at the "final" end of a geodesic segment s of length r starting at m and 
with initial direction Xm. The transitivity properties of this flow have been a 
subject of great interest throughout the last hundred years; in the period 
around 1930 especially, great advances were made with contributions from a 
veritable who's who of mathematicians of the period: Birkhoff, Hopf, Koop­
man, von Neumann, P. A. Smith. In 1934 Hedlund [H2] proved that this flow 
was metrically transitive {Ergodic) for any compact Riemann Surface M of 
constant negative curvature. At the same time Morse in his paper [28] bearing 
the title of our heading, gave very much more general conditions on a surface 
M9 for this flow to be topologically transitive. 

Recall that in context, metrically transitive means that all L2-functions on 
TXM invariant under the flow are constant (up to a set of measure 0) while 
topological transitivity means that some orbit of the flow be dense in TXM. By 
the Ergodic theorems of Birkhoff and von Neumann metric transitivity 
implies topological transitivity but not vice versa. 
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Morse proves that a motion is topologically transitive provided it satisfies a 
uniform instability2 criterion, which he informally describes as follows: " . . . 
it may be roughly regarded as the hypothesis that the first conjugate point of 
any point p on M be beyond the point at oo . . . ". More precisely it is a 
hypothesis which ensures that neighboring geodesies diverge in a uniform 
manner. Technically it means the following: Suppose that g: R-» M is any 
geodesic parametrized by arc length and that w(x) is any solution of the 
Jacobi equations along g 

d2 w/dx2 + k{x)w{x) = 0, 

which satisfies the condition 

(dw/dxf\xm0 + w(0f = 1. 

The geodesies on M are then uniformly unstable if there are no pairs of 
conjugate points on any g and if there exists a function A(x), x G R subject 
to the following conditions: 

(a) A is positive continuous exceeding some constant \ and becomes 
infinite with x. 

(ft) I^C*!)! + |w(x2)| > A(x) for x > \ and -xx and x2 > x. 
(c) The function A is independent of g. 
In particular then, this hypothesis is fulfilled on all surfaces of negative 

curvature and can also hold on surfaces having regions of positive curvature. 
The methods of this paper depend heavily on the paper [4] of 1924, which 

in turn explores the ideas we encountered in the Morse Trajectory paper, but 
now in the context of closed surfaces of genus > 1. On an arbitrary such 
surface one of course cannot expect a purely combinatorial description of all 
geodesies. On the other hand Morse shows that certain geodesics-which he 
calls of class A -behave very much like the geodesies in the constant negative 
curvature case. 

A geodesic g is of class A if any segment of g, i.e. g\[a, b\ minimizes the 
distance between its endpoints, amongst curves in its homotopy class. 

To every such geodesic g on M Morse assigns a geodesic g* in the constant 
curvature model of M by the following strategem. 

Because the genus of M is > 1, its universal cover M can be identified with 
the unit disc \z\ < 1 in the complex plane. Thus we may think of M as this 
disc in some Riemann structure which is invariant under the action of ir^M) 
acting as a subgroup of SL(2, R) on \z\ < 1. Now then every g on M lifts to a 
curve g on A/, and Morse shows that there is at least one non-Euclidean 
straight line g* on \z\ < 1, such that g is in a finite neighborhood of g* and vice 
versa. Further he shows that this correspondence is one-to-one under the 
hypothesis of uniform instability. 

The ideas and insights of these papers are clearly precursors of the great 
new developments in this field in the 60's, due in large part to Anosov, 
Arnold, Sinai, Smale and others. In particular the condition of uniform 
instability is a precursor of the notion of an Anosov flow. See [S4] and [S5] 
for instance. 

^Warning: This notion should not be confused with structural instability of a flow! 
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4. TTie Morse theory. In 1925 Marston Morse published his first paper 
concerned with the distribution of critical points of a function [5]. He 
returned to this subject in one form or another for the rest of his career, and 
there are at least fifty papers in his bibliography presenting different settings 
of this theory. 

The paper [5] discusses the finite-dimensional case, but right away for 
manifolds with boundary, so that the famous "Morse inequalities" appear 
here less symmetrically than in later versions. Because these inequalities play 
such a natural role in contemporary mathematics, let me formulate them and 
outline their proof here in contemporary language, and only then return to 
the subject of Morse's methods in these early papers. 

4.1. The Morse inequalities. Let ƒ be a smooth function on a smooth 
manifold M. A critical point of ƒ is then a point/? at which 

dx T [ « 0 (4.1) 

relative to some local system of coordinates (xl,..., xn). At such a point the 
matrix 

Hf *±_ (4.2) 

has two intrinsic invariants which can be taken to be the rank and the 
number of negative eigenvalues. Morse calls the corank of Hpf the nullity n(p) 
ofp (as a critical point off) and the number of negative eigenvalues the index 
of p. This index is usually denoted by \ . Clearly it represents the dimension 
of the largest subspace on which the quadratic form Hpf is negative definite. 

With these concepts understood, Morse calls ƒ a nondegenerate function if 
all of its critical points are nondegenerate, and a first quite general result 
concerning such functions is that on a compact M a nondegenerate function 
can only have a finite number of critical points. One may therefore count the 
critical points of a fixed index k, to obtain an integer mk(f) or simply mk> 

which Morse calls the A:th type number off. 
Some of us also like to introduce the polynomial 

%(/) = 2<X = 2 ^ (4-3) 
P 

and refer to it as the "Morse polynomial" off. 
This terminology recalls another famous polynomial in topology, the Poin-

caré polynomial 

PAM) - 2 dim Hê(M)t' (4.4) 

where Ht denotes the ith homology group of M with coefficients in some 
field, and Morse's insight is now expressed by the following theorem, which 
essentially determines a lower bound for 9IL,(/) in terms of Pt(M). 

THEOREM. If f is any nondegenerate function on the compact n-manifold M, 
then its type numbers mk and the Betti numbers bk * dim Hk(M) of M satisfy 
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the inequalities 

m0 > bq, 

m0 — mx < b0 — bv 

m0 — mx + m2 > b0 — bx + è2, (4.5) 

irç, - m, + • • • + ( - l ) X - &o - *i + • • • + H A r 
These then are the famous "Morse inequalities.99 They clearly set bounds 

for the mks in terms of the bks. Indeed subtracting successive lines of (4.5) 
yields 

mk > bk. (4.6) 

But (4.5) is of course stronger. Note also the equality of the last line. 
All in all one should think of these inequalities as a beautiful extension of 

the minimum principle. Indeed in the present context this principle simply 
asserts that m0 > b0. 

The inspiration for Morse's work was the minimax principle of G. D. 
Birkhoff, which occurs in the middle of Birkhoffs famous paper on dynami­
cal systems of two degrees of freedom, [Bl] and there amounted to the 
inequality 

m0 - mx < b0 - bx (4.7) 

on 2-surfaces. 
Indeed on p. 346 of the paper [5] under discussion, Morse quotes the 

previous inequality and then writes: "Upon reading Birkhoffs paper it 
occurred to the author that inasmuch as there are (n + 1) different kinds of 
critical points possible (in a sense to be defined later) there ought to be 
relations analogous to (4.7) " 

Morse's method however is quite different from Birkhoffs, and it was only 
in the 30's that Birkhoff-in collaboration with Hestenes [B3]-produced a 
proof of the Morse inequalities along the lines of the minimax principle. 

