
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 3, Number 1, July 1980 

HARMONIC ANALYSIS AS THE EXPLOITATION 
OF SYMMETRY-A HISTORICAL SURVEY 

BY GEORGE W. MACKEY 

CONTENTS 

Preface 
1. Introduction 
2. The Characters of Finite Groups and the Connection with Fourier 

Analysis 
3. Probability Theory Before the Twentieth Century 
4. The Method of Generating Functions in Probability Theory 
5. Number Theory Before 1801 
6. The Work of Gauss and Dirichlet and the Introduction of Characters 

and Harmonic Analysis into Number Theory 
7. Mathematical Physics Before 1807 
8. The Work of Fourier, Poisson, and Cauchy, and Early Applications of 

Harmonic Analysis to Physics 
9. Harmonic Analysis, Solutions by Definite Integrals, and the Theory of 

Functions of a Complex Variable 
10. Elliptic Functions and Early Applications of the Theory of Functions 

of a Complex Variable to Number Theory 
11. The Emergence of the Group Concept 
12. Introduction to Sections 13-16 
13. Thermodynamics, Atoms, Statistical Mechanics, and the Old Quantum 

Theory 
14. The Lebesgue Integral, Integral Equations, and the Development of 

Real and Abstract Analysis 
15. Group Representations and Their Characters 
16. Group Representations in Hilbert Space and the Discovery of Quantum 

Mechanics 
17. The Development of the Theory of Unitary Group Representations Be­

tween 1930 and 1945 

Reprinted from Rice University Studies (Volume 64, Numbers 2 and 3, Spring-
Summer 1978, pages 73 to 228), with the permission of the publisher. 

1980 Mathematics Subject Classification. Primary 01,10,12, 20, 22, 26, 28, 30, 35, 
40, 42, 43, 45,46, 47, 60, 62, 70, 76, 78, 80, 81, 82. 

Copyright 1978 by Rice University 

543 



544 G. W. MACKEY 

18. Harmonie Analysis in Probability; Ergodic Theory and the Generalized 
Harmonie Analysis of Norbert Wiener 

19. Early Application of Group Representations to Number Theory—The 
Work of Artin and Hecke 

20. Idèles, Adèles, and Applications of Pontrjagin-van Kampen Duality to 
Number Theory, Connections with Almost-Periodic Functions, and the 
Work of Hardy and Littlewood 

21. The Development of the Theory of Unitary Group Representations af­
ter 1945—A Brief Sketch with Emphasis on the First Decade 

22. Applications of the General Theory 
23. Summary and Conclusion 

Notes 
Bibliography 

PREFACE 

This paper is an expansion (by a factor of twelve) of two talks that I gave 
in the spring of 1977 at the Rice University Conference on the history of 
analysis. I am not a historian in the usual professional sense of the word and 
I did not pretend to be reporting on the results of a careful scholarly investi­
gation. My talks consisted rather of an informal account of the knowledge 
and impressions I have gained over the years as I have tried to satisfy my 
curiosity about the origins and interrelationships of the parts of mathemat­
ics and science which most interest me. Moreover, in contradistinction to 
most (if not all) professional historians of science and mathematics, I was 
much more interested in getting an overall approximate idea of how our 
present understanding unfolded than in studying the fine structure of par­
ticular discoveries. I totally ignored such questions as false starts, the 
thought processes of individual scientists, and the intellectual climate of the 
times. The question constantly in my mind was this: How much of what we 
understand now had they grasped by then? 

When I began in early August 1977 to concentrate on the job of writing 
up my talks for publication, I found that I could not say what I wanted to 
say without making a number of assertions about matters of fact that were 
not always easy to verify but whose exactitude was at most marginally rele­
vant to the story I was trying to tell. I made some attempt to make only cor­
rect assertions (sometimes by being deliberately vague) but my time and pa­
tience were limited and I am sure I did not always succeed. 

The length of the finished product is not all due to striving for local his­
torical accuracy (this would require at least fifty books), but rather to my 
desire to make clear the relationship of a large part of mathematics to my 
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main theme. To this end I composed a large number of brief introductory 
expositions, which I hope the average mathematician will find intelligible. It 
is these expositions and their connectedness in time and intellectual content 
which is the real point of the paper.l 

1. INTRODUCTION 

In this article I shall sketch the history, applications, and ramifications of 
a certain method. For want of a better word I shall call it the method of har­
monic analysis, although I am aware that many people use these words to 
denote a different class of generalizations of the classical harmonic analysis 
of Fourier. In crude terms the method may be described as follows: Let S be 
a "space" or "set" and let G be a group of one-to-one transformations of S 
onto itself. Let [s]x denote the transform of s in S by x in G. Ordinarily S 
will have further structure which will be preserved by the transformations of 
G so that the transformations s —• [s]x are symmetries of S. It will be con­
venient to allow members of G other than the identity e to define the identi­
ty map so that some quotient group G/N is the actual transformation 
group. Now let 3 be some vector space of complex valued functions on S 
which is G invariant in the sense that s — f([s]x), the translate of ƒ by JC, is in 
S whenever ƒ is in 3 . Then for each x in G, the mapping ƒ — g where g(s) 
= AUM is a linear transformation Vx of 3 onto 3 and V^ = VxVy for all* 
and y in G. The mapping x — Vx is thus an example of what is called a (lin­
ear) representation of the group G. More generally, a (linear) representation 
of a group G is by definition any homomorphism x — Wx of G into the 
group of all bijective linear transformations of some vector space *p (W). 
The method I propose to discuss in this article consists (in its simplest form) 
in attempting to find subspaces Mx of the space 3 such that 

(1) VX(MX) = Mx for all x and X. 
(2) Every element ƒ in 3 is uniquely a finite or infinite sum ƒ = Lfx where 
each/xeMx. 
(3) The subspaces Mx are either not susceptible of further decomposition or 
are somehow much simpler in structure than 3 . Of course, one must have a 
topology in *J in order to make sense of infinite sums. More generally one 
also considers "continuous direct sums" or direct integrals and vector-
valued as well as complex-valued functions. Of course, each Mx is the space 
of a new representation ï^, which is a so-called subrepresentation, and one 
speaks of the direct sum or direct integral decomposition of V. It turns out 
that the decomposition of functions in 3 into sums and integrals of func­
tions associated with the components of F is a decomposition that greatly 
simplifies many problems. 
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2 . THE CHARACTERS OF FINITE COMMUTATIVE GROUPS 
AND THE CONNECTION WITH FOURIER ANALYSIS 

Let Wbc a (linear) representation of the group G. If $>(W) is one-dimen­
sional then each Wx is some complex number x(x) times the identity, and x 
—x(x)I is a representation of G if and only if x(xy) = x(*)xÜ0 for all JC and 
y in G. When G is a finite commutative group, such functions x are called 
characters. It is easy to see that the representations x -* x(*) are the only 
representations of G that are irreducible in the sense that no proper subrep-
resentations exist. Let 7i (G) be the vector space of all complex- valued func­
tions on G and let VJXy) = f(yx). Then Kis a representation of G such that 
£>(K) = S(G) and the one-dimensional subspace generated by each 
character is clearly an invariant subspace. Indeed every one-dimensional in­
variant subspace is of this form, and one shows easily that Kis a direct sum 
of one-dimensional representations each associated with a distinct character 
X. Thus every member ƒ of 3 is uniquely of the form 

EL cxX(x) 
X€G 

where G denotes the set of all characters on G. Evidently the product of two 
characters is again such, and the set G of all characters is itself a finite com­
mutative group. Since x(x") = x(*)n = 1 when n is the order of x, it follows 
that | x(x) | = 1 for all x and all x, so x~* = x"for all x« Consider £x(*). This 

xeG 

sum is clearly equal to ExOoO = XÖ0 ^>x(x). Thus whenever xOO ^ 1, we 
xeG xeG 

have Ex(x) = 0. It follows that £xi(*)x2(*) = 0 whenever xi ^ X2, so that 
xeG xeG 

the characters of G are orthogonal with respect to the inner product f*g-
£ƒ(*)£(*). 
xeG 

Now consider the expansion formula 
(2.1) fix) = £ CxX(x) 

X€G 

Multiplying each side by x '(*) summing over G and using the orthogonality 
of the characters leads at once to a formula for cx '. 

(2.2) CX=-JG) E ^ ) X W 
v ' xeG 

where o(G) is the number of elements in G. The formulae (2.1) and (2.2) are 
strikingly similar to the formulae (2.3) and (2.4) below, which occur in the 
theory of Fourier series when sines and cosines are replaced by complex ex­
ponentials. 
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(2.3) ƒ(*)= £ cnein* 

(2.4) cn=-^\2* f^e'^dx 

and the analogy becomes closer when one notices 1) that functions on 
the real line with period 2TT may be identified with functions on the com­
pact topological group T which the additive real line becomes when the sub­
group of all integer multiples of 2?r is factored out; 2) that the functions 
x — einx are precisely the continuous characters on T; and 3) that 

cx = ^ y 2 f(x)x(x) may be written as cx = ^ y J f(x)x(x)dfi(x)9 where n is 

the measure on G such that the measure of every subset is the number of ele­
ments it contains. 

What we have called the method of harmonic analysis thus includes clas­
sical harmonic analysis (in the sense of expansion in Fourier series) as a very 
special case. 

The formula (2.2) may be looked upon as defining a linear transforma­
tion of the vector space of all complex-valued functions on G onto the vec­
tor space of all complex-valued functions on G. Similarly, formula (2.1) 
may be looked upon as defining the inverse of this transformation. A key 
property of the resulting one-to-one correspondence between functions on 
G and functions on G is that the operation of translation of functions on G 
is carried over into the operation of multiplication by a fixed function for 
the functions on ô. Similarly, the formulae (2.3) and (2.4) define a one-to-
one linear correspondence between certain (not all) periodic functions on 
the line and certain functions on the additive group of all integers; and this 
correspondence also carries translation into multiplication. More signifi­
cantly and for the same formal reasons it converts differentiation into mul­
tiplication by a function and so converts differential equations into algebra­
ic equations. 

A considerable part of the utility of classical harmonic analysis may be 
traced to this simple fact. 

Looking at the functions einx as group characters and Fourier analysis as a 
special case of the decomposition of group representations are of course 
twentieth-century viewpoints. Indeed the very concept of a group represen­
tation was not formulated until the closing years of the nineteenth century. 
On the other hand, characters of finite commutative groups go back to the 
work of Gauss, and the analogue of Fourier expansions for functions on 
such groups has played a key role in number theory since the beginning of 
the nineteenth century. Moreover, the use of functional transforms involv­
ing characters to convert translation into multiplication may be traced back 
to early eighteenth-century work in probability. Thus the method of har-
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monic analysis has at least three independent origins; in probability, in 
number theory, and in mathematical physics. In the immediately following 
sections I shall sketch the history of these subjects with emphasis on the rise 
of the method of harmonic analysis. 

3 . PROBABILITY THEORY BEFORE THE TWENTIETH CENTURY 

The basic facts of elementary probability theory were clarified, systema­
tized, and to some extent discovered in a celebrated correspondence be­
tween Fermât (1601-1665) and Pascal (1623-1662), which began in 1654. 
The first book on the subject appeared in 1657 and was a short pamphlet by 
Huygens (1629-1695) entitled "De ratiocinio in ludo aleve." It applied the 
principles discovered by Fermât and Pascal to various gambling problems. 
The first major treatise on the subject was J. Bernoulli's (1654-1705) Ars 
Conjectandi, published posthumously in 1713. In addition to a commentary 
on Huygens's pamphlet (which was reprinted in full), it contained a state­
ment and proof of the weak law of large numbers. This work was soon fol­
lowed by another: the publication in 1718 of Doctrine of Chances by A. de 
Moivre (1667-1754). De Moivre's book is noteworthy for three things: In 
the form of an approximation to a formula of Bernoulli it contains an early 
intimation of the central limit theorem; it introduced the technique of solv­
ing problems in probability by reducing them to difference equations; and 
(at least implicitly) it introduced the technique of using "generating func­
tions" to solve difference equations. No other major book on probability 
appeared until 1812, when Laplace (1749-1827) published his great treatise 
Théorie Analytique des probabilités. Based on a series of nine memoirs 
published between 1771 and 1786, Laplace's treatise developed and synthe­
sized the work of his predecessors and put probability into a form which 
was to be more or less unchanged until the twentieth century. Two impor­
tant new ideas were introduced between the appearance of the book by de 
Moivre and the first of Laplace's memoirs. In 1756 Thomas Simpson 
(1710-1761) began the application of probability theory to the study of er­
rors of measurement, and in 1763 Bayes introduced the concept of inverse 
probability or probability of causes. Laplace's treatise included a develop­
ment of both these ideas as well as a very extensive development of the ideas 
of de Moivre concerning difference equations, generating functions, and 
the central limit theorem. Indeed among Laplace's chief original contribu­
tions are 1) a formulation and heuristic proof of the central limit theorem; 
2) an extension of the theory of difference equations to equations in several 
variables; and 3) a systematic use of generating functions in dealing with 
difference equations in one and several variables. 

The nineteenth century was far richer in new applications of probability 
theory than in the development of new methods and principles. It was the 
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century in which Quetelet (1796-1874), Galton (1822-1911), and Pearson 
(1857-1926) began the probabilistic study of human variation, in which 
Mendel (1822-1884) applied probability to genetics, and in which Maxwell 
(1831-1879), Boltzmann (1844-1906), and Gibbs (1839-1903) developed a 
statistical theory of heat and thermodynamics. As far as purer aspects are 
concerned, there were two chief contributors after the early and independ­
ent work of Gauss (1777-1855) and Legendre (1752-1833) on the theory of 
errors and the method of least squares. These were Poisson (1781-1840) and 
Tchebycheff (1821-1894). Poisson recognized the importance of the 
distribution which bears his name, generalized Bernoulli's work to the case 
of probabilities that vary from trial to trial, and published a book on proba­
bility in 1837. Tchebycheff was the first to think systematically in terms of 
"random variables" and their "expectations" and "moments." Using 
these concepts he discovered a simple inequality in 1867 that led to a re­
markably simple proof of Bernoulli's law of large numbers. Moreover, he 
inaugurated a program for using the moment concept to give a rigorous 
proof of the central limit theorem. This program was completed by his stu­
dent Markov (1856-1922), who became one of the leading probabilists of 
the early twentieth century. Shortly thereafter Liapunov (1858-1918), 
another pupil of Tchebycheff, found a simpler and better proof of the cen­
tral limit theorem using "characteristic functions" instead of moment se­
quences. 

