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TRIPLE COLLISIONS IN THE ISOSCELES 3-BODY PROBLEM 
BY ERNESTO A. LACOMBA1 AND LUCETTE LOSCO 

We consider here the plane 3-body problem of celestial mechanics forming 
an isosceles configuration at all times. We first study the topology of the energy 
submanifolds Eh with the triple colUsion manifold T (Mc Gehee [4]) as an added 
boundary, which corresponds to blowing up the collision. By a time transforma­
tion we scale the vectorfield extending it to the boundary. We then analyze the 
fictitious flow on T to get information about the actual neighboring flow on Eh. 
Our results are akin to Mc Gehee's for the collinear case; but the fictitious flow 
is more interesting here, having 6 instead of 2 critical points. 

Devaney [1] has simultaneously studied the flow of this problem. There is 
considerable overlap of his paper with the results we state after Theorem 1, ex­
cept for his last section as explained at the end of this announcement. In [7] 
Simó has recently described the flow more completely. 

To get such an isosceles motion, the two masses at the symmetrical vertices 
must be equal, with a fixed symmetry axis, about which the initial velocities 
must be balanced. 

Denote by n the equal masses and by m the third one, introducing Jacobi-
coordinates [5]: x > 0 is the semidistance between the equal masses, and y G R 
is the signed distance from m to the segment joining the others. Dividing out by 
a 2/i factor, we take the simplified lagrangian 

(1) L(x9 y, x, y) = (x2 + y2/a2)/2 + U(x, y), 
where a2 = 1 + 2/z/m, and the potential function is 
(2) U(x, y) = M/(4X) + mls/x2+y2. 
The associated hamiltonian (total energy) is 
(3) E(x, y, px, p2) = (p2+ a2p2)/2 - U(x, y). 

If we set q = (x, y), p = (pl9 p2) and define a matrix M = diag(l, a""2), 
the Hamilton equations for (3) can be writen in the familiar form 

q = M~lp, p = grad U(q), 

and the energy relation E = A, defining any energy surface can be written as 

m~lp2 = U(q) + h. 
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By a coordinate and time transformation q = pQ9 p = p ~ 1 / 2 P, dt = 
p3l2dr where p2 = ƒ = * 2 + O/a)2 is the moment of inertia of the system, we 
get [4]: 

p' = Ap, X = / > Q , 

Q'=M~lP-\Q, MQ2 = 1, 

(5) P ' = g r a d t f ( 0 + (X/2)P, 

while the energy relation (4), becomes 

(6) VM~xP2 = V(g!) + ph. 

In (5) and (6), p = 0 is not a singularity anymore, but defines the collision 
submanifold and its fictitious flow, independently of h. From (2) we see that U 
still has a (regularizable) singularity in its first term, corresponding to a double 
collision of the equal masses. 

In our case, the configuration #-space is the half-plane x > 0 with its origin 
as a triple collision, and the nonzero components of the y axis as double collisions. 
Off collisions, (4) describes the energy surfaces as pinched circle bundles [8] over 
the subset U(x9 y)>-hin the half-plane x > 0. We think of the Mc Gehee 
transformation as blowing up the origin to a small semicircle of radius e > 0 
(chosen so as not to intersect U(x,y) = -A). So, we have to add the condition 
\q\>e. 

At the remaining points of the y axis we have to regularize double collisions, 
which amounts to replacing the fibers by open real intervals, since only the value 
of p2 (or of y) distinguishes different collisions. We get the following result. 

THEOREM 1. The topology of the regularized energy surfaces Eh with 
triple collision boundary, is equivalent to the set 

(a) {(x9y9z)eR3: 1 <x2 + y2 + z2
 < 4 , J C 2 + y2 ± 09y

2 + z2 ± 0}, 
i f A > 0 , 

(b) {(x9y9z)eR3:x2 + y2 + z 2 < 4 , ( * ± l)2 + y2 + z2 > &,* = ± 1 =* 
y*0}9iïh<0. 

This topology is the same as in the collinear 3-body problem and completes 
the topology of [4], where one focused on the triple collision boundary (S2 - 4 
points). 

To study the flow on the regularized collision manifold T natural coordinates 
for equation (5) are p, <p, K, \p where Q = (cos <p, a sin </?), K2 = M~ lP2, P = 
(K COS 0, KoTlsin 0) and \p = 0 - <# -n/2 <y< 7r/2, —n < $ < IT: 

p' = pa cos #, 

ip' = K sin ty9 

K' = -M cosfa + i/0secV4 ~ m/r3[cos \j/ + (a2 - l)sin <p sinfa + \p)] 

(7) + K2 cos \l//29 

ntf = M sinfa - tf/)sec2 <p/4- w/r3[sin # + (a2 - l)sin <p cosfa + ^)] 
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and where we set r2 = \Q\2. The energy relation (6) becomes 

(8) ViK2 = M sec if/4 + m/r + ph. 