In his book [C.V.], Morse also mentions that the equality in the last line of 
(4.5) already occurs in Poincaré. The general equality seems to have been 
discovered quite independently-and indeed from quite different points of 
view-at about the same time by H. Hopf, M. Morse and S. Lefschetz. 

The method of proof which led Morse to the result is the one we still use 
today, and it naturally falls into two quite distinct parts. Part 1 is purely 
geometric, and is essentially based on the principle of deforming M along the 
directions of steepest descent for/. These arguments culminate in the follow­
ing two theorems. 

THEOREM A. Suppose that our nondegenerate ƒ has no critical points in the 
region a < ƒ < b. Then if Mt denotes the "half space99 where f < t on M, there 
is a diffeomorphism of Ma with Mb 

Mh ^ Ma. (4.8) 

This result (Morse's Lemma 6, p. 359) follows pretty directly from "pushing 
Mh into Ma along the gradient of ƒ " and of course uses the compactness of 
the M/s. 
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The next result on the other hand, really goes to the heart of the matter of 
what happens to Mt as t passes a critical value. To explain it in contemporary 
language let me remind the reader of the concept of attaching a thickened cell 
to a manifold. The underlying geometric idea is best gleaned from the 
following diagram 

X XUY 
FIGURE 2 

where we have attached the "thickened 1-cell Y" to X. Here X = {(x,y)\ \x\ 
> 1}; Y is the square 7 x 7 , given by \x\ < 1, \y\ < 1, and the terminology 
arises from the fact that homotopically X u Yis quite equivalent to the space 

FIGURE 3 

where I is the interval |x| < 1 on the Z-axis. Thus as far as the glueing of part 
of the boundary of Y into the boundary of X, the two factors of Y play quite 
distinct roles, i.e. the second one just plays the role of a "thickening". Quite 
generally one now says that X' is obtained from X by attaching a thickened 
£-cell, if X' is obtained from the disjoint union 

X' - XUek X en'k (4.9) 

by glueing "half' the boundary, dek X en~k, of the cell ek X en'k into the 
boundary dX by a dif f eomorphism 

a:dek X en~k->dX. (4.10) 

(The resulting manifold is then also often denoted by X U a ek X en~k.) 
With all this understood we come now to the fundamental theorem of the 

Morse theory. 

THEOREM B. Suppose that ƒ has only one nondegenerate critical point p, of 
index \ in the range a < ƒ < b and that a <f(p) < b. Then 

Mbc*MaUae
xXen-x; (4.11) 

that is, Mb is diffeomorphic to Ma with a thickened \-cell attached. 

file:///-cell
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This theorem summarizes-in modern terminology-the Lemmas 7, 8, 9, 10 
of [5], and the figure which follows should make the theorem plausible. Here 
we have drawn the behavior of Mb relative to Ma in a 2-dimensional example, 
near a critical point p of ƒ, in terms of a coordinate system x, y, such that, 
near/;, 

f = ÂP)+y2-*2. (4.12) 
The so-called Morse Lemma assures one that such coordinates always exist 
near a nondegenerate critical point of index 1. In fact this lemma asserts that 
near a nondegenerate critical point of index A, one can always find coordi­
nates (JCJ . . . xx,yj . . .yn-\) such that 

ƒ - ƒ(/>) + S y\ - 2 *ƒ near/,. (4.13) 
i - l y - l 

Now then, in such a coordinate patch U, and taking a and b equal to 
ƒ(/?) — e and ƒ(/?) + e respectively with e small and positive, one clearly finds 
that 3Af^-the boundary of Af^-intersects U in the upper and lower arcs of the 
hyperbola 

Now in 1980, the Morse inequalities follow from Theorems A and B by 
absolutely standard procedures of algebraic topology. 

Precisely, one considers the sequence of maps 

Ma^Mb-+Mp/Ma (4.14) 
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where in the last place we mean the space obtained from Mh by collapsing Ma 

to a point. From our thickened handle construction, that is Theorem B, it 
follows that 

Mb/Ma^Sx 

in the sense of homotopy. Here Sx of course denotes a A-sphere. On the other 
hand, two of the basic properties of any homology theory are that 

(A) They are invariant under homotopy equivalences. 
(B) For any inclusion X dY oî reasonable spaces there is induced a "long 

exact sequence" 

^Hk+l(Y/X)XHk(X)->Hk(Y)^Hk(X/Y)X. (4.15) 

I will not describe this notion in detail here; however in our situation this 
exactness immediately implies that 

AP, s Pt(Mb) - Pt(Ma) = ir (4.16) 

On the other hand the corresponding change A91L, in the Morse-series is 
clearly given by tx. Thus 

A9H, - AP, - \ or (4.17) 

Proceeding inductively we see that there exists a polynomial Q(t) with 
nonnegative coefficients 

Q(t) - q0 + qxt + • • • , ft > 0, (4.18) 

such that 

%(Jlf) - P,(M) = (1 + t)Q(t). (4.19) 

But the inequalities qt > 0 in conjunction with (3.19) are seen to be 
precisely the "Morse inequalities". Q.E.D. 

REMARKS. The account given in [5] of this homological part is of course 
couched by Morse in the language of the Analysis Situs of that time; that is 
of Veblen's fundamental book. From our perspective this essentially amounts 
to an informal sort of singular theory. There was no formalization of 
exactness about yet, but all the fine topologists of the era of course used all 
the exactness properties at various stages of their proofs. Essentially then it is 
fair to say that Morse's arguments in [5] already establish Theorem A and the 
homological consequences of Theorem B in the language of his time. On the 
other hand in the precise formulation that I have given, that is, in the 
category of diffeomophisms, Theorem B only appears in Smale's work in the 
60's, and to establish Theorem B in this precision considerable care has to be 
taken with concepts such as smoothing corners, etc. In the 5(fs René Thorn, 
E. Pitcher and I used to formulate this Theorem B in purely homotopy-theo-
retic terms-that is in the form 

Mb - Ma u eX9 (4.20) 
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expressing the fact that as far as homotopy theory is concerned one simply 
attaches a \ cell as one passes a critical point of index X. 

Smale's proper understanding of the Morse theory in the diffeomorphism 
category of course was the first step in his handle-body theory, and finally in 
his fundamental contributions to differential topology. (See [SI], [S3] for 
instance.) 

Before proceeding to the infinite-dimensional settings of the theory, which 
really was the driving force in Morse's work throughout, let me show off the 
power of these inequalities in one or two examples. 

First of all let me record the "Lacunary Principle" of Morse, which follows 
directly from the (1 + /) factor on the right to (3.19). 

LACUNARY PRINCIPLE. If in ^\it(f) all products of two consecutive coefficients 
vanish, i.e. ny- mJ+l = 0 , then 

«DUX/) = P,(M) (4.21) 

for any coefficients field. 
Thus for such a function ?ftlt(f) computes the Poincaré Polynomial of 

Af-and as a consequence the space M is even "torsion-free". We call 
functions satisfying (4.21) perfect Morse functions, and they clearly furnish us 
with a convenient way of computing Pt(M). As an example consider the 
complex projective space P(V) of one-dimensional subspaces of a finite-di­
mensional vector space. 