4 . THE METHOD OF GENERATING FUNCTIONS 
IN PROBABILITY THEORY 

During the first third of the twentieth century, it became clear that both 
the central limit theorem and the law of large numbers are essentially corol­
laries of theorems in harmonic analysis. In particular, the so-called "char­
acteristic function" of a probability distribution is just its Fourier trans­
form, and Liapunov's proof of the central limit theorem essentially exhibits 
the theorem as a corollary of the (nonobvious) fact that the Fourier trans­
form is a homeomorphism between appropriately topologized function 
spaces. Moreover (as I shall explain in some detail in a later section), the 
pioneering work of Norbert Wiener in the 1920s led over the next few dec­
ades to a rather profound development and intermingling of concepts from 
probability theory with those of harmonic analysis on the line. Thus it is in­
teresting that harmonic analysis as a method seems to have first been used 
to deal with problems in probability theory. 

Let r be a positive integer and for each n = 1,2,3,- • -, let pr
n denote the 

probability that at least one "run" of r heads will occur during n coin 
tosses. We assume that the tosses are independent and that the probability 
of getting heads on any given toss is q where 0 < q < 1. The problem is to 
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compute prn for each n. This problem was first posed and solved by de 
Moivre. His method was to considerp; as a function of n and show that this 
function satisfies a certain "difference equation." Suppressing the r and 
writing pr

n = Pin), application of elementary principles of probability 
theory leads to the conclusion that 

P(n + 1) = Pin) + (1 - P(n - r))q'H - q) 

for all n ^ r. Setting P(n) = 1 - Pin) thus yields the homogeneous differ­
ence equation 

P{n + 1) = ƒ>(*) - <T(1 - tf)/*(/! - r) . 

Our unknown function P is clearly the unique solution of this equation 
which satisfies the "initial conditions" P(l) = P(2) = • • • = P(r - 1) = 
1, Pir) = \-q'. 

Many problems in probability theory may be thus reduced to the solution 
of difference equations. De Moivre's book Doctrine of Chances is rich in 
examples and in methods for solving such equations. One important meth­
od—the method of generating functions—occurs at least implicitly in de 
Moivre's work, but was first developed and used systematically by Laplace 
in a paper published in 1782. It was Laplace who coined the term "generat­
ing function." The first chapter of his treatise on probability is largely a re­
print of the contents of the 1782 paper. 

The idea of the method is very simple, httfiri) be an unknown function 
of the non-negative integer variable n9 and suppose that fin + 2) = 
afin + 1) + bfiri) for all n > 0 where a and b are known constants. Laplace 
calls the power series 

/ ( 0 = / ( 0 ) + </(l) + m 2 ) + - -

the generating function of ƒ and shows that determining ƒ can be reduced to 
solving an algebraic equation. The point is that if gin) = fin + 1) then 

git) = fü) + tfi2) 4- t2fi3) + • • • = JJO-fM' and if hiri) = fin + 2) then 
t 

hit) =/(2) + (/(3) + • • • = f(t) ~ ^ 0 ) ~ tAl), Thus ƒ satisfies the given 
t2 

difference equation if and only if 

A9-/w-«W)..p9-/ro^ + »;(,), and MMng a staplealge. 
braic equation gives us a formula for ƒ as a rational function of t whose co­
efficients depend on /(O) and fil). To find ƒ for other values of n, we need 
only expand this rational function in a power series. 

The method can obviously be applied to any kth order difference equa­
tion with one variable and constant coefficients, but, as Laplace em-
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phasized, it can also be used for the difference equations in several variables 
to which one is led by more complicated problems in probability. 

The relationship to what we have called the method of harmonic analysis 
is almost evident. Since tn¥m = tntm, the functions n -» tn are characters 
on the group Z of all integers, and the generating function ƒ(/) = 
/(O) + tf(l) + • • • bears just the same relationship to the f unction ƒ (ex­
tended to be defined on all of G by letting it be zero for negative n) that ƒ 
and c bear to one another when G is a finite commutative group. The differ­
ence equation becomes an algebraic equation because translation becomes 
multiplication by a function. 

5. NUMBER THEORY BEFORE 1801 

The theory of numbers is one of the very oldest branches of mathematics, 
going back at least to work of Euclid around 300 B.c. Euclid already knew a 
proof that there are an infinite number of primes, and by A.D. 300 Diophan-
tus had written a treatise on methods for finding the integral solutions of in­
determinate equations. The six surviving "books" of this treatise were 
translated into Latin in 1621, and modern number theory is considered to 
have begun when the same Fermât who helped found probability theory 
read this translation and began to study the subject for himself. He an­
nounced his results in letters to others and made marginal notes in his copy 
of the works of Diophantus, all too often neglecting to explain how he had 
arrived at them or how they might be proved. A century later Leonard Euler 
(1707-1783) became interested in the challenge presented by the unproved 
assertions of Fermât and produced the first published proofs of a number 
of them—often with great difficulty. Consider for example the problem of 
finding the integer solutions of x2 + y2 = n where « is a given positive inte­
ger. It is not difficult to reduce the problem to the case in which n is a prime 
p, and it is also quite easy to show that there can be no solution whenp is of 
the form 4/ + 3. Every other prime is either 2 (where there clearly is a solu­
tion) or of the form 4/ + 1. Fermât asserted that every prime of the form 
4/ + 1 is a sum of two squares, and Euler managed to demonstrate this in 
1754, but reportedly only after many years of effort. Later he was able to 
prove a number of analogous assertions of Fermât, such as the solvability 
of x2 + 3y2 = p where p is a prime of the form 6/1 + 1 and of x2 + 2y2 = p 
when/? is a prime of the form Sn + 1. Rather earlier Euler made a very orig­
inal and important contribution to number theory by noticing that an infi-

oo | 

nite series of the form £ Tjr(with s a real number greater than one) can be 

written as an infinite product Hi plwherep runs over all the primes. Us-
1 1 

ing this and the fact that E ~ diverges, he was able to show that Trz di-
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verges, thus strengthening and re-proving Euclid's discovery that there is an 
infinite number of primes. Similar arguments enabled him to show that 
there is an infinite number of primes of the form An + 1 as well as of the 
form4rt + 3. 

The next major advances were made by J.L. Lagrange (1736-1813), the 
first mathematician after Euler to reach comparable stature. If one starts to 
study Diophantine equations systematically, one finds that the theory of lin­
ear equations can be completely worked out rather easily. The simplest case 
presenting a genuine challenge is that of quadratic equations in two un­
knowns—the most general being the equation 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

where A, B, C, D, E, and Fare given integers. The linear terms can be elimi­
nated by simple transformations and one is confronted with equations of 
the form Ax2 + Bxy + Cy2 = - F, that is with the problem of deciding 
whether and in how many ways a given integer -Fmay be represented by 
the "binary quadratic form" Ax2 + Bxy + Cy2. Special cases of the prob­
lem were studied and solved or partially solved by Fermât and Euler as de­
scribed above. Lagrange's contribution was to attack the general case and 
to discover a number of important theorems about it. His main results ap­
pear in two long memoirs in publications dated 1773 and 1775 respectively. 

Of key importance in Lagrange's work is a natural notion of equivalence 
between quadratic forms. If (a) is a matrix of integers such that ad - be = 
± 1, then substituting x = ax' + by', y = ex' + dy ' converts Ax2 + Bxy 
+ Cy2 into another form A 'x '2 + B 'x 'y ' + C 'y '2, which evidently repre­
sents precisely the same integers that Ax2 + Bxy + Cy2 does. Calling two 
forms equivalent when they may be obtained from one another in this way, 
one sees that in the representation problem one need only consider a single 
form in each class. The integer D = B2 - 4ACis called the discriminant of 
the form and is easily verified to depend only on the class of the form. It is 
possible for inequivalent forms to have the same discriminant, however, 
and two of Lagrange's more important discoveries may be formulated as 
follows: 1) For a given value of D there can be only a finite number of dis­
tinct classes of forms having D as a discriminant; 2) when the number of 
classes of forms with discriminant D is greater than one they must all be 
considered together if one wants to reduce the problem of solving Ax2 + 
Bxy + Cy2 = n to the case in which « is a prime. For example if Ax2 + Bxy 
+ Cy2 = pip2 where px and/?2 are distinct primes and x and y are integers, 
one cannot conclude in general that either of the equations Ax2 + Bxy + 
Cy2 = p\ or Ax2 + Bxy + Cy2 = p2 has a solution in integers. One can only 
conclude that there exist forms A 'x2 + B 'xy + C 'y2 and A "x2 + B"xy + 
C'y2where(B")2 - 4A"C" = (B')2 - 44 'C' = B2 - 4,4Csuchthat 
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A 'x2 + B'xy + C y = /?, and>l V + B"xy + C'y2 = pi 

both have integer solutions. To get an elegant theory one has to be less am­
bitious and seek to evaluate the sum <t>Qt (ri) + $Q2 («) + • • • + <t>Qh (n) 
where <t>Q{n) is the (suitably normalized) number of solutions of Q(x,y) = n 
in integers and QX9 • • •, Qh constitutes a complete set of mutually inequiva-
lent forms having the common discriminant D. (With suitable normaliza­
tion even indefinite forms (D > 0) lead to equations with a finite number of 
solutions.) One can reduce to the case in which D is square free and then the 
key facts may be formulated as follows (Lagrange presented them different­
ly): 

(1) <t>D = <t>Ql + <t>Q2 + • * • -I- <t>Qh is "multiplicative" in the sense that 
</>z>(rtifl2) = </>£>(#>) </>z>(tf2) whenever nx and n2 are relatively prime. 

(2) If p is a prime and k = 1,2- • • then <t>ü(Pk) - 1 + XD(P) + • • • + 
(XD(P))k where XD(P) = <t>D(p) - 1. It follows from (1) and (2) that <t>D(n) 
can be computed from the factorization of n when <t>DiP) is known for all 
primes p. 

(3) <t>r^p) is 0,2, or 1, and which it is depends only on the solvability of the 
equations Qj(x,y) = 0 mod/7 and hence the value of D mod p. 

To get an overview of the values of <t>rfaj) for fixed D, one needs to apply 
the celebrated quadratic reciprocity law, which together with its two supple­
ments allows one to compute the behavior of D mod/? from that of/? mod 
D. The probable truth of this law was known to both Euler and Lagrange, 
but it was Legendre (1752-1833) who first clearly stated it in a paper pub­
lished in 1785. He also offered a proof, but it relied on a lemma that was 
first properly proved by Dirichlet over half a century later. Let p be an odd 
prime and for each nonzero integer n let us define the "Legendre symbol 
f—) to be 1 or - 1 according as the nonzero integer n is or is not a square 

mod p. It is trivial that/ — j = ("^)("^')so t h a t it suffices to know f—j 

when n is 2, - 1 , or an odd prime to know it for all n. The quadratic reci­

procity law asserts tha t (~V—J = (-l)**-"**-1)'4 whenever q is an odd 

prime. Its two supplements state that f ^ - j = ( - iyr-»n and f—J = 

( - lyp2-1*'8 and are easier to prove. 
Legendre published an important book on number theory in 1798. He 

presented Lagrange's theory with various improvements, including the 
quadratic reciprocity law, and also made a start on a theory of ternary 
quadratic forms in a celebrated treatise published in 1798. 
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6. THE WORK OF GAUSS AND DIRICHLET 
AND THE INTRODUCTION OF CHARACTERS 

AND HARMONIC ANALYSIS INTO NUMBER THEORY 

The first person to carry on the work begun by Lagrange and Legendre 
on the general theory of binary quadratic forms was C.F. Gauss 
(1777-1855). By his own account Gauss did not become aware of the work 
of his predecessors until he entered the university at Göttingen in the fall of 
1795. Earlier the same year he accidentally discovered that if p is an odd 
prime, then - 1 is a square mod p if and only if p is of the form An + 1. 
This excited him tremendously and, determined to get to the bottom of such 
phenomena, he had found and proved the quadratic reciprocity law by the 
end of March 1795. One thing led to another, and before arriving in Göttin­
gen and beginning to study the works of Euler, Lagrange, and Legendre, 
Gauss had rediscovered many of their results. All this is explained in the in­
troduction to his classic treatise Disquisitiones Arithmeticae published in 
1801, which set the course for the future development of number theory. He 
claims that most of the material in the first four of the seven sections of his 
treatise was known to him before he arrived in Göttingen and that a large 
part of the book had been set up in type before Legendre's book of 1798 ap­
peared. While he acknowledges that he was inspired to study quadratic 
forms by the work of Lagrange and Legendre, he reworked the whole sub­
ject in his own way, giving new proofs and introducing important new ideas 
and concepts. The seventh section contains Gauss's famous proof that for 
any prime/? of the form 2" + 1 (e.g., 17) one can give a ruler and compass 
construction of a regular polygon with p sides. He is reported to have defi­
nitely made up his mind to be a mathematician when he found this beautiful 
result in the spring of 1796. At this point the celebrated Galois theory of 
equations was thirty-five years in the future, but Gauss's proof is imbedded 
in what amounts to a complete development of that theory for the equation 
xp - i = o. (xp - 1 factors into JC - 1 and an irreducible polynomial of 
degree/? - 1. If p - 1 = 2 \ it follows from Galois theory that the equa­
tion can be solved by rational operations and the taking of square roots.) 

In his work on the theory of binary quadratic forms, Gauss confined him­
self to the case in which the middle coefficient is even, writing 
Ax2 + IBxy + Cy2 and defining the discriminant to be B2 - AC instead 
of B2 - 4A C. Also he pointed out that simplifications ensue if one makes a 
distinction between "proper" and "improper" equivalence of forms; two 
forms being said to be properly equivalent only when the transformation 
matrix (S) has determinant 1 rather than - 1 . By far his most important 
contribution, however, was his observation that there is a natural (but not 
obvious) composition law for proper equivalence classes of forms having a 
fixed discriminant and that this composition law converts the finite set of 
classes with square free discriminant D into a finite commutative group. Of 
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course, group theory did not then exist (cf. section 11) and Gauss did not 
use this terminology, but this is in effect what he proved about his composi­
tion law. Legendre had already divided the classes with a given square free 
discriminant into subsets that Gauss called genera and related in an interest­
ing way to his composition law. 

In modern terminology, the genera are just the cosets of the subgroup of 
squares in the group of all classes with discriminant D. As defined by 
Gauss, Q\ and Q2 are in the same genus if they have the same "total charac­
ter" where the "total character" is a system of ones and minus ones that is 
canonically associated to each form. In effect Gauss defined a finite set xu 
. . ., xi of functions from classes of forms to ± 1 and called them charac­
ters. He then put two forms Qx and Q2 in the same genus when x/(Q0 = 
X/(00 for all j . It turns out that Gauss's characters are characters in the 
modern sense for the finite commutative group in question. The fact that 
the genera are cosets of some subgroup which contains all squares follows at 
once from simple group theoretical considerations. To say that it contains 
only squares is equivalent to saying that every character of order two is a 
product of Gauss characters. Gauss proved this by a difficult argument us­
ing ternary forms. As he expressed it, every form in the principal genus can 
be obtained by composing some form with itself. This is known as Gauss's 
theorem on duplication. That all genera have the same number of elements 
and that the genera inherit a composition law are evident from the group 
theoretical interpretation. 