In these coordinates, the easiest way to get the critical points of (7) is by 
letting p = y = 0 and dFjdy = 0, where F(y) = [x sec <p/4 + m/r is the potential 
energy. The first two conditions give p = 0 (the manifold !T),sin \p = 0, while F 
has the local maximum y? = 0. The two minima are given by 

cos <p = r(<A)/2. 

If </?0 is the positive solution to (9), we conclude that there are six critical 
points as shown in the figure below, corresponding by couples to the (Euler) 
collinear central configuration for (0, 0) & (n, 0), and the two possible (Lagrange) 
equilateral configurations for (0, ±<p0) & (IT, ±<p0) at the triple collision. 

By a straightforward computation of the equations of variation, we get the 
following. Let S, ô' = ±1 from now on. 

THEOREM 2. The eigenvalues of the vector field at the 6 hyperbolic critical 
points, are the following 

Points (7r/2 + 57T/2,0) Euler (it/2 + 8irl2,S'<p0) Lagrange 

Eigenvalues OK/4 ± l/4>//c2 - 28ju, -fi* 8K/4 ± fc(\/l9- 18/a2)/4,-ÔK 

Character at T sink or source saddles 

where K2 = m(a2 + 7)/4 #£ Euler points and K2 = m(3 + c^)3/2/(4a) <tf Lagrange 
points. 

Since ju > 0, a > 1, there are no zero eigenvalues as asserted. Each point 
has two eigenvalues whose real parts have different sign, and all of them are real 
at Lagrange points. 

The above results are joint work of both authors; the following ones were 
obtained by the first author. 

COROLLARY 1. Each hyperbolic point has an orbit and a two-dimensional 
invariant submanifold. For the Euler points the invariant submanifold is con­
tained in T, while at Lagrange points the orbit is contained in T, and the sub­
manifold is transversal 

We conclude that the flow on T has saddles at Lagrange points, and sinks 
or sources at Euler points. 

The figure below was drawn for the case where the masses satisfy a2 < 
SI 12. Since there are nontrivial complex conjugate eignevalues, the flow actually 
spirals at Euler points. The dotted Unes represent three possible routes for the 
remaining stable orbit at (0, y?0). Using numerical methods, Simó[7] has shown 
that the only case which does occur corresponds to the trajectory A (starting 
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asymptotically either from (-11, FI/2), from the saddle (-n, <̂ 0) or from the 
source (-n, 0)). 

The edges \fr = ±n must be correspondingly identified. At top and bottom, 
regularization of double collisions amounts to identifying points (\jj, Ô7r/2), with 
(-^, Ô7T/2). This gives S2 - 4 points for the topology of T, as required. 

The actual triple collision orbits will be those approaching a critical point 
as t —* +°° or t —> -<» from outside T. 

0 

THEOREM 3. The triple collision orbits approaching Euler points are the 
invariant orbits coming to T. The set of triple collision orbits approaching 
Lagrange points are the invariant submanifolds. 

THEOREM 4. The flow at T is gradient-like with respect to the function 
X = pip. 

Indeed from [3], we have X' = VzMQ'2 > 0 when p = 0, while X' = 0 im­
plies X" = 0, V" > 0 off critical points. This result makes sense of the fact that 
critical points of F locate critical points of (7). 

Using a similar technique, we can easily define an isolating block [2] for T. 
However, as a singularity, T is not regularizable, with the possible exception of a 
discrete set of mass ratios where saddle connections appear in the above figure 
[6]. 

THEOREM 5. The coordinate p is a hyperbolic Lyapunov function with 
regard to the regularized flow on each energy surface. Thus p < e with e > 0. 
small enough defines an isolating block for T. 

Obviously, the behavior of orbits passing close to triple collision is more 
complicated than in [4]. For example, an orbit close to the stable manifold at 
(7T, <p0) i.e., close to an equilateral configuration with y > 0 may either end up 
approaching (0, 0) (a collinear configuration), or (0, ±7r/2), which means the 
equal masses come close together, with y > 0 or y < 0. The latter situation 
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corresponds to the w-particle emerging with arbitrarily high velocity in one direc­
tion, while the /z-particles emerge close together and move rapidly in the opposite 
direction, after the triple collision approach. 

Devaney has made the behavior of the above orbits more precise, showing 
that they feature an arbitrarily large number of binary collisions while escaping. 
He also describes what he calls "billiard shots": orbits which in a first approach to 
collision behave as the orbits above, while on a second approach the binary pair 
separates rapidly and the third mass oscillates near their center of mass. 

Based on a more complete picture of the flow on T as described in the re­
mark after Corollary 1, Simóhas made a finer description of the possibilities for 
close-collision orbits, and of ejection-collision orbits for negative energy, some of 
the latter ones actually turning out to be periodic. 
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