Given a hermitian form (Hx, x) on V, it can be used to define the function 

f(x) = (Hx,x)/(x,x) (4.22) 

on the unit sphere 5(F), of V, and as f(Xx) - f{x) for all X =̂ 0 in the 
complex number field C, this ƒ induces a function ƒ on P(V). The critical 
points of ƒ are now easily seen to be given by the eigenspaces of H 

Hx( - m . (4.23) 

Hence if we assume, as we may, that the eigenvalues of H are distinct, and 
that they are ordered in ascending order, 

Mi < \h. < * * ' < /V n « dim F, (4.24) 

we see that ƒ will have precisely w-critical points. Furthermore they turn out 
to be nondegenerate and their indices are easily computed to be 

\{x,} « 2(/ - 1). (4.25) 

(Indeed moving xt in the direction of the earlier Xj clearly decreases ƒ 
quadratically, and as we are dealing in complex directions each of these 
contributes 2 to the index.) In short then 

m^(f) * 1 + t2 + • • • - h ^ - 1 ) . (4.26) 

This is a lacunary series and therefore f is perfect. Thus 

Pt(CPn) - 1 + t2 + • • • +t2{n-X) (4.27) 

and CPn is torsion-free. Q.E.D. 
In this and similar examples one may thus turn the Morse theory around so 

to speak and use it as a computational tool. This was often done by Morse in 
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his subsequent work. For instance in his book written in 1934 [C.V.] he 
computes the mod 2 cohomology of the symmetric product of two spheres in 
this manner. Still, he left many examples where the Morse theory, used 
similarly, easily produces results which seem quite inaccessible by other 
means. Let me just mention two. The first, which I noticed in 1951 (see [B6]) 
is in a sense a generalization of the complex projective space example we just 
discussed. The theorem asserts that wherever M is the orbit of a point under 
the adjoint representative of a compact Lie group G on its Lie algebra g, then 
the distance function fP from a generic p E Q to M is perfect because its Morse 
series is a function of t2 alone and hence lacunary. Thus these orbits are all free 
of torsion and the Morse theory leads to a description of their homology in 
terms of the usual paraphernalia of Lie group theory, i.e. diagrams, Weyl 
groups, etc. 

A second-and in my mind maybe the most striking application of this 
procedure-is to the Lefschetz Hyperplane Theorem in algebraic geometry. 
Various ways of deducing this fundamental result were found in the 50's and 
finally a beautifully simple proof of the Lefschetz theorem was given by 
Andreotti and Frankel [A]. Here, as really also in my examples, the complex 
variable situation rather naturally forces special properties on the indices of 
suitably natural functions on the spaces in question. In my case they all 
turned out to be even; in the Lefschetz theorem they all could be bounded. 
Via the Morse theory these easy local computations then turn out to have 
global topological implications. 

4.2. The calculus of variation setting of the Morse Theory. Beautiful as the 
considerations of the previous sections are, it is clear that to Morse they were 
mainly "results along the way" to his real goal-a corresponding theory in the 
calculus of variations. For instance while he was writing the paper discussed 
previously, he had already lectured the Society on his results in this infinite-
dimensional context. 

The situation envisaged by Morse is the following one. There is first of all 
an underlying manifold M, and on it a fixed variational form F(q, q), which 
defines a "functional" 

J(u) = [b F(u, ü) dt (4.28) 
•'a 

on the space of piecewise differentiable paths u on M. In modern terminology 
F is of course a function on the tangent bundle of M, and it is understood 
that it satisfies the usual nondegeneracy condition 

Now, given a set of "admissible boundary conditions" Morse restricts 
himself to the space Q of those paths which satisfy the condition in question 
and develops the "Morse-theory" for the function / on Q. That is, he succeeds 
in defining the notion of index and nullity for any extremal in Q, and in 
proving that for any nondegenerate J (i.e. all extremals of J in Q have nullity 
zero) the Morse inequalities persist. 

With hindsight, and fifty years of experience, it is of course now pretty 
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clear what to expect. The "tangent space" to an extremal, s, is the set of 
vector fields along it, subject to certain boundary conditions, so that the 
Hessian of / at such a critical segment should be the quadratic form on this 
space furnished by the second variation of / . 

Once a framing of the tangent-space to M along s is chosen, the space of 
vector-fields along s is simply the space of Revalued functions of f-the 
parameter along ^-satisfying certain boundary conditions at the endpoints. 
Finally after integration by parts, this Hessian should take the form 

HsJ(x, x) = fb(Lx, x)dt, a <t < b, (4.30) 
J a 

where x(t) represents the tangent field, and L is a linear second order 
differential operator 

L = A(t)d2/dt2 + B{t)d/dt + C(t). (4.31) 

It follows that the eigenvalue problem 

Lx = \x, x G 0(s), (4.32) 

with x(t) subject to the boundary conditions fi(s)9 is well posed and hence has 
only a, finite number of independent solutions with X < some constant. 

Thus Morse defines the index and nullity of an extremal s by 

nullity (s) = dim of solutions of Lx = 0, x G fi(s), 

index(s) = dim of solutions to Lx = \x, x G fi(s) with A < 0 (4.33) 

and with this definition every nondegenerate J should have a well-defined 
Morse-series 

%C0 - 2 'M5) (4.34) 
s 

where s runs over the extremals of / in Q and \(s) denotes the index. 
I say series, because now there is of course no a priori bound on X(s) as 

there was in the finite-dimensional case. There remains the question however, 
whether this series is a well-defined formal power series; for conceivably there 
might be an infinite number of extremals of fixed index. However, as Morse 
shows, under appropriate completeness conditions this cannot happen on any 
component of fl0 of £2, and then the coefficients of the restricted Morse series 

9H?(/) = 2 **'\ s e Öo, (4.35) 

satisfy the Morse inequalities relative to the Poincaré Series of Î20 

W ) ) = 2 f'dimff'Cig. (4.36) 

Let me illustrate the situation with an example which is certainly of the 
greatest geometric significance. For our functional / we take the energy-func­
tion on a complete Riemann manifold M 

J(u) = fVl 2 dt. (4.37) 
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For simplicity our space Œ will be taken to be the space of piecewise 
differentiable curves parametrized by a parameter 0 < / < 1 proportional to 
arc-length, and the boundary conditon we impose on Q is the fixed endpoint 
condition 

u(0) - py w(l) - q, p9q(EM. (4.38) 

The eigenvalue problem associated to a given extremal s, in this situation is 
then invariably described by 

- {V2
X • Y + R(X, Y)X) - \Y, Y0 - Yx - 0, (4.39) 

where y is a normal vector field along s, X is the tangent field along s, Vx is 
the Levi-Civita invariant derivative along X and R(X9 Y) the curvature of the 
Riemann structure. 

In Riemannian geometry one calls the vector-fields Y along s subject to 

V2
XY+ R(X9 Y)X = 0 (4.40) 

the space of Jacobi-fields along s, and in terms of them two points a and b on 
s are called conjugate along s9 if and only if there is a Jacobi field Y 2É 0, which 
vanishes at a and b. The multiplicity of such a conjugate pair is then the 
dimension of the subspace of Jacobi-fields which vanish at a and b. 

In view of (4.39), we see then that the critical segment s in Q has nullity 0 if 
and only if the endpoints of s are not conjugate along s. Conjugate points are of 
course of great geometric interest and also often intuitively apparent. Thus if 
s can be embedded in a "^-parameter family" s(a) of geodesies, all having 
the same endpoints as s9 then these endpoints are conjugate along s to order 
at least k. This follows from Jacobi's principle that the vector fields 
dsa/da\amm0 along s satisfy the Jacobi equation whenever sa is a parameter 
family of extremals reducing to s at a = 0. 

For instance on the unit sphere Sn in R"+1, only antipodal points are 
conjugate and the multiplicity of an antipode pair (p,p) is (n — 1), indepen­
dently of the segment s joining them. 