To understand the significance of the division of classes into genera from 
the point of view of solving Q(x,y) = n in integers and at the same time to 
appreciate the usefulness of finite Fourier analysis in number theory, it will 
be convenient to anticipate the future and introduce the characters of the 
group of classes that take on values other than ± 1. Let Qx, Q2, • • •, Qk be a 
complete set of inequivalent binary forms of square free discriminant D and 
let <j>j(n) denote the (suitably normalized) number of representations of n by 
Qj. We have already remarked in section 5 that if 0 = <t>x + <j>2 + • • • + <f>h, 
then <f> is multiplicative and there is a simple formula expressing <t>(pk) in 
terms of <t>(p). More generally, one can show that for each character x of the 
group CD defined by composition of classes, the function n — <t>x(n) = 
£x(ô/) 4An) has these same properties. That is, <j>x(n{ n2) = <t>x(ni) <t>x(n2) 
when ri\ and n2 are relatively prime, and <t>x(p

k) = a(p)k + b(p)a(p)k~l + 
b(p)2 dip)*-2 + • • • + b{p)k where a(p) + b{p) = <f>x(p) and a(p)b(p) = <j>{p) 
- 1 . Thus if <t>j(p) is known for all primesp and ally = 1,2, • • -, h, then 
<t>x(p) can be computed for all x and p and hence <t>x(n) for all x and n. But 
by finite Fourier analysis <t>j(n) = hL X(QJ) <t>x(n)> Thus one has an explicit 
formula for each <l>j(n) as a finite linear combination of the multiplicative 
functions <t>x(n), each of which can be computed once one knows the 0, at 
the primes. 
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Unfortunately it seems to be quite difficult to find an analogue for gener­
al x of the fact that p — <f>(p) is the restriction to the primes of a periodic 
function on the integers and correspondingly difficult to get an explicit ex­
pression for <t>j(n) in the general case. But this difficulty disappears when \ 
is of order two. Thus in the special case in which all characters are of order 
two (i.e., when there is just one class in each genus), one can get a simple ex­
plicit formula for each </>,. In general one needs to sum the </>, only over a 
genus rather than a class in order to obtain such formulae. 

The word character as used today stems directly from Gauss's use of the 
term in his theory of binary quadratic forms. As a homomorphism of an ab­
stract finite commutative group into the group of roots of unity it was first 
defined in 1882 by Weber, who refers to the version of Dedekind's ideal the­
ory for algebraic number fields published in 1879. In that reference Dede-
kind makes the same definition for the special case of the ideal class group 
of an algebraic number field. As Dedekind himself had pointed out earlier, 
the ideal class group is a generalization of Gauss's group of equivalence 
classes of binary quadratic forms. Dedekind's mode of expression is such as 
to make it clear that he regards his definition as a generalization of that of 
Gauss. 

Characters and Fourier analysis on finite commutative groups occur im­
plicitly in other parts of Gauss's work. For example, let RN denote the ring 
of integers mod TV for AT = 2,3,4 . . . and let <t>N(k) be the number of mem­
bers / of RN such that I2 = k in RN. The characters on the additive group of 
RN are the functions k — xq(k) = e2xikq/N where q = 0,1, • • -, Af-1. 

Thus the Fourier transform 4>N of <f>N is the function x« — S xM) <t>s(k) = 
N - l * = ° 
£ e2'*"*"*. When N is an odd prime or a product of two such and q does 

5 = 0 
not divide N, it is easy to see that $N(x\) = (—) 4>N(XI) where (—J is 
the Legendre symbol, so that it suffices to know $N(xi) to know $N. It is 
also easy to see that $N(xi)2 = ± N. But Gauss found it quite difficult to 
determine the unknown signs and show that <t>N(xô = \f7J or i^fN depend­
ing on whether N is of the form An + 1 or 4/2 + 3. Indeed, Gauss's fourth 
proof of the quadratic reciprocity law consists in showing it to be an easy 
corollary of the precise determination of the argument of the "Gauss sum" 
N- l 
£ e2iris2,N - <j>N (xi). According to Davenport ([4], p. 14), the most satisfac-
5 = 0 
tory evaluation of the Gauss sums is one given by Dirichlet in 1835 and 
based on a straightforward application of the so-called Poisson summation 
formula in the theory of Fourier transforms on the line. Thus the quadratic 
reciprocity law itself may be regarded as resulting from an application of 
harmonic analysis to numbei theory. 
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Dirichlet (1805-1859) was an assiduous student of Gauss's Disquisitiones 
and apparently the first to understand some of its more obscure parts. He 
simplified and amplified many arguments, but above all managed to com­
plete and extend Gauss's work in two important respects. First of all he gave 
the first valid proof of the fact that whenever a and m are relatively prime 
positive integers, then the arithmetic progression a, a + m, a + 2m • • • 
contains infinitely many primes. Second, he found an explicit formula for 
computing the number h(D) of equivalence classes of binary quadratic 
forms of given discriminant D. The two results are closely related and de­
pend on using limits and other concepts from analysis—in particular infi-

oo a 

nite series of the form E -7where s is > 1. Such series are now known as 
n = \ns 

Dirichlet series and Dirichlet is often credited with being the founder of ana­
lytic number theory. His results were published in several installments be­
tween 1837 and 1840. 

Dirichlet's proof of the existence of infinitely many primes in an arith­
metic progression was inspired by Euler's proof of the existence of infinitely 
many primes and is at the same time a beautiful example of an application 
of Fourier analysis on finite commutative groups. Recall that Euler based 

00 1 1 

his proof on the factorization E —= II —for s > 1. It is natural to 
/I = 1 /I* /? J _ J _ 

P5 

00 1 °° 6 (ri) 
try to copy Euler by replacing E — by E — ^ where d(n) is 1 when n is in 

the given progression and zero otherwise. But E ——does not factor. On 
n = 1 n 

the other hand it is easy to see that E —V^ = II r-T-̂ r whenever x is 
n = 1 n5 p 1 _ X(p) 

P° 
a complex valued function on the positive integers which is strongly 
multiplicative in the sense that x(^i^i) = x(«i)x(^2> and is also such that 
I x(ri) I < 1. Consider then the ring Rm of integers mod m. The elements of 
Rm which have multiplicative inverses form a finite commutative group 
under multiplication. If x is any character on this group, we may extend it 
to be defined on all of Rm by making it zero where it is not already defined, 
and then regard it as a periodic function on the integers. Such functions are 
strongly multiplicative and are called Dirichlet characters mod m. It follows 
at once from finite Fourier analysis (and the fact that 6(n) is zero when n 
fails to have an inverse in Rm) that 6 is a unique linear combination of 

Dirichlet characters mod m and hence that E —V^is a linear combination 

of Dirichlet series E — ^ which factor into so-called "Euler products" 
n = 1 ns 
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I l rrr-r. Exploiting this fact, Dirichlet was able to adapt Euler's 
Pi — *\P) 

P' 
argument. 

This adaptation, however, was not entirely straightforward. It depended 
oo W / 7 ) 

on being able to prove that L(s,\) = 2-—V^tends to a finite nonzero value 
n = l ns 

as s — 1 whenever x # 1. This can be done without great difficulty except 
when x is a character of order 2. To take care of this case Dirichlet used a 
very ingenious argument. Let Qu • • •, Qh be a complete set of inequivalent 
binary quadratic forms with a fixed square free discriminant D, and 
for each n = 1, 2, • • • let <t>j(n) denote the (suitably normalized) num­
ber of representations of n by Qj. Then as indicated above, the function 
n-+<t>(n) = <t>x{n) + • • • + 4>h(ri) is multiplicative and <f>{pk) = 1 + x(P) + 
x(p)2 + • • • + x(p)k where x(P) = <t>(p) - 1. Consider now the Dirichlet 
series £ —~A The multiplicativity of 0 shows that it factors as Til £ fa ) 
and the formula for <t>(pk) lets one replace this by 

1 

Hence 

n=\ ns \n = 1 ns/ \n = 1 Aï5 / 

where A* —> 0X(^) is the unique strongly multiplicative function that coin­
cides on the primes with x(P) = <t>(p) — 1. But the quadratic reciprocity law 
tells us that each <t>x is a Dirichlet character mod m for some AW, and it is easy 
to verify that every Dirichlet character of order 2 occurs. In other words, 
the function L(s,x) whose behavior at s = 1 is to be investigated may be 

written as a quotient £ - ^ T V £ — where 0 is as indicated above for some M „ = 1 AZS / n = ins 

00 g 

square free discriminant Z>. The behavior of £ -7 at s = 1 is determined 
by the asymptotic behavior of ax + #2 + • • •+ a„asAi —00. Using simple 
geometric arguments, Dirichlet showed that 

<t>j(l) + 0X2) + - ' ' + <fe(AQ 

has a limit r as AÏ — 00, which is the same for all j and can be computed 

when D is known. Thus ^ - ^ ^L l has hr as a limit when n — 00. 
A* 

Putting all of this together, he was able to deduce that £ ^ 7 7 2 — has a 
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finite nonzero limit as s —> 1. His formula for h in terms of D was a byprod­
uct of these constructions. 

In connection with these applications of analysis to number theory, it 
is interesting to recall that Dirichlet was also the first to prove (1829) 
that a Fourier series of a function actually converges when the function 
satisfies suitable weak conditions. It should also be noted that passing from 

n — <t>(n) to the Dirichlet series £ —— is a form of harmonic analysis 

in itself, since the functions n — ns are the restrictions to the integers of 
characters on the multiplicative group of all rationals. In particular the ex­
plicit formula for <j>(n) that follows from its multiplicativity and the fact 
that <t>(pk) = 14- x(P) + " • * + x(p)k is equivalent to the rather simple 

<t>(n) T-,/ 1 \ ^ / 1 
statement that L —rr -

7. MATHEMATICAL PHYSICS BEFORE 1807 

Mathematical physics in simple form goes back at least to Archimedes 
(287-212 B.c.), who formulated the laws governing the magnification of 
forces by levers and pulleys and the magnitudes of the forces that fluids ex­
ert on bodies immersed in them. However, except for the ideas of Coperni­
cus (1473-1503) concerning the central position of the sun among the plan­
ets, little further progress seems to have been made until near the end of the 
sixteenth century when Tycho Brahe (1546-1601) made extremely accurate 
naked-eye observations of planetary motions, and Stevinus (1548-1626) and 
Galileo (1564-1642) began to study swinging pendulums, falling bodies, etc. 
The observations of Tycho Brahe led to Kepler's (1571-1630) empirical laws 
of planetary motion in 1609, and one may think of modern mathematical 
physics as being formally inaugurated in 1637 and 1638 with the respective 
publications of Descartes's (1596-1650) "Discourse on Method" and Gali­
leo's "Two new Sciences." The first introduced analytic geometry (inde­
pendently invented by Fermât) to the world, and the second clarified the 
foundations of mechanics. A good idea of the state of knowledge at the 
time can be had from the following words of Galileo: "Some superficial ob­
servations have been made, as, for instance, that the free motion of a heavy 
falling body is continuously accelerated but to just what extent this accelera­
tion occurs has not yet been announced"; and "It has been observed that 
missiles and projectiles describe a curved path of some sort; however no one 
has pointed out the fact that this path is a parabola." 

The work begun by Galileo was enormously advanced in the 1660s by the 
work of Isaac Newton (1642-1727), who showed that Kepler's laws of plan-
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etary motion and Galileo's laws of falling bodies are both consequences of a 
set of simple laws concerning a) motion in general, and b) the magnitude of 
the force attracting any two masses in the universe toward one another. To 
deal with the variable accelerations predicted by these laws, Newton invent­
ed the differential and integral calculus. This investion was also made (ap­
parently independently) by Leibniz (1646-1716), and Newton acknowledges 
getting the idea from a method of Fermât for finding tangents to curves. 
Newton's Principia, containing a systematic account of the inventions and 
discoveries just alluded to, was published in 1687, half a century after the 
books of Descartes and Galileo. Newton also concerned himself with the 
theory of light and published a book on the subject in 1704, based on the 
hypothesis that light consists of rapidly moving particles. The opposing 
view, that light is a form of wave motion, was defended and developed in a 
book published in 1690 by Newton's slightly older contemporary Huygens 
(1629-1695). Newton's view was shown to be untenable in the early nine­
teenth century, but until then it was the view accepted by a majority of sci­
entists. 

Working out the full consequences of Newton's laws for planetary mo­
tion presents enormous mathematical difficulties, and celestial mechanics 
has been a source of profound and challenging mathematical problems 
since the appearance of the Principia. It will probably continue to be so for 
the foreseeable future. However, there is also the problem of applying 
similar ideas to other kinds of motion—in particular the relative motion of 
the parts of elastic bodies and fluids. The main steps in laying the founda­
tions for such a continuum mechanics were taken in the mid-eighteenth cen­
tury by Daniel Bernoulli (1700-1782), Euler (1707-1783), and D'Alembert 
(1717-1783). Bernoulli is usually considered to be the founder of fluid me­
chanics. His book Hydrodynamica appeared in 1738, originating the term 
hydrodynamics. On the other hand it is D'Alembert who is considered to be 
the originator of the idea of reducing problems in continuum mechanics to 
the study of partial differential equations, and Euler who first wrote down 
the system of partial differential equations governing the flow of a nonvis­
cous (but possibly compressible) fluid. D'Alembert's study of the partial 

differential equation governing the motion of a vibrating string ^ = / i Y 2 

was published in 1747 and Euler's equations for nonviscous fluid flow came 
out in 1755. 