This follows from the great symmetry of the sphere. Indeed, every geodesic 
on Sn must lie in the two-plane spanned by its initial point and direction, and 
so is simply an arc along a great circle Sn. Furthermore, as the curvature of 
S"* is 1, the Jacobi equations simply take the form 

(d2/dt2)X(t) + k2X{t) - 0, (4.41) 

k being the length of the segment s under consideration. (Recall our parame-
trization convention in Ü.) 

Thus the nullity of a segment s is always 0 unless s has length a multiple of 
ir9 and then its endpoints are clearly antipodal or equal. 

Finally the nullity of an s with antipodal endpoints (p,p) is (n — 1) in 
conformity with the fact that all the geodesies through/? pass through/?. 

It is now a simple matter to compute the Morse series appropriate to this 
example. Indeed the number of negative eigenvalues of (4.41) are also quite 
easily estimated, and one then finds the following state of affairs. First of all 
let us survey the totality of geodesies joining the north pole/? say, to the point 
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q, one quarter of the great circle away. Thus we start with the figure 

FIGURE 5 

where we have also indicated the first three extremals joining/? to q. Notice 
that if one "unfurls" the circle, i.e. passes to its universal cover R, one obtains 
the following overview of the situation 

- « • » » i i > > i i i i i i i 

p q p q p q p q p q 

I > 
h 

FIGURE 6 

where the bar denotes antipodes. 
In short then the geodesic segments in Ü correspond to the line-segments in 

R joining the origin to the lattice of integer points n onR which are congruent 
to 1 mod 4. 

Now then if we estimate the index of each sk we find that 

index sk - \k\(n - 1) (4.42) 

so that the Morse Series for this situation takes the form 

% ( / ) = 2 <*(fl_,> = -r-^rT- (4-43) 

Note that this series is lacunary for n > 2, so that the Morse inequalities 
become equalities and yield the formula 

P><® - 7T7TT (4-44) 

in that range. Actually this equality also holds for n ~ 2, but for that one 
needs a more geometric argument. 

Morse was in possession of this formula in the early thirties and most 
probably in the late twenties. (It certainly occurs in his book [C.V.],-rather 
buried-as Theorem 15.1 on p. 247, but I find no reference to it earlier.) 

Morse did not seem to attach particular interest to this computation except 
insofar as it enabled him to prove the theorem I already mentioned in the 
introduction. That is: For any Riemann structure on Sn, "there must be an 



930 RAOUL BOTT 

infinite number of geodesies gx, g2>. . . joining any two fixed points Ax and A2. 
The length of gn and the number of conjugate points of A x on gn become infinite 
with n". 

The part of this statement in quotation marks is verbatim from the corollary 
on p. 248 of [C.V.]. To understand it properly two essentially new points have 
to be added to our discussion. The first of these is the generic nature of the 
nondegnerate case. Morse was aware of what we nowadays call the Sard 
Lemma, although in slightly different technical settings, and it is an under­
statement to say that he preferred it to be called the Morse-Sard Lemma. 
Thus, to proceed to the prior corollary from the computations of Pt($l) he first 
approximates Ax and A2 by a sequence (Ax, A2) of generic points-i.e. for 
which the energy function is nondegenerate. For these the Morse inequalities 
clearly imply the existence of geodesies { gn) with index tending to oo, and as 
nondegenerate critical points are isolated, with length also tending to oo. 
Morse then argues by continuity to establish that a sequence {gn} with index 
and length tending to oo exists in the limiting case also. 

The second point to be added is now the beautiful index-theorem of Morse 
which in the present context is given by 

The index of an extremal s in the fixed endpoint problem is equal to the 
number of conjugate points of one endpoint in the interior of s. 

Thus if the index of gn tends to infinity so do the number of conjugate 
points of one endpoint in the interior of g„. With the aid of this result the path 
to the corollary under discussion should now be clear. 

Note that this index theorem also enables one to read off the index formula 
(4.42) from Figure 5: The index of sx is equal to (n — 1) times the number of 
p points on it. 

For a general symmetric space there is, by the way, a completely analogous 
description of the geodesies joining two points. Again they correspond to 
segments joining the origin to a lattice-this time in R* where k is the rank of 
the space, and the index of a segment s can be read off from the number of 
times s pierces a certain family of hyperplanes. See [B8]. 

This index theorem fits, properly speaking, into a natural extension of the 
classical Sturm theory for the differential equation 

- (*" + qx) = AJC (4.45) 

and coming at it from the calculus of variations as he did led Morse to redo 
the classical theory as well as extend it in a variety of ways along quite new 
lines. 

A thorough account of this work is to be found in his book [V.A.] called 
Variational Analysis. 

The point is that in all properly posed variational problems there is some 
type of index theorem; however for some boundary conditions the answer is 
more difficult and less satisfying. Let me illustrate. If we consider the / of our 
discussion on the space Q(p, N) of paths starting on a submanifold N and 
ending at a point p, then the index theorem in this context becomes what 
Morse calls the focal-point theorem: 

The index of an extremal s is equal to the number of focal points ofN in the 
interior of s. 
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The following figure illustrates this theorem clearly 

FIGURE 7 

Here the underlying manifold is the plane and N is the unit circle, while p 
is taken as a point not on the circle. The extremals of / on Q(N,p) are 
geodesic segments starting perpendicularly on N and joining AT to p. Here 
they are therefore given by the two straight lines ^0 and sx joining q and q' to 
P. The only focal point of N is the center of the circle and it has multiplicity 
1. Thus index sx = 1. Note that the same picture is valid for the w-space in R" 
but that then sx would have index (n — 1) corresponding to the fact that the 
origin is a focal point of multiplicity {n — 1). 

However, for more complicated situations, for instance when we deal with 
two end manifolds Nx and N2 both of dimensions greater than 0, or with 
periodic boundary conditions 

w(l) - «(a), ii(l) = 0(0), (4.46) 

the index of an extremal cannot be read off so simply from the behavior of 
the solutions to the Jacobi equation along the extremal. 

This whole subject is still of great interest and has been taken up by a 
variety of authors (see [K]). Basic in all of them is however Morse's insight 
that this index has a topological meaning which can be computed by an 
intersection-number. 

REMARKS. Inadequate as the previous account of what one might call the 
concrete "Morse Theory" is, it will have to do in the present context. It is 
meant more as an excursion into his work; and to a certain extent as a biased 
excursion into that part of the theory which I fell in love with thirty years ago. 
It is also the part of the theory which has had the most direct bearing on 
homotopy theory. My first remark is therefore devoted to this connection. 

(1) The space £2 of paths joining two points on M is nowadays called the 
Loop Space of S and denoted by QM. Its homotopy type is independent of 
the points chosen (as was already shown by Morse), and it plays a vital role 
in all of homotopy theory. In fact it appeared right away in the first papers of 
Hurewitz on the higher homotopy groups through its characteristic property 

vk(QM) - % + 1 (M) . (4.47) 

Of course the homotopy theorists and Morse each went their own way-es-
sentially until R. Thorn and I realized what a powerful tool the Morse theory 
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could be in this context. For instance our discussion of the critical points of J 
on QSn immediately implies a formula of the type 

QS" - S»'1 Ua e2(w-i) Ua e 3 (« - i ) . . . . (4.48) 

That is, QSn is built up from the (n — 1) sphere by attaching cells of higher 
and higher dimension. On the other hand an elementary result of homotopy 
theory is that attaching a k-cell does not effect the homotopy groups in 
dimension < k — 2. Thus (4.47) and (4.48) together imply that 

W ^ " ) - «*(0S") = V A G S - 1 ) . k < n - 3. 