If one formulates Newton's laws for gravitating "particles" in a suitable 
manner, they have a straightforward generalization that encompasses con­
tinuum mechanics as well. Let xu yu Zu9'', x„, yn, zn be the coordinates in 
some rectangular coordinate system of n "particles." Newton's laws then 
assert the existence of n + 1 positive constants mu ' ' * > #*„, G such that 
when the particles move under their mutual attractions the coordinates as 
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functions of the time satisfy the differential equations 

mj 

rrii 

d% 
dt1 = 

d2yy 

dt1 " 

d% 
dt1 " 

dV 
dxj 

dv 
" dyj 

dv 
" àZj 

mj 

where Fis the function of xu • • • , z« given by the formula 

v ( x u - - - , z n ) = tj J* n vt*<- - XJY + (y* ~ yj)2 + to - ZJY • 

It is clear that replacing mtf • • • , m„,G ôy Xmu • • • , Xm„,G/X does not 
change the allowed trajectories, and that on the other hand the trajectories 
uniquely determine the products mxGy m2G, • • • » m„G. Thus the ratios of 
the mj are uniquely determined and are by definition the relative masses of 
the particles. By assigning an arbitrary number as the mass of an arbitrarily 
chosen particle, all other particles acquire a well-defined positive mass. One 
says that one has chosen a unit of mass, and once this is chosen, G has a 
uniquely determined value called the gravitational constant. An important 
and easy consequence of the above differential equations is that the func­
tion 

£ ?[(f Mt)'• ( £ ) H - -. , . . ^ . , . ~*. . „ , . . * Xn> y** Znt 

remains constant throughout time and is accordingly what is called an inte­
gral of the motion. Its value is called the energy of the motion on that par­
ticular trajectory. The term 

-y- (~J'\ +(~HL} + ( ^ n = ^~ • where Vj is the absolute value of 

the velocity of the yth particle is called the kinetic energy of that particle. 
Any increase or decrease in the total kinetic energy Tis exactly balanced by 
a decrease or increase of the function V> which is accordingly called the po­
tential energy. Notice finally that the differential equations of motion can 
be expressed in terms of the two functions Tand V. Let qu * * • , q^n = xu 



562 G. W. MACKEY 

dx\ dyy dZn _ . _ . 

yu Zu * * • ,Xn,yn, Zn, gu • • • , g3n = — , — , • • • , — . Then Tis a func-

tion of the <z, above and — = ms #,. Thus the equations of motion may be 
dcjj 
dT\ dV written in the form — (—r) = 

dt \ dQj / dQj 

I shall not give details here, but it is not difficult to write down an ana­
logue of these equations when the system is a continuum so that a configu­
ration is described by a scalar or vector-valued function on a portion of 
space instead of a 3/z-tuple of real numbers. There is no difficulty in de­
fining the kinetic energy of a moving continuous distribution of matter. 
One simply integrates the local kinetic energy defined by the velocity distri­
bution and mass density function. The equations of motion are thus deter­
mined as soon as the analogue of Fis known. This is a numerical function 
defined on all possible configurations of the continuous matter in question, 
and it must be determined by suitable experiments in each case. Fortunately 
the possibilities are not as various as one might think. A fluid (liquid or 
gas), for example, is characterized for mechanical purposes by the fact that 
V depends only on the function Q that describes the (possibly variable) mass 
per unit volume and may be computed from Q by integrating g(g) over the 
space occupied by the fluid. Here g is a real function defined on the positive 
real axis and characteristic of the fluid in question. One is usually not given 

rfe g directly but rather the function g — - g2 - ~ , whose value at any given o 
dg 

is called the pressure at that density. Actually, g (or equivalently the pres­
sure function) depends not only on the nature of the fluid but on its so-
called "temperature*' as well, and the whole of classical continuum me­
chanics is valid only insofar as temperature changes can be ignored. The 
beautifully subtle theory known as thermodynamics, which deals with the 
interplay between continuum mechanics and temperature changes, was not 
developed until around 1850. Indeed, the work of Joseph Black (1728-1799) 
clarifying the distinction between temperature and quantity of heat and in­
troducing the concept of specific heat did not begin until 1764. 

The theory of the possible potential energy functions for a solid (elasticity 
theory) is much more complicated than for a fluid, and even the linear ap­
proximation (valid for small displacements from equilibrium) was not ade­
quately worked out until the 1820s. Eighteenth-century work on elasticity 
was by and large confined to doing special problems by ad hoc methods. On 
the other hand, the theory of a flexible string is like that of a one-dimen­
sional fluid in that the potential energy is determined by a single real func­
tion relating "tension'* to linear density. In terms of this function and the 
generalization of Newton's laws indicated above, it is not difficult to write 
down the equation of motion—a non-linear partial differential equation 
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analogous to Euler's equations for nonviscous fluids. (A nonviscous fluid is 
one in which one can ignore the "dissipation of energy" as heat.) The equa­
tion studied by D'Alembert in 1747, ¥L = u2 -^4, is the approximation that 

dt2 à* 
results when one assumes ƒ to be small and the tension linearly related to the 
density. D'Alembert discovered the rather easy argument leading to the 
conclusion that every solution may be written uniquely in the form 

Ax9t) s 0(x - lit) + Mx + tit) 

where <t> and \f/ are dif ferentiable functions of one variable but are otherwise 
arbitrary. A year later Euler pointed out an important implication of 

D'Alembert's result. Since ƒ(*, 0) s <j>(x) + iftx) and 4r (*> 0) = MlK*) 
ot 

- /i<t>(x)9 <t> and yf/ are uniquely determined by the configuration and its rate 
of change at / = 0. Thus the whole trajectory of the string is determined 
once its configuration and the rate of change of that configuration are 
known at t = 0. Five years later in 1753 Bernoulli considered the case of the 
string with fixed end points and length t and for the first time emphasized 
the significance of the linearity of the equation in permitting the construc­
tion of solutions by "superposition," i.e., by taking arbitrary linear combi-

00 

nations of solutions already at hand. He saw in particular that U an sin—— 
w=o * 

niru, 
cos - y - (t - bH) must be a solution for "all" choices of the real constants 
an and bn and gave heuristic arguments indicating that every solution can be 
written in this form. Combined with D'Alembert's general solution, the va­
lidity of Bernoulli's argument would imply the possibility of expanding a 
more or less arbitrary function in the form £ an s in - j - . This seemed para-

n = 0 * 
doxical to many mathematicians of the time; a controversy arose and Ber­
noulli's conclusion was rejected. As a result the systematic application of 
harmonic analysis to the solution of linear partial differential equations 
came over half a century later than it might have. 

Of the linear partial differential equations arising in continuum mechan­
ics, the first to be studied after D'Alembert's equation of the vibrating 
string were "Laplace's equation" j - ^ + y ~ + y y = 0, and the "wave 

•« d2o -, / d2o d2o d2o\ «. , , . . , 
equation" -^dr= n ( y r + T z + T T j • B o th a n s e m studying special 
cases and approximate solutions of Euler's non-linear equations for nonvis­
cous fluid flow and were written down by Euler in 1752 and 1759 respective­
ly. When a fluid moves in such a way that the three components u, v, w of its 
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velocity can be written in the form-^-,-^-,-^- where \p is a single scalar func-
dx dy dz 

tion, one says that the flow is irrotational and that ^ is the velocity 
potential. The concept and even the term occur in Bernoulli's Hydrodyna-

du dv dw 
mica of 1738. When the fluid is also incompressible so that y + -r- + -̂ ~ 
s 0, one sees (as noted by Euler in 1752) that the velocity potential satisfies 

the equation -̂ -y + -~-y + -^j = 0 and that many problems in fluid flow 

can be reduced to finding suitable solutions. It was well into the nineteenth 
century, however, before its theory began to be well understood. The same 
is true of the wave equation, which is a three-dimensional analogue of the 
vibrating string equation studied by D'Alembert in 1747. Euler used it to de­
scribe the small density oscillations of a fluid, such as occur for example in 
the propagation of sound. 

In the later part of the eighteenth century, other aspects of the physical 
world began to be subjected to non-trivial mathematical analysis. We have 
already mentioned Black's work on heat and temperature. Black was also a 
pioneer in introducing quantitative methods into chemistry, making careful 
measurements of the masses involved when calcium carbonate decomposes 
into calcium oxide and carbon dioxide and preparing the way for the funda­
mental work of Priestley (1733-1804) and Lavoisier (1743-1794) between 
1775 and 1785 on the nature of combustion and the law of conservation of 
matter. Modern chemistry is considered to have been founded with the pub­
lication of Lavoisier's book Traité élémentaire de chimie in 1789. In the 
1750s and 1760s Michel (1724-1793), Priestley, and others began to study 
electrical and magnetic phenomena more quantitatively. They did experi­
ments and made deductions that made it seem quite likely that magnetic 
poles and electric charges attract and repel one another with a force that is 
like gravitational attraction in varying inversely with the square of the dis­
tance. Then between 1785 and 1789 Coulomb published a series of memoirs 
reporting his own very careful measurements and convincing the scientific 
world of the validity of what is now known as Coulomb's law. 

d2\l/ d2\l/ d2\I/ While Laplace's equation ̂ r-j- + ^-7 + "^r= 0 first appears in work of 

Euler in fluid mechanics, it was destined to be important in dealing with all 
attractive and repulsive forces varying according to an inverse square law. 
Lagrange in 1773 pointed out that the field of force Fx, Fy9 Fz produced by 
the gravitational attraction of an arbitrary distribution of matter is like an 
irrotational velocity distribution in being realizable as the three partial de­
rivatives of a single "potential function" V. Twelve years later in 1785 La-

dF dF place observed that it was also "solenoidal" in the sense that ^-x + -~-y + 
dx dy 
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dF 
^-z = 0, so that the potential V satisfies the equation that now bears his 
name. He overlooked the modification (later introduced by Poisson) that 
has to be made at points occupied by matter. Laplace (and his contempo­
rary Legendre) were interested in computing the gravitational attraction due 
to bodies of various shapes and sizes and found it convenient to think in 
terms of the potential function V and its properties. It was in connection 
with this work that they introduced the functions on the surface of a sphere 
known as surface harmonics and expanded solutions of Laplace's equation 
(in polar coordinates) as a series of powers of r multiplied by surface har­
monics. This expansion theory, when properly developed, permits one to 
show that an arbitrary continuous function on the surface of a sphere can 
be extended uniquely to satisfy Laplace's equation in the interior. Extend­
ing this theorem to closed surfaces of more general shape was to be a major 
theme of nineteenth-century mathematics and to lead to new developments 
of far-reaching importance. As I shall explain later, the use of expansions in 
surface harmonics to study Laplace's equation inside a sphere may be re­
garded as an early (and of course unconscious) application of non-commu­
tative harmonic analysis. 

Lagrange's observation of 1773 was only a small part of his contribution 
to the development of mathematical physics. He improved and extended the 
investigations of Bernoulli, Euler, and D'Alembert in many ways, and in 
competition with Laplace he made important inroads into celestial mechan­
ics. He is credited above all, however, with completing the transition from a 
geometrical to an analytical point of view in dealing with mechanics and 
with basing the whole subject on simple general principles. His Mécanique 
analytique, published in 1787 exactly one hundred years after Newton's 
Principia, is a magnificent survey of the discoveries of Galileo, Newton, 
Bernoulli, Euler, D'Alembert, etc., all reworked into a coherent elegant 
scheme. His thoroughly analytical point of view is exemplified by his boast 
that the book contains no diagrams. 

8. THE WORK OF FOURIER, POISSON, AND CAUCHY, AND EARLY 
APPLICATIONS OF HARMONIC ANALYSIS TO PHYSICS 

The work of the eighteenth century on continuum mechanics was severely 
handicapped by a lack of systematic methods for solving or otherwise cop­
ing with the partial differential equations to which Euler and his contempo­
raries had been led. Only simple equations like -^~ = — —£ could be dealt 

at2 a2 dx2 

with in a general way. The clue provided by the theory of this equation was 
missed — not only by Euler and D'Alembert as indicated in the last section, 
but again by Lagrange in a memoir on the theory of sound published in 
1759. 
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The breakthrough came in 1807, when J. B. Fourier (1768-1830) sub­
mitted a long memoir on the conduction of heat to the French Academy of 
Sciences. Simple hypotheses and arguments led to the conclusion that the 
variable temperature Tin a homogeneous body will satisfy a partial differ-

*-i *• *.u * dT (PT ^ d2T ^ d2T\ , 
ential equation of the form -̂ r- = fi I n—2 + Â—2 + Ô-2 Iwhere /i is a cons­
tant depending on the material of which the body is made, JC, y, and z are 
spatial coordinates, and t is the time. With this equation as a starting point 
Fourier made a profound analysis of a number of problems in heat flow. 
Once the temperatures at the boundaries are specified, it turns out that the 
distribution of temperature over the body at time f = 0 determines this dis­
tribution at all later times, and this later distribution can be calculated from 
a simple algorithm. 

The simplest case to discuss is that in which the body is a thin bar, insu­
lated so that heat flows in and out only through the ends and T depends on-

ly on the coordinate x. Then the equation becomes -^- = \k ^-2. If the tem­

peratures are held fixed at A and B at the ends and these occur at x = 0 and 

x = (9 we may write T ={^~^ x + A + f where f satisfies the same 

equation but f(0, 0 = f (f, /) = 0. Now s i n ^ is zero at x = 0 and x = t 

for all n = 1,2, • • • . Thus if gt(x) = f(xf t) can be written as a linear com­

bination of the functions x — sin—r-, the coefficients will depend upon f 

and we will have T(x, t) = £c„(0 sin—T- where the c„(t) remain unknown. 
n = 0 * 

However, at least at a formal level one verifies at once that f satisfies the 

partial differential equation of heat conduction if and only if -r cn{t) = 
~ y 2 " 2 cn(t) so that c ( 0 = e{-^n2t»? c(0). This implies that f(x,t) = 

S cn(0)e{'^nh)/P sin—r-, and we need only know the constants cn(0) to 

know f(x, f) for all x and t. But these constants are just the expansion coef-

ficients of T(x, 0) in the Fourier series expansion T(x, 0) = Ec«(0) sin - j -

and can be computed from Fourier's formula 

\[t(x, 0 ) s in^d*r = c„(0)JJs in^tfx . 

This is not the way Fourier proceeded, but is perhaps the easiest way to un­
derstand the reason for the truth of Fourier's algorithm, which amounts 
simply to this: Expand the reduced temperature fa t f = 0 in a sine series, 
computing the coefficients as indicated. To get the temperature at time t> 
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simply multiply the nth coefficient by e*'"*2"2'"*2 and add up the 
modified sine series. 

The key point of course is the assumption that a more or less arbitrary 
function on a finite interval can be written as the sum of a linear function 

and a sine series U c„ sin —̂ —. This is what Fourier insisted upon and what 
n = l * 

his eighteenth-century predecessors had refused to believe. As a matter of 
fact, Fourier's 1807 memoir was rejected by the French Academy as insuffi­
ciently rigorous — Lagrange was a member of the jury. On the other hand, 
he was encouraged to continue his admittedly very original researches and 
in 1812 won an academy prize for another version of the same memoir. This 
also was criticized for insufficient rigor and Fourier's work was not pub­
lished in detail until the appearance in 1822 of his immensely influential 
classic Théorie analytique de la chaleur. 

The importance of Fourier's treatise of course does not lie in its applica­
tions to solving problems in heat flow, but to the universality of the meth­
ods he employed (not to mention the influence on foundational questions 
and the development of set theory produced by the study of convergence 
and other points of rigor). There is no problem in extending the expansion 

technique to functions of several variables. One simply replaces sin — j - by 

sin^|^ s in—^ for two variables and the extension to more variables is ob-

vious. More generally, the method is one that can be adapted to deal with 
the wave equation, with Laplace's equation, and in fact with any linear par­
tial differential equation with constant coefficients. Not since Newton and 
Leibniz introduced the calculus well over a century earlier had mathematical 
physicists been provided with so powerful a tool. Now the partial differen­
tial equations that had accumulated (and were still accumulating) as the 
mathematical analysis of physical phenomena proceeded could be solved 
and their implications studied. It was an enormous advance. 

Before saying more about what Fourier and his contemporaries accom­
plished, let us look briefly at how Fourier's method fits into the general 
scheme of harmonic analysis as outlined earlier. A function of x, y, and z 
which is periodic in each variable with periods ft, ft, and ft respectively can 
be regarded as a function on the group obtained from the additive group of 
all triples of real numbers by factoring out the subgroup of all triples of the 
form nx ft, n2 ft, n3 ft where nu n2, and n3 are integers. The continuous char­
acters on this group are just the functions x, y, z -* e<2**v)/'» el2win*ut* 
e<2ir«n3x>/f3 where nu n2, and n3 are integers. Since the real and imaginary 

parts of e{2wtnx)/i are just cos ™x and sin * , Fourier's theorem on ex­
panding in a sine series is easily deducible from a theorem permitting the ex­
pansion of a more or less arbitrary functions on our quotient group in terms 
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of characters. Functions on intervals, rectangles, etc., may be looked upon 
of course as restrictions of periodic functions on the line, the plane, etc., re­
spectively. The expansion is useful in solving partial differential equations 
with constant coefficients for just the same reason that passing to the gener­
ating function is useful in solving the difference equations of probability 
theory. If one thinks of the set of coefficients as a function on the group of 
characters and thinks of this function as the primary unknown, the differ­
ential equation becomes an algebraic equation. This is because partial dif­
ferentiation transforms into multiplication by a function. The chief differ­
ence between Fourier's application of this principle and the earlier applica­
tions in probability and number theory lie in the fact that Fourier was deal­
ing with a continuous group. 

In dealing with problems on all of space or on the whole real line, one can 
apply the same principles but not to a compact quotient group. One must 
deal with the full locally-compact group of all ^-tuples of real numbers for 
various values of n. The most general continuous character on Rn is xu 

• • • , xn — ei{x*z» + ' ' "+ *« z«) where the Zj are arbitrary complex numbers and 
these characters are bounded or equivalently of absolute value one when 
and only when the Zj are all real. In any event there is a whole continuum of 
possible characters, and infinite sums have to be replaced by integrals 

00 

over this continuum. Instead of the formula f(x) = ]£ cneinx where c„ = 
n = - o o 

^r-Jn* f(x)e-inxdx, one has f(x) = j°° c(y) eixy dy where c(y) m 
Zir u -°° 

1 °° ^~ \- « Ax) e~lxy dx and similarly for higher dimensions. Taking ƒ to be 
real and even, these formulae reduce to f(x) = j °° 2c(y) cos xy dy and 

2c(y) = — j f(x) cos xy dx, and in this form were known and used by 
7T ° 

Fourier in his 1812 prize paper. 
The applications of Fourier's ideas to other branches of physics did not 

have to wait for the publication of his book in 1822. Poisson (1781-1840) 
and Cauchy (1789-1857) were twenty-six and eighteen years old respectively 
in 1807, when the thirty-nine-year-old Fourier submitted his memoir to the 
French Academy, and both began after a while to study the partial differen­
tial equations of physics and to apply the methods of harmonic analysis. In­
deed a sort of three-cornered competition arose. Although Fourier had pub­
lished no details, Poisson read the 1807 memoir in manuscript and pub­
lished a five-page summary and review of it in 1808. Moreover, eight years 
later Fourier published his own summary — including his ideas on the Four­
ier integral. By 1816 both Poisson and Cauchy had written papers applying 
harmonic analysis to the solution of the wave equation in three dimensions, 
and in 1823 Cauchy published a paper explicitly pointing out how the Four­
ier transform made it possible to deal with an arbitrary linear partial differ-
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ential equation with constant coefficients. In a paper published in 1817 
Cauchy claims to have independently discovered the reciprocal formulae of 
the cosine transform 

c(y) = yfi^Ax) cos xy dx f(x) = Jf\™c(y) cos xy dy, 

but acknowledges the priority of Fourier. For a very full account of the 
whole story the reader is referred to the book Joseph Fourier 1768-1830 [7] 
by I. Grattan-Guinness, which contains among other things the complete 
text of Fourier's 1807 memoir. 

Simultaneously with this work on harmonic analysis and its applications 
to the wave equation, a new field of application was emerging in a revival of 
Huygens's ideas about the wave nature of light. Between 1801 and 1827 the 
work of Young (1773-1829) and Fresnel (1788-1827) with important contri­
butions by Malus (1775-1812) and Arago (1786-1853) led to a complete 
overthrow of the corpuscular theory and the establishment of the wave the­
ory as far superior in explaining known phenomena. Young's early work in 
explaining diffraction patterns and the colors of thin films as due to inter­
fering waves was not well received in spite of the fact that he showed how to 
compute the wave length of the light from the diffraction pattern. However, 
in 1810 Malus accidentally passed light reflected from a window pane 
through a doubly refracting crystal and found that the two refracted rays 
were of radically different intensities. He had discovered the polarization of 
reflected light, and Malus investigated this phenomenon in detail. In 1816 
Fresnel and Arago discovered that oppositely polarized light rays do not in­
terfere, and Young offered an explanation based on the hypothesis that 
light waves are transverse. Transverse waves are waves in which the vibra­
tions take place perpendicular to the direction of propagation. If one thinks 
of oppositely polarized waves as being waves in which the vibrations are 
perpendicular to one another as well as to the common direction of motion, 
one can understand the non-interference. Fresnel published an elaborate 
memoir based on these ideas in 1827. One great problem remained, 
however. If light is a wave, what is it that is waving and what are its proper­
ties? The only known examples of transverse waves occurred in the vibra­
tions of elastic solids. Stimulated by the memoir of Fresnel, Poisson and 
Cauchy took up the study of the small vibrations of elastic solids. Cauchy 
was the first to write down the correct system of three linear second order 
differential equations. He did this in 1828, and in the same year Poisson 
analyzed this system and showed that there would be two kinds of waves, 
longitudinal and transverse, each with its own characteristic velocity. In the 
ensuing years Cauchy made three attempts to find a possible elastic solid 
whose transverse waves would behave like light, but none succeeded. Dec­
ades later the puzzle was solved by Maxwell's theory of the oscillations of 
an electromagnetic field. 
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9. HARMONIC ANALYSIS, SOLUTIONS BY DEFINITE INTEGRALS, 
AND THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE 

The mapping set up by the Fourier transform/(Xi, • • • , xn) — f(yu ' ' * , 
y») = i!» • ' Ç.jixu ' • • , xn) e^ '« * " " • • *« '-> dxt • • • dxn has an im­
portant formal property which is an integrated counterpart of the fact that 
partial differentiation transforms into multiplication by - / times the cor­
responding coordinate. It is the property that the product of two Fourier 
transforms ƒ and g is the Fourier transform h of a function h which can be 
constructed from ƒ and g by a simple integral formula and is called then 
convolution. h(xu *i, • • • , x„) = ƒ * g(xu • • • , xn) = J" -̂ • • J"^ 
f(xl - tu x2 - ty • ' ' , xn - tn) g(tut2> • • • , tn)dtx dt2' • • dtn. 

If one solves a linear partial differential equation with constant coeffi­
cients by using the Fourier transform to turn it into an algebraic equation, it 
will often turn out that one has an explicit expression for the Fourier trans­
form of the unknown function as the product of the Fourier transform of a 
given function and some other explicitly known function which is deter­
mined by the partial differential equation in question. Taking the inverse 
Fourier transform, the solution to the problem is exhibited as the convolu­
tion of the given function with the inverse Fourier transform of the function 
determined by the differential equation. For example, consider the problem 

d2V d2V d2V 
of solving YT + T T + *â~r~ 4irQ where Q is known and Fis to be deter­
mined. Taking Fourier transforms one has -(w2 + v2 + w2)K(w,v,w) = 
4TTQ so that V = - -=•-:—; , 4TTQ. Taking inverse Fourier trans-

* u2 + v2 -l- w2 K 

forms one finds that V = 4ITQ *g where g is the inverse Fourier transform of 

and this can be computed to be -A—, 2 1 ==f . Thus 

V(xyz)=C T C Q(x ~*.'' y ~ ? .'*z " z ') rir ' riv ' riz ' nx,y,Z) J.œ )_co)_co ^j^y + ^y + ^y ax W az » 

which may be recognized as the formula for computing the potential due to 
a charge or mass distribution of density Q. The equation it solves is Pois-
son's correction of Laplace's equation for points of space at which the den­
sity is not zero. Of course, these formal considerations are only valid when 
the functions satisfy suitable regularity and boundedness conditions. Other 
examples one can give include the general solution of the wave equation as a 
"superposition of plane waves" and the solution of the initial value pro­
blem for the heat equation as a convolution of the initial temperature distri­
bution with the function x,y,z - (2aJ^iy e'^*** *2)/4°2 '. 

Many of these explicit solutions can be (and originally were) obtained by 
other methods that do not involve the use of Fourier analysis. Poisson was 
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particularly active in developing such integral formulae. He seems to have 
been the first to recognize that the existence of conductors of electricity 
combined with Coulomb's law presented a challenging mathematical prob­
lem: How does a given charge distribute itself on a conductor? And, more 
generally, given a system of a finite number of conductors with a given 
charge on each, how does the charge distribute itself? It is easy to reduce 
this problem to a purely mathematical one involving Laplace's equation, 
and Poisson created (mathematical) electrostatics with a long memoir on 
the subject published in 1812. Twelve years later he published an important 
memoir on magnetism showing how the inverse square law for magnetic 
poles and the apparent non-existence of isolated magnetic poles both follow 
from a theory in which the fundamental entity is a continuous distribution 
in space of so called "magnetic dipoles." Let a2 + /32 + y2 = 1 and consid­
er two magnetic poles of strengths and — located at x0=F-y, Jo^^-, Zo* 

«y; Then the net magnetic field they produce has a limit as e tends to zero. It 
is called the field of a dipole at x0, y0, Zo whose dipole moment is the vector 
ma, m$, my. From a strictly mathematical point of view, Poisson's as­
sumption (when the field behaves suitably at oo) is equivalent to the as-
tion that the magnetic field components Hx, Hy, Hz satisfy the partial dif­
ferential equation -ir-1 + "F^ + "T1 = 0 tfn v e c t o r f ° r m div/ƒ = 0). In­
deed, introducing the vector notation curlcT) = y-jr1 g-* » -jr1 -

rdi, Êâ±._ Ë^L), one verifies easily that ~A is uniquely determined by div ~X 
bx bx by / 
and curl A provided that it goes to zero properly at oo. Since div H = 0 
one can attempt to find a formula expressing H in terms of curl //. This 
amounts to solving ajystem of partial differential equations of the form 
div H = 0, curl H = Tand the methodof Fourier transforms may be applied. 
It works and leads to a formula for H in terms of / of (vector) convolution 
type. This formula may be interpreted as asserting that His the field due to 
a distribution of dipoles of density--^-. The relationship between H and I is 

4?r . . . 
quite analogous to that between V and Q m electrostatics. Indeed, just as 
any vector field vanishing suitably at»and having zero divergence can be 
regarded as the magnetic field due to a continuous distribution of magnetic 
dipoles, any vector field with zero curl (and suitably vanishing at oo) can be 
regarded as the electric field due to a continuous distribution of charge. We 
are dealing on the one hand with the problem of expressing /fin terms of 
curl //given that div H = 0 and on the other with the problem of expressing 
E in terms of div E given that curl E = 0. 

The early nineteenth century was an exciting period in the development of 
physics and chemistry quite apart from the discovery of powerful mathe-
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matical methods. We have already mentioned the renaissance and develop­
ment of the wave theory of light. Another advance of tremendous impor­
tance was the discovery by Oersted (1777-1851) in 1819 of a direct relation­
ship between electricity and magnetism — a discovery made possible by 
Volta's invention of the electric battery in 1800. The work of Volta 
(1745-1827), based on still earlier work of Galvani (1737-1798) and others 
on "animal electricity/' was of equal importance in its own right. It made 
steady electric currents available for the first time and through the work of 
Nicholson (1753-1816) and Carlisle (1768-1840) in the same year forged a 
fundamental link between electricity and chemistry. Nicholson and Carlisle 
showed that (impure) water can be decomposed into its elements by passing 
an electric current through it. What Oersted did in 1819 was to observe that 
an electric current in a wire deflects nearby compass needles. Almost imme­
diately the quantitative aspects of this unexpected new phenomenon were 
under intensive investigation by a number of scientists, the most important 
being Biot (1774-1862), Savart (1791-1841), and Ampère (1775-1836). Am­
père investigated the magnetic effects of one current on another and pub­
lished a long and important memoir on electromagnetism in 1825. The basic 
quantitative law is usually attributed to Biot and Savart and was formulated 
by them in infinitesimal physical terms. An equivalent formulation in the 
spirit of our discussion of Poisson's theory of ordinary magnetism is that 
the magnetic field produced by any finite system of moving charges satisfies 

the partial differential equation div H = 0,curl H = whereTis the cur­
rent density and c is a fundamental constant. One can recover the Biot-Sa-
vart law by integrating these equations and expressing H as a (vector) con­
volution of the appropriate function with /'. The mathematics is identical 
with that of Poisson's theory. One simply treats an "infinitesimal" current 
element / as a point dipole of (vector) dipole moment—. A few years later, in 

1830, Faraday (1791-1867) and Henry (1797-1878) independently discovered 
that there is a converse relation between electricity and magnetism. A 
changing magnetic field produces an electric field. When this effect was 
quantitatively understood, one saw that the equation curl E = 0 is valid on­
ly when H does not change with time, and more generally should read curl E 

= jrr-. That the equation curl H = has to be similarly corrected by 

1 dE 
adding — -̂ — to the right-hand side was recognized only a generation later 
(on theoretical grounds) by a man who was born just after Faraday and 
Henry made their discoveries. Maxwell (1831-1879) made this proposal in 
the 1860s, showed that it implied that both E and H satisfy the wave equa-

1 d2A I d2A d2A d2Â\ 
tion — - ^ = {-jr-j + -jrr + ~jrr) a t points of space free of charge, and 
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was led thereby to his celebrated electromagnetic theory of light. The cons­
tant c is of course just the velocity of light — a fact which had been noted 
some years earlier as a curious and possibly significant coincidence. 