This is the "Freudenthal stability theorem" for the homotopy of the spheres. 
In the later fifties I finally realized that what Morse had done for the 

spheres worked even more smoothly for the compact groups and some of 
their homogeneous spaces. For instance, if Un is the nth Unitary group, the 
correct analogue of (4.48) is given by two formulas 

QU2n = U2n/Un XUnUaexuae2...9 dime,. > », 
®U2n/Un X Un - Un U„ ex U e2 U . . . , dime,- > n. 

Combined with the known fact that irk(Un) is also "stable" in the sense that it 
does not depend on n for n large compared to k, these relations immediately 
lead to the periodicity irk{U) = irk+2(U) with irk(U) the stable value of 
irk{U^ In this framework [B5], eight such formulas finally lead to the 8-fold 
periodicity irk(Q) ^ tf*+g(0) of the stable orthogonal group. 

(2) My next remark deals with the techniques Morse uses in his papers and 
his book. Basically he deals with the infinite-dimensional function space by 
deforming compact sets in it into a finite-dimensional space of broken 
extremals, and then applying his finite-dimensional results. 

Apart from technicalities-which actually can become quite formidable-
this is an approach some of us still favor. Others, like Smale-Palais [P], [S3], 
have cast the whole theory in terms of infinite-dimensional Hilbert-manifolds 
from the very outset. In such an account the space Q of course has to be 
topologized in a slightly different way than in Morse's approach. Morse 
essentially endowed Q with a metric topology, with metric 

d(gv g2) - sup| g l (0 , g2(t)\ + J(gl) - J(g2). 
t 

Topoiogists think of Q as simply the space of continuous maps in the compact 
open topology. Luckily all these topologies yield the same "weak homotopy 
type" for Ö, so that the same Morse inequalities emerge at the end. I should 
confess here also that Morse did not work with the energy integral, but 
always with the parameter-free length integral 

/(«)=ƒ 6I«I dt 
Ja 

or its more general analogue. This involved him in considerable technical 
difficulties which, I should add, he overcomes with tremendous ingenuity and 
geometric insight. 

Altogether Morse's geometric power is phenomenal and he seems to have 
been able to compute anything he set his mind to. For instance, he computes 
the homology of the symmetric product of the /z-sphere by hand, so to speak. 
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That is, he constructs the explicit cycles and thus in 1930 he really anticipates 
the work of P. A. Smith and Richardson on the one hand, and that of 
Steenrod in the 50's on the other. 

Morse's sheer power is however best exhibited in his attack on the closed 
geodesies problem. These closed geodesies can be thought of as extremals of 
our J considered on the space of all piecewise smooth paths T subject to 
w(0) = w(l). However for this problem there is no "nondegenerate case" for, 
with a given w, all its translates are also critical. Thus in the "most nondegen­
erate situation" one can hope for one still has to deal with critical sets of 
circles. Furthermore each genuine geometric closed geodesic gives rise to an 
infinite number of such critical circles corresponding to the number of times 
one circumnavigates it. Thus it is hard to estimate the number of closed 
geodesies on Sn say, in terms of the topology of TSn. Still one can, in this 
manner, easily deduce that there is at least one nontrivial closed geodesic on 
Sn in any Riemann structure. On the other hand Morse was shooting for 
more, and so, to my knowledge, he never bothered to compute the homology 
of TSn. Rather, he felt that because / was naturally invariant under transla­
tions, the correct space on which J was to be considered was in some sense 
the quotient of TSn by the action of Sl on T, given by «(*)-» u{x + 0), 
0 < 0 < 1. 

Thus he made polygonal approximations to AS"1, divided them by the 
appropriate cyclic group actions and then attempted to pass to the direct limit 
(!) in homology. The Betti-numbers he obtained that way he called the 
"circular connectivities of Sn", and they were supposed to play the same role 
vis-à-vis the closed extremal problem which the Betti numbers of ÜM play 
vis-à-vis the fixed endpoint problem. 

Unfortunately an error crept into this computation-an error, which by the 
way, I fell into myself in my paper [B4] trying to "modernize" Morse's 
computations-which was caught by L. Schwartz in 1957. This whole subject 
has had a lively history since then with many contributors-and also many 
subsequent mistakes. (See [K] for an excellent bibliography and account of 
this general topic. However, Klingenberg's main result is still in doubt at this 
time.) All in all the last word has not yet been written on it and I cannot help 
feeling that there remain many clues to be found in Morse's amazing last 
chapter to his Colloquium volume [C.V.]. 

4.3. Abstract settings of the Morse theory. In a series of papers [36], [44], [59], 
in the thirties, forties, and fifties, Morse explores various general formulations 
of his theory. In these papers he usually works on an abstract metric space M, 
with a function F not necessarily continuous, and to obtain some analogue of 
the Morse inequalities in these situations he uses the Vietoris homology 
theory. 

This is then the study of the homology behavior of the set F < a under 
very general conditions. More precisely let 

H(a, b) - H (F <b9F<a), a < b, 

denote the relative homology of the sets indicated. A critical value of F is 
then defined by Morse as any number c, such that 

H(c, c~) - lim H(c, a) 
a->c~ 
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is nontrivial, and the problem is now to relate the "sizes" of these critical 
H(c, c~) to the "size" of H(M). In a sense Morse was here grappling with 
ideas which were properly understood only 15 years later by Leray. 

Indeed the general scheme of the Leray spectral sequence can be thought 
of in the following context. One is given a filtering 

M0 c Mx c • • • Mn 

and asks how the groups Ex = © H(Mi9 M(_x) are related to H(M). Leray's 
answer is of course that one can proceed in an orderly manner from Ex to 
E2 . . . the passage from Ek to Ek+l always being a passage from a chain 
complex to its homology. Finally at E^ one is close to H(M). Now it is a fact 
that if all objects in a chain complex A are finite dimensional, then the Morse 
inequalities pertain between the dimensions of the At and those of H(AÉ). Thus 
the Morse inequalities already reflect a certain part of the "Spectral Sequence 
magic", and a modern and tremendously general account of Morse's work on 
rank and span in the framework of Leray's theory was developed by De-
heuvels [D] in the 50's. 

Unfortunately both Morse's and Deheuvel's papers are not easy reading. 
On the other hand there is no question in my mind that the papers [36] and 
[44] constitute another tour de force by Morse. Let me therefore illustrate 
rather than explain some of the ideas of the rank and span theory in a very 
simple and tame example. 

In the figure which follows I have drawn a homeomorph of M = Sl in the 
plane, and I will be studying the height function F = y on M. 

3T 
2 -tt 

A 

1-4- + N/i 
FIGURE 8 

The values a where H(a, a~) =£ 0 are indicated on the left, and correspond­
ing to each of these critical values a generator of H(a, a~) is drawn on Af, 
using the singular theory for simplicity. Morse calls such generators "caps". 
Thus a and ft are two "0-caps" and ft and \ two "l-caps". Notice that every 
cap u defines a definite boundary element du in 

H{a') - lim H{F < a - e); 
e-»0+ 

Morse calls a cap u linkable iff 3M = 0. Otherwise it is called nonlinkable. 
In our example, a, /? and fi are linkable while \ is not. 
Next Morse defines the span of a cap u associated to the critical level a in 

the following manner. 
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Case I. u linkable. Consider the inclusion homomorphism 

H(a,a-)XH(b,a-)9 b > a, 

and let s(u) be the least upper bound of all b with ibu =£ 0. (If the set of such 
b9s is unbounded s(u) =00.) The span of u is now defined as 

span(u) = s(u) — a. 