The main point I have been trying to make in this section so far is that the 
use of formulas of convolution type is thinly disguised harmonic analysis 
and that in this disguise harmonic analysis was a key factor in the develop­
ment of electricity and magnetism in the early nineteenth century as well as 
in the theory of heat conduction and wave propagation. 

Another major development of the early nineteenth century was the 
founding of the theory of functions of a complex variable by Gauss and 
Cauchy. The use of calculations involving complex numbers, which were 
more or less equivalent to the Cauchy integral formula, goes back well into 
the eighteenth century, but it was mistrusted and not well understood. Com­
plex numbers themselves were still regarded as rather mysterious entities in 
the early nineteenth century. The exact history is rather complicated and I 
shall not attempt to trace it. I shall rather content myself with stating that 
Gauss and Cauchy founded the theory in the sense that they systematized 
and rigorized earlier uses of the basic idea. Its formal birthdate is often tak­
en to be 1825, the year in which Cauchy published the integral formula that 
bears his name, although Cauchy and Gauss both knew the result a decade 
earlier. Our main purpose here is to indicate briefly the very close connec­
tions of this theory with harmonic analysis. 

Consider a function ƒ which depends analytically on the complex variable 
Z inside the disk \z\ < R. For each r with 0 < r < R let fr denote the restric­
tion of / to the circle |z| = r. Expanding in a Fourier series one finds that 

00 

fr(reie) = E cn(r) eind, and the analyticity condition implies that cn(f) = CJ*1. 
n — - oo 

Finally the continuity at the origin implies that cn = 0 for n < 0. Thus f(reie) 
00 00 

= E Cnf1 eine so if z - reid, f(z) = E c„zn and the expansibility of an analytic 
n-0 n= 0 

function in a power series is established. Of course the coefficients cn may 
00 

be determined from any fr. Thus if rx < r2 we have/(r^10) = E cn r? ein9 

where cnf{- ^— J ft
T f(r2 e1*) e~in+ d<l>. Hence/(^ eiff) - ^— E (— eie) " 

2TT u 27T n = 0 V 2 / 

J ? ƒ(***)*-**</* = ̂ î o * ( J 0 ( T : *"•"*) ) fr>ei*)d<t>. But 

n = o\r2 / rxe
ld 

r2e
l+ 

1 i2* f(nei4>)dé 
so that J{rt e

iff) = y - J 0 ^^——% , and writing z = rx e'+y f = r2 e
i4> thus 

2' . 
r2e

l' 



574 G. W. MACKEY 

becomes f(z) = ~ -r * A£L_> 9 which is Cauchy's integral formula for 2™ |r| =r2 f - z 
the circle |z| = r2. 

With the Cauchy integral theorem on the circle and the expansibility of an 
analytic function in a power series as a starting point, one can deduce the 
basic theorems in elementary complex variable theory quite quickly and 
easily. Thus there is a sense in which the theory of functions of a complex 
variable is an aspect of Fourier analysis. From another point of view the 
theory of functions of a complex variable is the theory of the solutions of 

the Cauchy-Riemann equations -fr=!T9 T"= ~"5~' anc* ^ e Pr°Pert^es °f 
this system can be deduced from Fourier analysis just as with the partial 
differential equations of electromagnetism. Indeed, thinking of v, u as a 
two vector, the Cauchy-Riemann equations are just the two-dimensional 
version of curl Z? = div E = 0. 

The argument used to deduce the Cauchy integral theorem for the circle 
from the theorem on expansibility of periodic functions in a Fourier series 
can be used in almost exactly the same way to deduce Poisson's formula ex­
pressing a harmonic function in a disk in terms of its boundary values. 
There is a similar formula (also due to Poisson) expressing a function har­
monic in a ball in terms of its boundary values, and it is natural to ask 
whether this formula can be deduced in an analogous fashion. This would 
seem to require giving the surface of the sphere the structure of a commuta­
tive group and using an expansion theorem in terms of its characters. While 
it can be proved that this surface S cannot be made into a group at all in a 
manner consistent with its topology, there is a compact non-commutative 
group which acts transitively on S—namely SO(3), the rotation group in 
three dimensions. Moreover, there is an analogue of the Fourier series proof 
of Poisson's formula. It differs from the Fourier series proof in using ex­
pansions in the surface harmonics of Legendre and Laplace (see section 7) 
instead of the ein$. This suggests that there might be some relationship be­
tween surface harmonics on a sphere and complex exponentials on the cir­
cle. There is, and understanding this relationship is the key to understand­
ing why the theory of group representations may be regarded as a natural 
generalization of Fourier analysis. The rotation group in two dimensions 
acts transitively on the unit circle with center 0, 0 and takes each function 
0 —> en9 into a constant multiple of itself. Moreover, every one-dimension­
al invariant subspace of measurable functions on the circle is the one-di­
mensional subspace of all multiples of eine for some n. The rotation group in 
three dimensions acts transitively on the unit sphere with center 0,0,0 but 
has no invariant one-dimensional subspace of measurable functions except 
for the space of constants. On the other hand it has finite-dimensional in­
variant subspaces, which are irreducible in the sense that no proper sub-
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space is invariant. These are mutally orthogonal with respect to integration 
over the sphere and each is spanned by surface harmonics. Thus the expan­
sion theorem in surface harmonics may be looked upon more fundamental­
ly as an expansion theorem in terms of members of irreducible invariant 
subspaces. Each such subspace defines a representation of SO(3) by linear 
transformations, and it is these irreducible representations which replace 
characters in dealing with a transitive action of a non-commutative group. 
A commutative group has only one-dimensional irreducible representa­
tions. In a sense the theory of surface harmonics of Legendre and Laplace is 
an anticipation of non-commutative harmonic analysis made over a century 
before the world was ready to appreciate it as such. 

Poisson's formula expressing a harmonic function inside a ball in terms 
of its values on the spherical surface bounding the ball can be used to show 
that for every continuous function <t> on this surface, there is a unique solu­
tion of Laplace's equation continuous at the boundary and having the 
values of <t> as boundary values. The corresponding result for a rectangular 
parallelepiped can easily be proved using Fourier series in three variables, 
and it is natural to conjecture a general theorem applying to more or less ar­
bitrary closed surfaces. The first person to state and seriously to attempt a 
proof of this important theorem was G. Green (1791-1841). Green did not 
get to a university until he was forty, but he read Poisson's 1812 paper on 
electrostatics and Fourier's book on heat conduction while helping his 
father run the family mill and bakery in Nottingham. Starting to think 
about things for himself, Green managed to go much further than Poisson. 
In 1828 he published a remarkable paper entitled "An essay on the applica­
tion of mathematical analysis to the theories of electricity and magnetism." 
Unfortunately he was too much out of touch with the scientific world to 
think of sending it to a journal. He had it privately printed and circulated in 
Nottingham; it did not become widely known until Lord Kelvin (then Wil­
liam Thompson) stumbled upon it and arranged for its publication in 
Crelle's Journal in 1850. In the meantime much of its contents had been re­
discovered by Gauss and others. It contained the well-known Green's iden­
tities from which one deduces the uniqueness of solutions of Laplace's 
equation with given boundary values and Green's famous "physical" argu­
ment for the existence of what is now called a Green's function. From its al­
leged existence Green could deduce a generalization of Poisson's formula 
and the existence of a solution of Laplace's equation with arbitrary continu­
ous boundary values. Gauss later gave a different proof, which was unsatis­
factory in another way, and what came to be known as the "Dirichlet prob­
lem" remained open for many years. The first satisfactory solution for con­
vex regions was given by C. Neumann (1832-1925) in 1870. Work on the 
problem was an important stimulus to the development of analysis—espe­
cially the theory of integral equations. The theory of integral equations led 
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in turn to the modem theory of operators in Hubert space, which plays a 
central role in present day non-commutative harmonic analysis (see section 
14). 

10. ELLIPTIC FUNCTIONS AND EARLY APPLICATIONS 

OF THE THEORY OF FUNCTIONS OF A 

COMPLEX VARIABLE TO NUMBER THEORY 

The usefulness of considering the functions of analysis for complex 
values of the argument became dramatically apparent in the years 
1827-1829 when Abel (1802-1829) and Jacobi (1804-1851) published their 
memoirs, Recherches sur les fonctions elliptiques (in two parts) and Funda-
menta nova theoriae functionum ellipticarum respectively. Independently 
(Abel slightly earlier) they had discovered and developed the consequences 
of the following important fact: The theory of the functions defined by the 
indefinite integrals that arise when one attempts to find the length of an arc 
of an ellipse becomes very much simpler if one a) concentrates attention on 
the inverse functions and b) considers complex as well as real values of the 
variables. These inverse functions are analytic except for poles in the whole 
complex plane, and moreover have two complex periods o>i and co2 which 
are not real multiples of one another: f(z + coi) = f(z) = f(z + c*>2) for all z. 
Any function with these properties is called an elliptic function. Because of 
its two independent periods an elliptic function is uniquely determined by its 
values in a parallelogram with one vertex at 0, and because of its analyticity 
except for poles it is determined up to a multiplicative constant by the posi­
tions (and orders) of its (finitely many) zeros and poles in this parallelo­
gram. It is thus possible to get a complete overview of all possible elliptic 
functions with given periods o)t and w2, and a very beautiful theory emerges. 

Jacobi and Abel were interested in the dependence of their functions on 
OJI and co2 as well as on z and found innumerable elegant identities and rela­
tionships. In the course of such work Jacobi compared the power series ex­
pansions resulting from two different expressions for the same function and 
deduced the remarkable fact that r4(n), the number of representations of a 
positive integer n as the sum of four squares, is equal to eight multiplied by 
the sum of all divisors of n which are not divisible by 4. Since 1 and n count 
as divisors, it follows at once that every positive integer n can be written as a 
sum of four squares. This result, conjectured by Fermât, had been proved 
by Lagrange in 1773 after many years of unsuccessful attempts by Euler 
(Euler found his own proof a year later). The formula for the exact number 
of representations was completely new. Other identities in Jacobi's work led 
to similar formulae for r2, r6, and r8. Of course that for r2 was already 
known. Twenty years later Eisenstein (1823-1852) found purely arithmetical 
proofs of the formulae for r6 and r8 as well as similar formulae for rs and r7, 
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but the analytical proofs for r4, r6, and r8 could be understood only as 
curious accidents until well into the twentieth century. Between 1925 and 
1940 Hecke and Siegel fitted them into two (somewhat different) beautiful 
general theories which will be described later in this article. Both theories 
are developments of the theory of "modular forms" begun by Dedekind, 
Klein, and Hurwitz in the last quarter of the nineteenth century and, since it 
is not difficult, I shall give a brief account here of how modular forms relate 
to elliptic functions on the one hand and Jacobi's number-theoretical results 
on the other. 

For each pair cot and w2 of independent periods, there is a canonical ellip­
tic function p characterized by the fact that it has second order poles at all 
points no)t + mœ2 of the discrete group of all periods and no other poles, 

and that the principal part at each pole Zj is ( _ . 2. A key (and not diffi-
\Z Zj) 

cult) result in the theory of elliptic functions is that every elliptic function 
with periods œt and o>2 is a rational function of p and its derivative p ', and 
that p satisfies a differential equation of the form p '(z)2 » 4( p (z)Y 
-giPiz) -g3 where g2 and g3 are "constants" which of course depend 
upon Wi and co2. If one investigates g2 and g3 as functions of a>i and o>2, two 
facts emerge very easily. Substitution of \z for z in the differential equation 
leads at once to the conclusion that g2 and g3 are homogeneous of orders - 4 
and - 6 respectively; that is, g2(\œl9\œ2) s — g2(œt, œ2) and g3(Ko)u Xc<;2) = ^ 

A A 

g3(uu <*>2). It follows trivially that g2 and g3 may be written in the form g2(œu 

o)2) = —r </>2( —) and g3(coi, o>2) = —r <t>3(—) where <f>2 and <f>3 are functions 
(J02 \ 032/ 0)2 \ C 0 2 / 

of one variable. On the other hand it is clear that g2 and g3 depend only on 
the discrete group of all periods and not on wi and co2 themselves. Suppose 
then that (3) is any two-by-two matrix of integers with ad -be = 1. If co \ 
= ao)i + bo)2 and co '2 = COJI + rfw2, then co \ and co '2 generate the same 
group that o^ and w2 do. Hence g2(o)uœ2) = g2(co'i,o>'2) and g3(o)uo)2) = 
g3(co 't,w '2). Expressing g2 and g3 in terms of <t>2 and 03, one discovers imme­
diately that 02 and <t>3 have the property that <t>2(

az + ^)= (cz + d)4 <t>2(z) 
\cz + a/ 

and <t>3\ r -^}= (cz + d)6 03(z) for all integer matrices (?S) of determi-
\cz + or/ 

nant one. The functions <t>2 and 03 can also be shown to be analytic through­
out the upper half of the complex plane and to be bounded as z approaches 
infinity along the imaginary axis. 

Quite generally, a function ƒ analytic in the upper half-plane and bound­
ed as just indicated is said to be a modular form of weight k (or dimension 
- 2k) if ƒ(** ^ ^ ) = (cz + d)2kf(z) for all z in the upper half-plane. The 
functions 02 and <t>3 defined by g2 and g3 as above were not only the first 
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modular forms to be considered as such, but turn out to generate all the 
others. In the general theory of modular forms it is shown that 02

3 and <t>3
2 

span the two-dimensional vector space of all modular forms of weight 6, 
and a member of the one-dimensional subspace vanishing at oo is singled 
out and called A. Given a positive integer k, the equation 2a + 3j3 + 67 = 
k has a finite number of solutions in non-negative integers a, j3, 7. More­
over, for each solution, <t>2

a <t>^ Ay is evidently a modular form of weight k. 
These particular modular forms of weight k turn out to span the vector 
space of all modular forms of weight k. 

Iff is any modular form of weight k and we choose (?S) = (0 0> the identi-

ty f(aZ + ^)= (cz + d)2kf(z) reduces to/(z + 1) = f(z) so that ƒ has a 
CZ ~r Q' œ 

Fourier series expansion E crje
2wtnx which converges in the upper half-

H = - 0 0 

plane. The condition on ƒ at /oo implies that c* = 0 for n< 0 so that f(z) al-
00 

ways has the form E c^2lcint. The c„ are called the Fourier coefficients of 
n = 0 

the form and c0 is called the constant term. The constant term c0 may be 
thought of as the value of ƒ at /oo, and forms for which it is zero are called 
cusp forms. For k = 2, 3, 4, • • • there is a very simple and straightforward 
way of defining a modular form of weight k which is not a cusp form. One 

00 1 

simply sums the so-called Eisenstein series Gk(z) = E rrr 
«,m*o,o (nz + m)2k 

where n and m are integers. This sum obviously satisfies the identity charac­
teristic of modular forms of weight k, and it is not difficult to check that it 
has the necessary analyticity and boundedness properties. Simple arguments 

1 °° 1 
based on the easily established formula -r-: r? = E 7 ^ allow 

(sin ir*)2 «=-00 (z + n)2 

one to compute the Fourier coefficients of Gk, to show that it is not a cusp 
form, and more significantly to show that these coefficients have simple and 
suggestive number theoretical properties. Indeed Gk(z) = c0 4-
2(2k-%k „ ^ a-el*""wh™c° = 2U+^* + ± +^' • '] = 2t(Zk) 
and an = E d2k~l where d ranges over all the divisors of /?. Evidently every 
modular form of weight k is uniquely a sum of a cusp form and a constant 
multiple of the Eisenstein series of weight k. The cusp forms also have Four­
ier coefficients with number-theoretical properties, but these are more 
subtle and were not discovered until well into the twentieth century. 