In our example a and /i have infinite span, while /? has span A. Indeed the 
moment b has passed (2) the cycle a can be deformed in F < b into the 
region F <F(p). 

Case II. u is not linkable. In this case consider du G H(a~) and let t(u) be 
the greatest lower bound of b's such that du is in the image of 

ib: H(b) -> H(a-), b < a. 

Then set .sptfw u = 0 — f(w). 
In our example X is the only nonlinkable cap, and its span is now clearly 

again the number A. 
With these definitions understood Morse sets mj* equal to the number of 

k-caps of span > e and proves that under very general conditions these 
numbers will be finite for every e > 0, and then obey the Morse inequalities. 

For instance, in our example this amounts to ml > 1 and ml = wf-for all 
e > 0. And indeed, for 0 < e < A we have ml = 2, m\ = 2, while for e > A, 

Our example is of course a very tame one; however, it should be clear that 
as one complicates it-for instance by introducing an infinite number of 
critical values clustering at some point, that as long as some sort of continuity 
is preserved, the number of k-caps of span > e > 0 will be finite. On the other 
hand one then also sees that the Vietoris or Cech theory is the correct one in 
this framework. 

5. Minimal surfaces. Marston Morse had developed the abstract setting of 
the variational theory which we just described in large part because he hoped 
to make it applicable to minimal surface theory and other variational prob­
lems. Unfortunately however a direct extension of the Morse Theory just does 
not work for variational problems in more than one variable. That is, if in 
analogy to the preceding discussion one attempts to study the area function, 
or its "energy", on the space Œ2(M) of piecewise smooth maps of a disc into a 
Riemann manifold M then the Morse theory will not work. In the context of 
the Palais-Smale theory [P], one understands this phenomenon in terms of the 
Sobolev inequalities, which show that the conditions on a map JU, in Q2(M) *° 
have finite area are far from forcing /i to be continuous. Thus, roughly, the 
space of continuous maps-which carries the topology-is too sparse in the 
space of admissible maps for a proper Morse theory to exist. (See [P] in 
particular 16.) 

Nevertheless in a series of papers, [40], [45], [47], [49] Morse and Tompkins 
do obtain applications of the Morse theory in this context. For instance in 
[40] they prove the existence of a minimal surface of nonminimum type, by 
applying the Morse inequalities to the following situation. Let D be the unit 
disc \z\ < 1, and let S = dD be its bounding circle. 
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Now let g: S -» Rn be a simple closed curve in R", satisfying a Lipschitz 
condition and parametrized by arc-length, i.e. defining an isometry of S into 
Rrt. Next Morse and Tompkins introduced a space, S, of "reparametrizations" 
of g 

g9(s) - g(<p(s)) 

where <p ranges over the homeomorphisms of Sl which move points in only 
one direction, and keep three distinct points fixed. On this space they now 
consider the "Douglas-function" 

16irJ Js>xS
l
 S j n 2( a ~ P\ 

and show that it satisfies the abstract conditions laid down in [32] by Morse. 
The geometric pertinence of A is of course that A (<p) is equal to the Dirichlet 
integral of the harmonic map \ \ D -» Rn extending g r 

Now the space Q is clearly contractible, so that in particular the Morse 
inequalities read 

w, > m0 - 1. (5.2) 

Morse and Tompkins cite an explicit g with this property and so achieve 
their result. 

In their other papers they explore this framework of questions in various 
directions, increasing the number of bounding circles, etc. 

The paper [45] is by Morse alone, and is essentially analytic in character. 
There he gives an explicit form for the first variation of A in the case of 
Ai-bounding contours, and shows that, if this variation vanishes, then the 
harmonic surface defined by the boundary conditions is indeed minimal. 

6. Topological methods in the theory of a complex variable. In the middle 
forties Marston Morse and Maurice Heins collaborated in a series of papers 
on the before-mentioned subject. Their aim was two-fold. On the one hand 
they generalized many theorems from the classical theory of one complex 
variable to the domain of light interior maps of one Riemann surface to 
another. Thus they often found topological proofs of topological properties of 
holomorphic mappings. At the same time they also discovered some remark­
able new properties of such mappings, and I would like to describe one of 
these here. For a more complete survey of their collaboration the reader is 
referred to Morse's own account [64]. 

Consider the space Ma of all meromorphic maps ƒ: D -» S2 of the disc, 
\z\ < 1, into the Gauss Sphere subject to the boundary condition 

(a): ƒ has a prescribed number of zeros, poles and branch-points of 
prescribed multiplicity at prescribed points of D. 

Morse and Heins ask for the components, ir0(Ma), of Ma; or, put differ­
ently, for the deformation classes of such maps. They then go on to solve this 
question by constructing a complete set of invariants "Ja" characterizing 
these components. When the multiplicities of all the zeros a0,..., ak9 and the 
poles ak+v . . . , any and the branch-points bx>..., 4> of a are taken to be 1 
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the cardinality of the {/a} is w, and the invariants /«(ƒ) can be computed for 
a map ƒ G Ma by the following recipe: One first selects regular arcs A, joining 
a0 to ai9 i = 1 , . . . , n9 which, except for their endpoints, lie in the comple­
ment of the a9s and b9s of a. It follows that the ƒ(/*,) are regular arcs on S 2 

which are either closed curves containing the origin, or joining 0 to oo on S2. 
The recipe for / j ( / ) - in the first case for instance-is as follows 

/„'(ƒ) = A± arg kHz) - A± arg ht{z) - A ^ arg Ç(z) (6.1) 

where A denotes the algebraic change as z moves on hi9 and Cé(z) is given by 

(z - bx) • • • (z - bn) 
CM (z - ax) • • • (z - an) 

(z - a,). 

The 6's here denote the location of the branch-points of/, and the virtue of 
the last term is that it makes 7j(f) independent of the choice of A, joining a0 

to at. 
In the light interior category the same result holds; however there the 

derivative h[(z) is replaced by a sufficiently short chord. In an earlier paper 
[61], the authors had already generalized the Whitney theory of regular curves 
to the domain of locally simple ones, and this classification plays an im­
portant role throughout their work. 

It seems to me that their result fits into the general framework of the Morse 
Theory in a way which is not made explicit in their papers, and which would 
be of contemporary interest. My question is the following one. Recall that 
any ƒ G Ma is an immersion at all points other than the branch-points, so 
that its differential df, defines a bundle map 

df:TaD-*TS2 

of the unit tangent bundle of D (with the branch-points deleted) to the unit 
tangent bundle of S2. One may therefore construct a space Ma of all 
continuous bundle-maps from TaD to TS2, subject to the boundary conditions 
a, and one then has a natural inclusion 

Ma^Ma. (6.2) 

_Hie Morse-Heins results seem to be equivalent to the assertion that Ma and 
Ma have the "same" components-and so the conjecture which comes to mind 
is that the inclusion (6.2) is a homotopy equivalence. Similar questions seem to 
be of interest at this time not only to physicists but also to workers in control 
theory. 

7. Integral representations. The very active collaboration of Morse and 
Transue extended over a period of 10 years or so, starting in 1949. Altogether 
they produced over 20 papers of considerable complexity, all dealing in one 
form or another with an extension to bilinear forms of the Riesz representa­
tion theorem 

F(x)=(lx(t)df (7.1) 

for a continuous linear functional on the space of continuous functions C on 
[0, 1]. 
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Thus they sought representation for a bilinear function B(x,y) of the form 

B(x,y) = C x(s) ds[
ly(t) </,*(*, 0 (7.2) 

where the integrals are taken in the Stieltjes sense. 
The original motivation seems to have come from the quadratic form which 

describes the second variation of an extremal, but I think it is fair to say that 
after the initial impetus Morse's and Transue's interests became aroused and 
they explored this territory for its own sake. 

The starting point of this work is a (1915) representation theorem for 
bilinear functions on C X C due to Fréchet which introduces the notion of 
Fréchet variation of functions of two variables. In the course of their work 
Morse and Transue extended this notion to w-dimensions and undertook a 
detailed study of the limit properties of functions of bounded variation [71], 
[72], [73]. In the process they discovered that in many of the test for 
convergence of a multiple Fourier series the condition of bounded Vitali 
variation could be replaced by the weaker condition of bounded Fréchet 
variation (see [100], [101]), and in the paper [55] they even make a delicate 
contribution to the convergence theory of Fourier series in one variable. 
Among other results they show that the Young-Pollard conditions imply the 
L2 conditions of Lebesgue. 

8. Pseudo-harmonic-functions. "Among the characteristics of a function U 
which is harmonic on a Riemann surface G* are the topological interrelations 
of the level lines of U. One merely has to look at the level lines of Rz, Rez, 
R log z to sense both complexity and order. The dual level lines of a 
conjugate V to U add to this order complexity . . . " 

This is the beginning sentence of the paper [92], in which Morse and 
Jenkins solve the difficult problem of showing that on a simply connected 
Riemann surface every pseudo-harmonic function has a pseudo-conjugate. 
Thus in particular they show that on such a surface any pseudo-harmonic 
function can be made harmonic by a change of the conformai structure. 

Recall here that pseudo-harmonic means "harmonic after a suitable ho-
meomorphism" so that the topological properties of harmonic functions 
automatically carry over to pseudo-harmonic ones. In this context V is a 
pseudo-conjugate to U if there is a homeomorphism of the domain of these 
functions <p such that (U + iV) ° <p is analytic. 

The work of Morse and Jenkins extending over the early fifties is devoted 
to exploring the "order" in the "complexity" mentioned in their 
"Fundamenta" paper. After essentially setting the simply connected case, 
where they extended and completed earher work of Kaplan, Boothby and 
others, they go on in [94] to discuss these problems on doubly connected 
surfaces. In particular they there give a very complete analysis of the 
structure of the level sets of a pseudo-harmonic function. 

9. Differential topology. In 1953 M. Morse and E. Baiada wrote a paper [90] 
which was an assault on the Schoenfhes problem by Morse-theoretic means, 
but it was not until 1959, after B. Mazur's remarkable contribution, that 
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Morse became more and more intrigued by the Schoenflies question in all its 
ramifications. 

Most impressive is his 1959 paper [114] where he removes the "unnatural" 
part of Mazur's hypothesis. Recall that the Schoenflies problem deals with the 
question of whether a homeomorphism 

<p:Sn~l->Rn 

of the standard (n — 1) sphere into Rn admits an extension to the unit disc Dn 

interior to Sn~l. The "Horned Sphere" of Alexander shows that in general 
this is not possible without some tameness assumption on <p. Essentially 
untouched for 30 years, Mazur finally decided this question in the affirmative 
under the following two tameness assumptions: 

The first is the natural "shell condition", that <p admit a local extension on 
both sides. Precisely there should exist a homeomorphism 

$:Sn X I-*Rn, I = [0 ,1] , 

reducing to <p on Sn X (1/2). 
His second assumption was the less natural one, that <p be semilinear near 

some point p S Sn. 
To set these conditions in perspective note that if <p is smooth, both 

conditions-with p any point on S^-follow immediately. In any case Mazur's 
inspired construction [Ml] led to an easy proof that any <p subject to these 
conditions does admit an extension. 

Morse's very fine contribution in [114] was now to remove the second 
hypothesis, thus achieving the ultimate solution of the Schoenflies problem in 
the topological setting. By quite different methods the same result was 
achieved at around the same time by M. Brown [B7]. 

In his subsequent work on this question-mostly in collaboration with 
Huebsch, Morse takes up the same question in the smooth and analytic 
categories, and also considers parameter families of extensions. Thus in [120] 
they prove the following theorem. 

Corresponding to a real analytic mapping 

<p: S X T-+E 

each of whose restrictions to S X p9 p G T, is an analytic diffeomorphism, 
there exists an extension 

A:D XT-^E 
each of whose restrictions to D X p is real analytic except possibly for one 
point. 

When T reduces to a point, this theorem was first established by Royden 
[R], and to extend it to this parameter form, Huebsch and Morse reproved the 
Royden result along different lines. Note here that, just as in the Cm category, 
m > 0, one cannot expect the extension to have smoothness properties at all 
points of D. Indeed the constructions of Milnor produce counterexamples in 
dimension > 6. On the other hand the iterative constructions of the extension 
make it fairly clear that the bad behavior of an extension can be concentrated 
at one point. In [123] Huebsch and Morse introduce the concept of a conical 
singular point and show how to make extensions whose singular behavior is 
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no worse than conical. The article [126] surveys this whole question in 
considerable detail. 

The period 1958-1960 was an exciting one in differential topology. Not 
only was the Schoenflies problem solved, but Smale [S2] had by that time 
announced his fundamental results: These included proofs of the Poincaré 
Conjecture in dimensions > 4 and of the h-cobordism theorem. Both depended 
on his refined version of the Morse theory, and the resulting handle-body 
decomposition of manifolds. Morse was of course very pleased with these great 
successes of the Morse theory. Still, I think he must also have felt a little 
scooped. In his book with Cairns [CP], he recalls how such handle-bodies 
were introduced (but not named-or used as spectacularly) by him in an 
earlier paper. In any case starting in about 1965, and continuing until the late 
70's, he undertook to redo this part of differential topology in his own way. 
Apart from the before mentioned book Morse and Cairns collaborated in 
many papers on this project. Let me close my account of this phase of 
Morse's work with a theorem on the removal of critical points which Morse 
presented in 1965-at a symposium held in his honor-under the title: Bowls of 
a nondegenerate function on a compact differentiable manifold [139]. This 
theorem will also serve to introduce us to the ideas of Thorn and Smale of the 
fifties. 

The situation envisaged here is that of a nondegenerate function ƒ on a 
compact manifold M. Let the necessarily finite number of critical points of ƒ 
be denoted by Cr(ƒ) and consider the complement M = M — Cr(ƒ). 

Once a Riemann structure ( , ) is selected on M9 the differential of ƒ 
uniquely specifies a vector field X = df, the gradient off, by the formula 

y / = ( z , y). 
This vector field therefore points orthogonally to the level surfaces of ƒ at 
each point of M and is nonvanishing on M. 

It follows now that the trajectories of X on Af, i.e. the maximal integral 
manifolds, / of X, will be diffeomorphic to the open interval (0, 1), and their 
closures will be curves on M joining two critical points off at distinct/-levels. 
These are referred to as the lower and upper endpoints of /. Now let/? be a 
critical point of M. Then Morse calls the point-set consisting of p and all 
points of trajectories of X with upper endpoint p, the "descending Bowl" of p, 
and denotes it by B~(p). Similarly the ascending Bowl, B+(p), is defined by 
replacing ƒ with -ƒ. A first step of the paper under discussion is the theorem 
that 

A Bowl B~{p) is diffeomorphic to Rk with k the index \(p) of p. 