The genesis of Jacobi's results on sums of squares can now be under­
stood, at least in principle, by confronting the facts about the Fourier coef­
ficients of Eisenstein series with a remarkable connection between sums of 
squares and modular forms which emerges when one applies the Poisson 
summation formula to the function x — e'**2. Let <f> be any continuous func­
tion which goes to zero sufficiently rapidly at 00 and let $(y) = j*ete* <t>(x) dx 
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be its Fourier transform. The Poisson summation formula is a simple 
consequence of elementary manipulations with Fourier series and asserts 

00 °° 
that E <t>(n) = E fal-im). Now if </>(*) = e~°*2, it is easy to com-

rt= - oo n- - oo 
pute that <t>(y) = y/—e(~y2)/4a so that the Poisson summation formula yields 

oo r—* oo 

E e~an2 = V~ 2 e(-,r2rt2)/0. This is valid for complex values of a 
/ ! = - o o a n= - o o 

having positive real part, and making the substitution a = - mz yields the 
identity 

oo / ƒ oo 
E e*in2z = y/- E e<-™2>'* 

/ ! = - 0 0 £ « = - 0 0 

00 

for all z in the upper half-plane. Setting 6(z) = E e*'"2", this identity 
« = - 0 0 

may be written as 6(z) = — ) , a relation found by Jacobi and 

sometimes called the Jacobi inversion formula. Using the Jacobi inversion 
formula and the fact that d(z + 2) = 6(z), it is possible to show that for k = 
1, 2, • • • , 04* is "almost" a modular form—specifically that it is a mod­
ular form of weight k not for the whole "modular group" of all 2 x 2 in­
teger matrices (?£) with ad - be = 1 but for the subgroup T2 of all (?S) with 
a and rf odd and b and c even. On the other hand it is an immediate conse-

irinz quence of the definitions that 04k(z) = ( E e*
in2zV* = E r4k(n)e 

\ / i = - 0 0 / /?= 1 

so that the Fourier coefficients of this "almost modular form" are the 
representation numbers for sums of squares. To get actual theorems like 
Jacobi's by this route, the theory of Eisenstein series and their Fourier coef­
ficients has to be extended to modular forms of "higher level" as was done 
byHeckeinl927. 

It is interesting to compare the role of the Poisson summation formula in 
the above considerations with its use in establishing the quadratic reciproc­
ity law via the determination of the sign of a Gauss sum (see section 6). It is 
also interesting to note that Jacobi and Dirichlet, who introduced analysis 
into number theory in such different ways, were almost exact contemporar­
ies and also very good friends. 

Thirty years after the appearance of Jacob s 1829 memoir on elliptic 
functions, Riemann (1826-1866) published a sh< rt note giving a still differ­
ent application of the theory of functions of a c >mplex variable to number 
theory and providing an important connecting link between the ideas of Ja­
cobi and those of Dirichlet. Recall that in the mid-eighteenth century Euler 
proved that the sum of the reciprocals of the primes diverges by considering 
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1 °° 1 
the identity n —= 2 — for real values of the variable greater than 1, 

p j i_ /7 = i n 
Ps 

and that Dirichlet in 1837 extended Euler's ideas to the primes in an arith­
metic progression. Riemann had the idea of obtaining more refined infor­
mation about the distribution of the primes by considering Euler's function 

00 j 

E — = f (s) for complex values of s. (The notation f (s) is due to Rie-
n= 1 n 
mann.) It is evident that the series converges absolutely and uniformly in the 
right half-plane a > 1 where s = a + h and defines an analytic function 
there. Riemann went further, however, and showed that f could be contin­
ued to be analytic over the whole complex plane except for a first order pole 
at s - 1. Moreover, he found a simple functional equation connecting the 
values of f in the half-plane a > j with those in the half-plane a <—. It 

. f(5)iW2) r(i - s ) r ( ( ^ ) . T, . c , , n . 
reads /2— = —— r^u i— where r is Euler s well known gamma 
function. The gamma function is easily seen to be analytic in the entire com­
plex plane except for simple poles at - 1 , - 2 , - 3 , • • • and to have no 
zeros. The significance of this identity is in the information it provides 
about the zeros and poles of f. The product formula £(s) =11 — im-

ps 

plies that there are no zeros or poles in the half plane a > 1, and Riemann's 
functional equation allows one to conclude a) that the zeros and poles in the 
half plane a < 0 are the poles and zeros of T and b) that the poles and zeros 
in the "critical strip" 0 < a < 1 are symmetrical about the center line. Thus 
f in addition to having a unique pole at s = 1 has no zeros outside the clos­
ure of the critical strip except for simple ones at 0, — 1, — 2, • • • . Since a 
function analytic except for poles (and well behaved at oo) is almost deter­
mined by its zeros and poles, it is of interest to know more about the loca­
tion of the unknown zeros inside and on the boundary of the strip. 
Riemann's famous unproved conjecture asserts that they all lie on the center 
line a = 1/2. The much weaker result, that there are no zeros on the line a 
= 1, was proved independently by Hadamard (1865-1963) and de La Val­
lée-Poussin (1866-1964) in 1896 and used by them to prove another of Rie­
mann's conjectures.2 This is the celebrated prime number theorem, which 

asserts that l i m ^W ogx = j w h e r e ^/x\ j s ̂ Q number of primes less 
X-+O0 X 

than or equal to x. 
One of the two proofs that Riemann gave of his functional equation ex­

hibits it as a corollary of Jacobi's inversion formula and hence of the Pois­
son summation formula. Moreover, the connection between the functional 
equation and Jacobi's formula is provided by the so-called Mellin trans-
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form. This in turn is just the analytic continuation of the Fourier trans­
form applied to functions on the multiplicative group of all positive real 
numbers. 

11. THE EMERGENCE OF THE GROUP CONCEPT 

While a modern mathematician looking back can see the pervasive role of 
group theory in the mathematics of the nineteenth century, this role was 
quite invisible to the mathematicians themselves until very late in the cen­
tury. Until the end of the 1860s, group theory was the theory of finite per­
mutation groups and its only application was to the theory of equations. Al­
though Feit [5] prefers to regard Cauchy as having founded group theory in 
1815, one can make a case for Lagrange's having done so forty-five years 
earlier. While Lagrange did not have the group concept — not even that of a 
group of permutations — he was the first to realize the significance of the 
study of permutations of the roots for the theory of equations. Moreover, 
his long memoir on the theory of equations published in 1770 stimulated the 
later work of Cauchy and Galois and contained in essence the proof of what 
is known today as Lagrange's theorem. This is the theorem that the order of 
a subgroup of a finite group necessarily divides the order of the group. The 
main purpose of Lagrange's memoir was to study systematically the various 
methods that had been found for solving polynomial equations of the sec­
ond, third, and fourth degrees, to understand why they worked and what 
stood in the way of extending these methods to equations of the fifth and 
higher degrees. He found that the known methods could be understood in a 
unified way by considering what happened to rational functions of the roots 
when they were permuted amongst themselves. Lagrange's analysis gave 
strong indications that there was a difficulty in principle in solving fifth-de­
gree equations in the same sense that this was possible for equations of low­
er degree — namely by formulas involving only rational operations and the 
taking of roots. However, an actual proof of the impossibility of such a so­
lution was first given by Ruffini (1765-1822) in 1813. Abel gave another 
proof in 1824 without knowledge of Ruffini's work. Both men had read La­
grange's paper and were influenced by his ideas. Cauchy also read La­
grange's paper but was influenced in another way. In 1815 he introduced 
the concept of a group of permutations and in a series of papers developed 
some of the elementary theory of such groups. He is responsible for the no­
tions of subgroup, transitive group, and conjugate elements, and he made 
an attempt at classifying his groups. 

The first man to make really fundamental progress using the group con­
cept was E. Galois (1811-1832), who combined the ideas of Lagrange, 
Cauchy, and Abel to produce a beautiful general theory explaining in terms 



582 G. W. MACKEY 

of group theory just why some equations are solvable in terms of radicals 
and others are not. He distinguished a certain subgroup of the group of all 
permutations of the roots of an equation by the symmetry properties of its 
elements. This group is now called the Galois group of the equation, and 
Galois showed that the solvability of the equation depends completely on 
the structure of the Galois group G. The equation is solvable if and only if 
there exists a family N0GNiGN2' * * Nk = G of subgroups such that Nj is 
normal in Nj+i for y' < k and the quotient group N^/Nj is abelian. The con­
cept of a normal subgroup and of a quotient group are due to Galois — and 
so is the word group. Galois wrote up his work for publication rather hur­
riedly just before engaging in the duel which was to take his life. His concise 
exposition of very original ideas was difficult for many to follow, and for 
this and other reasons publication was delayed for many years. The paper 
did not appear until 1846. 

Kronecker (1823-1891) seems to have been the first to understand 
Galois's ideas thoroughly enough to carry them further. He published on 
the subject as early as 1853. His first really striking achievement, however, 
was his use of Galois theory to give a more perspicacious proof of an aston­
ishing discovery of Hermite. Hermite (1822-1905) became interested in the 
theory of equations at an early age and, like Ruffini and Abel before him, 
succeeded in proving the impossibility of solving fifth-degree equations by 
radicals after reading Lagrange's memoir of 1770. Later he became a close 
student of the work of Abel and Jacobi on elliptic functions and in 1858 
blended his two interests by showing that the roots of the general equation 
of the fifth degree could be expressed in terms of the coefficients if one used 
certain transcendental functions arising in the theory of elliptic functions 
and related to modular forms. Kronecker not only showed how to prove 
and understand this result, using Galois theory, but went on to study in 
depth the intricate relationships that exist between groups, polynomial 
equations, and elliptic functions. 

The concept of an abstract group was formulated in 1854 by Cayley 
(1821-1895), but until around 1870 group theory remained a very specialized 
topic, known and understood by relatively few mathematicians and having 
the theory of equations as its only significant application. The first exposi­
tion of the theory to occur in a textbook appeared in 1866 as a section in 
Serret's Cours d'Algèbre Supérieure. The first book to be completely de­
voted to group theory was Jordan's (1838-1922) very influential Traités des 
substitutions et des equations algébriques, published in 1870. Almost simul­
taneously with the appearance of Jordan's comprehensive treatise, the 
scope of group theory began to increase dramatically as a consequence of 
the activities of two young mathematicians just beginning their careers. 
Sophus Lie (1842-1899) began in 1869 to study continuous groups with a 
view of doing for differential equations what Galois had done for algebraic 
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equations. In 1872 Felix Klein (1849-1925) devoted his inaugural lecture as a 
professor at Erlangen to announcing his celebrated program for unifying 
geometry through group theory and soon was developing the ideas of Her-
mite and Kronecker into an elaborate study of the interplay between dis­
crete groups (both finite and infinite) and the theory of functions of a com­
plex variable. We have already mentioned (see section 10) Klein's connec­
tion with the theory of modular forms. The first systematic treatment of 
this theory occurs in the thesis (published in 1881) of Klein's student Hur-
witz (1859-1919) and is based quite directly on ideas of Klein and Dedekind 
published in the late 1870s. The so-called modular group of all matrices (?S) 
with integer coefficients and determinant one could now of course be recog­
nized and dealt with as a group. Above all, however, Klein was enthusiastic 
about the importance, unifying power, and wide applicability of group the­
oretic ideas and viewpoints. Being an energetic organizer and proselytizer 
by temperament, he did as much as or more than Jordan's book in 
spreading and popularizing group theory and the group concept. 

After 1872 group theory developed rapidly in many directions, and math­
ematicians slowly became more and more group-conscious. An early devel­
opment in the latter direction was the realization that Gauss not only had 
been working with finite commutative groups in his composition of quad­
ratic forms, but in effect had proved that every such group is a direct prod­
uct of cyclic groups. Deeper structure theorems for finite groups began to 
be found, beginning with the important Sylow theorems in 1872, and by 
1897 Burnside (1852-1927) was able to publish a book on finite groups alone 
going far beyond the 1870 book by Jordan. Lie worked out his ideas on con­
tinuous groups between 1869 and 1884, and (with the collaboration of En-
gel) presented them in a three-volume treatise, the final volume of which ap­
peared in 1893. Lie's central concept — that of the Lie algebra of a continu­
ous group — made it possible to reduce many questions about the group 
(more precisely about its local behavior) to purely algebraic questions about 
the Lie algebra. In his thesis of 1894 E. Cartan (1869-1951) corrected the 
work of Killing (1847-1923) published between 1888 and 1890, and thereby 
gave a complete classification of all "simple" Lie algebras over the complex 
numbers. Not quite a decade later he found the corresponding classification 
for real Lie algebras. Klein's earlier work on discrete groups and complex 
variable theory led to his celebrated book of 1884, Vorlesungen Uber das 
Ikosadeder und die Auflösung der Gleichung vomfünften Grade, and his 
two volume treatise with Fricke, Vorlesungen Uber die theorie der elliptis-
cher Modulfunktionen, published in 1890 and 1892. In 1881 a formidable 
rival to Klein appeared in the person of a young Frenchman named Henri 
Poincaré (1854-1912) who at that time began to develop his ideas on what 
are now called automorphic functions. Inspired by earlier work of Fuchs 
(1833-1902) and Schwarz (1843-1921) on the inverse functions of solutions 
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of second order differential equations, Poincaré was led to consider func­
tions invariant under much more general discrete groups of two-by-two ma­
trices than the subgroups of finite index of the modular group. Klein had 
been led in the same direction by his studies of Riemann's work on integrals 
of algebraic functions, and the final theory is a result of their combined ef­
forts. Klein's version of the theory appeared in 1897 and 1901 in another 
two-volume treatise co-authored with Fricke. While the theory of auto-
morphic functions was developing, infinite discrete groups appeared in a 
rather different connection. Their relationship to earlier studies in crystal­
lography was realized, and with this application in mind Federov 
(1853-1919), Schoenflies (1853-1928), and Barlow (1845-1934) independent­
ly classified the so-called "space groups." A quarter of a century after 
Klein's famous inaugural lecture, group theory was a well established sub­
ject with lengthy treatises devoted to its various aspects. 