Thus the Bowls define two decompositions of M into disjoint cells: 

M = U B-(p); (9.1) 
p 

M= (J B+(p) (9.2) 
p 

with cell dimensions 

dim B-(p) = X(p), (9.3) 
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dim B+(p) = n -\(p). (9.4) 

REMARKS. The terminology and treatment of this cell-decomposition is 
somewhat anachronistic. This cell-decomposition already appears in a C-R. 
Note of Thorn's in (1949) [T]. It also plays an essential role in Smale's work of 
the late 1950s, [SI] and his terminology of stable and unstable manifolds for 
B±(p) is the generally accepted one. In my own recollection I heard Thorn 
discuss this decomposition in 1951 but its implications were largely lost on me 
and my contemporaries. Roughly we felt that the flow X became much too 
complicated "far" from the critical set to be of further use. And locally it, of 
course, had already been put to use in Theorems A and B. I still remember 
the surprise therefore when in the late 1950s Smale explained the next step in 
his program to me. Coming at the Morse Theory from his individual point of 
view he immediately realized that by perturbing the flow X a little—if neces­
sary-it could be arranged that the two cell decompositions (9.1) and (9.2) be 
as transversal to each other as possible. 

Note in this connection that as both B~ and B+ are stable under our flow 
X, the intersection B~n B + of a descending Bowl from/? and an ascending 
Bowl from q, p ¥* q> consists of a family of trajectories of X. Hence the 
proper way of defining transversality is to demand that at any point p G B~n 
B+ with f(p) = a, the intersections of B~ and B+ with the level set Ma * {ƒ 
* a} in M intersect transversally on Ma. 

These concepts are maybe best understood by studying the two examples 
of Figure 9. 

4 

£ - ( 3 ) = £ + ( 2 ) 

- # 7 ^ = r 2 r ( 2 ) ^ r iT(2) 

FIGURE 9 

On the left we are dealing with the gradient of the z-coordinate of a regular 
torus in R3. The flow it generates is not transversal, for instance B~(3) and 
B+(2) have no business intersecting at all. The right-hand picture is generic 
and there they do not. 

Note also that B+(\) n B~(3) consists of the two trajectories B~(3) - (3). 
In his paper [139], Morse constructs a transversal decomposition of M 

according to a flow X in his own way and then in terms of it formulates and 
proves a criterion for the elimination of critical points. We still need one 
additional concept to make this criterion intelligible. Morse calls the "dome" 
of a "descending Bowl" B~(p), that part ofB"(p) where f takes values >f(c) as 
c ranges over the critical points in the closure of B~(p) other than p. In Figure 7 
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we have indicated the dome of B~(3) by D(3) on the right-hand figure. The 
dome of B~(3) is all of B~(3) in the left-hand example. 

With this terminology and transversally understood the Bowl-theorem of 
Morse asserts: 

Suppose that B~(p) is a descending k Bowl and B*(q) an ascending 
(n — k + 1) bowl such that B~(p) n B+(q) intersect transversally in a single 
trajectory and such that the closure of B~{p) meets no critical point between the 
f levels of p and q. Also let AT be a prescribed open neighborhood of the 
closure of the dome of B~(p) which contains/? and q and such that N contains 
no other critical points off. _ 

Then there exists a nondegenerate function f on M without critical points on N 
and such that f = ƒ on M — N. 

For instance in the one-dimensional example of Figure 10 we see that the 
conditions are satisfied for B~(l) and B+(2) and it should also be clear how to 
eliminate the critical points 1 and 3. In the generic example of Figure 9 the 
theorem does not apply-indeed all the pertinent intersections consist of two 
trajectories. And of course none of these critical points are removable. 

5 + ( 3 )n r ( i ) 

2 

FIGURE 10 

Equipped with this elimination criterion Morse sets to work in this and 
subsequent work to fashion his version of the whole subject of differential 
topology. In particular this theorem leads quickly to a result he had estab­
lished earlier in the difficult paper [113]. The assertion is that on every 
compact manifold M there exists a nondegenerate function with only one local 
minimum and one local maximum. 

10. Concluding remarks. Alas, there remain many areas of Morse's work 
which are not accounted for in the previous sections. First of all, there is a 
wealth of material on the more technical aspects of the calculus of variations. 
These papers deal with such matters as sufficient conditions for the problem 
of Meyer and Lagrange under different boundary assumptions, theorems 
concerning envelopes of extremals, the analytic continuation of closed geo­
desies, etc. There are also papers on singular quadratic functionals e.g. [34] 
and related topics. Morse had many collaborators in addition to the ones we 
have already mentioned: G. Ewing, D. Lander, W. Leighton, G. B. Van 
Schaack, E. Pitcher-and others. There are also three books (one with S. S. 
Cairns) and four sets of lecture notes. All in all this magnificent "oeuvre" 
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bespeaks Morse's attitude towards his work. Morse was first and foremost a 
mathematical "craftsman" who did mathematics every day of the year, 
naturally, and-like Bach-under all conditions; with children on the lap, in 
the car . . . 

Unfortunately under such a regime there remained little time for non-
mathematical writing. Indeed I find only four entries [46], [54], [87], [108] 
which are not mathematical research or mathematical exposition. 

Characteristically all of these deal with the relationship of mathematics to 
the arts and the practical world. Morse rejoiced in the affinity of mathematics 
to both, and his views were at once eloquent and optimistic. One meets in 
these articles a quality not easily gleaned from his purely mathematical 
writing; a quality which he really showed only to his closer friends and 
family. Let me conclude therefore with three quotes from these sources. 

His Kenyon address [87] starts as follows: 

'To talk about art other than in the impersonal sense of history, is to talk 
about the moments when one has been confronted with beauty. Every essay 
on art that lights a hidden niche has its source in the life of the writer. You 
will then perhaps understand why I start with the mood of my childhood. 
One hundred miles northeast of Deny, New Hampshire, he the Belgrade 
Lakes, and out of the last and longest of these lakes flows the Messalonskee. 
I was born in its valley, 'north of Boston* in the land of Robert Frost." 

He then continues with a beautiful account of this countryside which he 
loved so much, and of his early love of music. Then he turns to the art of 
cabinet making, and in his article on Mathematics, the Arts and Freedom he 
describes this encounter as follows: 

'Turning to another art I recall the shop of an old cabinet-maker on the 
banks of the Kennebec. It was a place where much could be learned of the 
relation between mathematics and the arts. Around the room were scattered 
Sheraton chairs and tables, broken pieces of beauty. Fluted columns, 
capped by acanthus leaves, made ancient Greece seem near. The cabinet­
maker was a provincial Socrates who discoursed with his hands and tools. I 
wanted to learn more of his art. In a nearby library there was a copy of 
Sheraton's Cabinet-maker. It started with descriptive geometry and ended 
with designs of cornices with ruler and compass. Beauty and perfection 
reigned throughout. Mathematics was the handmaiden of art, faithful if not 
creative. I did not then realize the difference between mathematics as a 
servant and as a sister of the arts" (p. 17). 

And now listen to how he starts this address: 

"Mathematics is an art, and as an art chooses beauty and freedom. It is an 
aid to technology, but is not a part of technology. It is a handmaiden of the 
arts, but it is not for this reason an art. Mathematics is an art because its 
mode of discovery and its inner life are like those of the arts" (p. 16). 

One needs first hand knowledge of all these three; the Arts, Mathematics 
and Freedom, to speak with such authority. 
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