12. INTRODUCTION TO SECTIONS 13-16 

The group theoretical nature of expansions in Fourier series could not 
very well have been recognized until Jordan's book and Klein's missionary 
activities had had time to do their work, that is, until the very end of the 
nineteenth century. It was only in 1882 that Weber (1842-1913) formally de­
fined the character notion for abstract finite commutative groups. Actually 
another three decades were required. The delay is not difficult to under­
stand and may be attributed to the fact that (in spite of the efforts of Klein) 
analysts and mathematical physicists resisted thinking in group theoretical 
terms until well into the twentieth century. Moreover, noticing that the 
functions x — einx are group characters might have seemed of minor interest 
unless it also occurred to one to seek non-commutative analogues of these 
characters and so extend the scope of harmonic analysis. What actually 
happened was that a non-commutative extension of group characters was 
discovered in 1896 in a purely algebraic context. It was studied purely alge­
braically for over a quarter of a century and then extended to compact Lie 
groups. Specialization to the one-dimensional torus group made the connec­
tion obvious. 

Fredholm's work on integral equations in 1900 and the introduction of 
the Lebesgue integral in 1902 inspired and made possible the modern L2 the­
ory of Fourier series and integrals as well as the spectral theory of self-ad­
joint and unitary operators in Hubert space. This development took place 
more or less simultaneously with that described in the preceding paragraph 
and was destined to be blended with it in the general theory of unitary group 
representations, which emerged later. Although group theory played no role 
as such, one could see looking back that the work of Hubert and his stu­
dents on spectral theory (augmented by later work of Stone and von Neu­
mann) was equivalent to a very thorough and complete reduction theory for 
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unitary representations of the additive group of the real line. Moreover, 
when properly formulated, this reduction theory turned out to have an es­
sentially verbatim generalization to arbitrary locally-compact commutative 
groups. 

Before these two lines of development could be blended as indicated, they 
both found extensive applications to physics in connection with the marvel-
ously effective and subtle refinement of classical mechanics known as quan­
tum mechanics. Quantum mechanics emerged between 1924 and 1927 after 
a quarter-century of confused, inconsistent, and semi-successful attempts to 
deal with the anomalies that arose when one attempted to explain phenome­
na by applying classical mechanics to the atoms of which matter was sup­
posed to be composed. It seems almost miraculous that two sets of neces­
sary and appropriate mathematical tools (later to be seen as parts of one 
whole) were being independently forged just as the need for them was aris­
ing. 

Quantum mechanics not only provided a rich source of applications for 
the mathematical developments of the three preceding decades but also in­
spired and strongly influenced the unified theory to which they led. Before 
giving details, I shall devote the next three sections to independent discus­
sions of the three components, beginning with a section on physics and pro­
ceeding through spectral theory, etc., to non-commutative characters. 

13. THERMODYNAMICS, ATOMS, STATISTICAL MECHANICS, 
AND THE OLD QUANTUM THEORY 

One of the more striking aspects of nineteenth-century physical science is 
the extent to which profound relationships between apparently independent 
phenomena were discovered. In earlier sections I have already mentioned 
the relationship between chemistry and electricity, between electricity and 
magnetism, and between electromagnetism and light. Another and by no 
means the least important was suggested at the turn of the century by work 
of Rumford (1753-1814) and Davy (1778-1829), but only became worked up 
into an exact quantitative theory around 1850. This is the relationship be­
tween mechanics and heat, whose principal features constitute the first and 
second laws of thermodynamics. Black's distinction between temperature 
and quantity of heat and his concept of specific heat (see section 7) de­
pended on the (approximately verifiable) notion that heat behaves in many 
respects like a fluid and that when a hot body cools down because of contact 
with a colder one, the quantity of heat lost by one equals the quantity 
gained by the other. There is in effect a law of conservation of heat. In me­
chanical processes where there is "friction," however, heat seems to be cre­
ated out of nothing, and when one deals with expanding gases, heat seems 
to disappear without reappearing elsewhere. Moreover, the conservation 
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law for mechanical energy implied by Newton's laws also seems to fail when 
bodies change temperature because of friction or the expansion and con­
traction of gases. 

The first law of thermodynamics is in essence the statement that these two 
failures are mutually self-correcting. The quantity of heat that appears or 
disappears is directly proportional to the amount of mechanical energy that 
disappears or appears. There is a so-called "mechanical equivalent of heat" 
and, while neither mechanical energy nor quantity of heat is conserved by it­
self, there is a conservation law for the sum of the mechanical energy and 
the mechanical equivalent of the quantity of heat. While the existence of a 
well defined mechanical equivalent of heat was suggested by the experi­
ments of Rumford and Davy, it did not become an accepted part of physics 
until Kelvin (1824-1907) drew attention to very careful measurements made 
by Joule (1818-1889) around 1840, and Helmholtz (1821-1894) published an 
influential paper in 1847. Helmholtz generalized the observation that heat 
and mechanical energy can be converted into one another, pointing out that 
they can be converted into other things involving electricity, chemistry, etc., 
as well, and proposing a universal energy conservation law. (Similar ideas 
were expounded five years earlier by J. R. Meyer (1814-1878), but Helm­
holtz was more detailed, specific, and persuasive.) 

The second law of thermodynamics is more subtle and is concerned with 
certain limits on the possibility of converting energy in the form of heat 
back into mechanical energy. It has its origin in a paper on the efficiency of 
heat engines published in 1824 by S. Carnot (1796-1832). While Carnot had 
the necessary key ideas, he could not express them clearly because he did not 
think in terms of conservation of energy and along with Lavoisier thought 
of heat as an element. Carnot's paper was forgotten for a quarter of a cen­
tury, but Kelvin called attention to it in 1848, and by 1850 Kelvin and Claus-
ius (1822-1888) had combined its ideas with those of Joule and Helmholtz to 
formulate the second law as we understand it today. 

In understanding this law it is useful to realize that it has two aspects. On 
the one hand it is a general principle which is a bit awkward to formulate in 
terms that are both sufficiently general and sufficiently precise. On the 
other hand it is a collection of exact laws about the properties of matter that 
can be deduced as consequences of this general principle. Consider for ex­
ample unit mass of some gas (not assumed to be "perfect" but assumed in­
capable of chemical change) enclosed in a container of variable volume V. It 
follows from the laws of continuum mechanics (see section 7) that at each 
temperature T there is a function V — p(V9 7) characteristic of the gas in 
question, and giving the pressure as a function of the variable volume. In 
addition it follows from the first law that there is a function Uof Kand T 
defined up to an additive constant by the formulae C¥ =T--^Franc* Cp 

A 01 
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a = — L - f p + ̂ V ^ / ^ J which is called the internal energy function. 

Here Cv and Cp are the specific heats at constant volume and constant pres­
sure respectively, and X is the conversion factor from heat units to mechani­
cal energy units. Until one takes the second law into account there are no re­
strictions on 1/and/7. There is no a priori reason why there should not exist 
a gas having two more or less arbitrary functions as t/andp. However, for 
every known gas there is a relationship between U and p which holds with 
great exactitude. This relationship consists in satisfying the partial differen­
tial equations equivalent to the existence of a function 0 such that 

—£77?— is a n exact differential. The function 0 is uniquely determined 

up to a multiplicative constant and is the same for all gases. One can rede­
fine temperature so that 0(7) s Tand so obtain the "absolute" tempera­
ture scale introduced by Kelvin. The connection of this very useful fact 
about gases to the principle known as the second law of thermodynamics is 
as follows: If one could discover a single gas for which the relationship did 
not hold, one could use this gas in a manner described by Carnot to take 
heat energy from a lower to a higher temperature without at the same time 
turning any mechanical energy into heat. One could thereby turn heat 
energy back into mechanical energy without restriction and so construct a 
"perpetual motion machine of the second kind.'* The various formulations 
of the second law are equivalent ways of asserting the impossibility of such 
a machine. 

In the case of our chemically stable gas, the exactness of =^— 

(where T is now the absolute temperature) implies the existence of a func­
tion S of Kand Tsuch that dU + pdV = TdS. S is determined up to an ad­
ditive constant and is called the entropy function for the gas. Let 
F = U -TS. Then F is uniquely determined by the gas up to an arbitrary 
linear function of T. Moreover, straightforward calculations show that the 

dF functions U and p can be computed from F by the formulae p = -577, 
dF U = F - T(^=). Thus it suffices to know the single function F to know of 

both t/and/7 and hence all mechanical and thermal properties of the gas. Its 
value at any Kand Tis called the free energy of the gas in the state defined 
by Kand T. 

Exactly the same ideas can be applied to liquids and solids and more im­
portantly to relationships between different substances or substances in dif­
ferent states of aggregation; as in chemical reactions, evaporation, and 
melting. In every case the impossibility of a perpetual motion of the second 
kind can be shown to imply exact quantitative relationships between differ­
ent experimentally measurable quantities and thus to cut down enormously 
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on the amount of experimental work that has to be done. The pioneer in ap­
plying thermodynamics to chemistry was J. Willard Gibbs (1839-1903). 

Throughout most of the nineteenth century it was a moot question 
whether matter is best conceived as a continuum or as built out of discrete 
point-like entities called atoms. In 1803 John Dalton (1766-1844) had shown 
how the laws of definite proportions and multiple proportions in chemistry 
could be explained in terms of atoms and molecules and introduced the con­
cepts of atomic weight and molecular weight. While Dalton's view soon be­
came the accepted one in chemistry, and the experiments of Faraday on 
electrolysis in the early 1830s suggested that there were also atoms of elec­
tricity, many scientists continued to doubt the real existence of atoms of any 
kind. They preferred to think of them as fictional entities useful in organiz­
ing the facts of chemistry, but otherwise not to be taken seriously. It was 
difficult to decide the matter experimentally because the laws of continuum 
mechanics were the same whether one postulated a continuum or a suffi­
ciently fine particle structure. Indeed, a popular method for deriving the 
partial differential equations of motion of a continuum was to begin with 
an atomic model and pass to the limit as the atoms became lighter and more 
numerous. 

The position changed radically, however, in the final decades of the nine­
teenth century, when serious quantitative efforts were made to explain heat 
as mechanical energy due to the motions of the atoms and an algorithm was 
found for computing the free energy function of an arbitrary gas (or other 
homogeneous matter) from the kinetic and potential energy functions for 
the mechanical system defined by its constituent atoms. This "statistical 
mechanics" evolved from work on the kinetic theory of gases published by 
Maxwell (1831-1879) in 1859 and Boltzmann (1844-1906) in 1868 and was 
extensively developed by Boltzmann and Gibbs. The fundamental result can 
be derived by several probabilistic arguments, none of which is entirely sat­
isfactory, and can be stated very simply. Let Ö denote the "phase space" of 
the underlying atomic system, that is, the space of all possible position and 
momentum coordinates of the constituent atoms, and let H denote the real 
valued function on Ö giving the total energy of the system in terms of the 
positions and momenta of its atoms. Then the free energy of the substance 
as a function of Kand Tis -kT log $• ̂  -J e'H,kTdqx • • • dq3n dpx- • • dp3n 

where the qy and the/7, are the position and momentum coordinates of the n 
atoms and k is a universal constant known as Boltzmann's constant. The 
dependence on V results from the dependence of H on V. One of the in­
teresting elementary consequences of this algorithm is obtained by thinking 
of a solid as a set of n atoms vibrating about their equilibrium positions in 
some regular lattice. To the extent that the vibrations are small enough so 
that the equations of motion may be taken to be linear, one can conclude 
that the specific heat at constant volume is independent of the temperature 



HARMONIC ANALYSIS AS EXPLOITATION OF SYMMETRY 589 

and equal to 3nk. This implies that the specific heat of unit mass of a 
substance is inversely proportional to the atomic weight — a fact discovered 
empirically by Dulong and Petit in 1819. It also implies that in the limit of 
infinitely many zero-mass atoms, the specific heat per unit mass will be in­
finite. The continuum limit of statistical mechanics gives absurd results it if 
can be said to exist at all. 

While the result just described could be considered almost as an experi­
mental verification of the existence of atoms, the disbelievers had a way 
out. It was possible to object to statistical mechanics on at least two 
grounds. First of all, the arguments leading to the algorithm for computing 
the free energy from H were far from compelling. Second and even more 
seriously, the results of this calculation often gave results in pronounced 
and inexplicable disagreement with experiment. For example, the specific 
heats of solids are not always independent of the temperature. Indeed, if 
one goes to low enough temperatures they never are. Instead, one finds a 
monotone increase to a constant asymptotic value and it is only at this high 
temperature limit that the law of Dulong and Petit applies. Similar difficul­
ties were found with the specific heats of gases having polyatomic mole­
cules. It was as though some degrees of freedom were frozen at low temper­
atures. Gibbs and Boltzmann fought a losing battle against their critics and 
became quite discouraged. Unfortunately they both died in the early twen­
tieth century just before being vindicated by Einstein's application of quan­
tum ideas to the theory of specific heats. It is rather ironic that J.J. Thom­
son's discovery of the atom of negative electricity at the very end of the cen­
tury was particularly discouraging to Gibbs. It suggested that an atom of 
matter was a complex object with many degrees of freedom. Since none of 
these appeared to have any influence on specific heats, the ideas of Gibbs 
and Boltzmann seemed more inadequate than ever. 

The immediate stimulus leading to the theory that was to rehabilitate sta­
tistical mechanics and revolutionize physics was an anomaly closely related 
to the failure of the Dulong and Petit law to hold at low temperatures. With 
the development of Maxwell's ideas about the identity of light waves with 
oscillating electric and magnetic fields (see section 9), it became clear that 
one could think of an electromagnetic field as a generalized oscillating con­
tinuum and apply the concepts of dynamics and even thermodynamics to its 
study. In particular one could try to understand the relationship between 
heat and light suggested by the fact that hot objects are "red hot" at one 
temperature and "white hot" at a higher temperature. The precise problem 
actually considered was that of a perfectly reflecting enclosure with walls at 
a fixed temperature and electromagnetic radiation being reflected back and 
forth across it. One could let some of the radiation escape through a small 
hole, pass it through a spectroscope, and study the distribution of energy 
across the spectrum. There is a characteristic distribution at each tempera-
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ture that is independent of the material of which the enclosure is made. The 
problem was to explain this distribution theoretically. 

Using the linearity of the equations of motion, it is not difficult to show 
that the equivalent dynamical system is equivalent in turn to a system con­
sisting of a countable infinity of independent harmonic oscillators of natur­
al frequencies vu v2, • • • where the vs are uniquely determined by the shape 
and size of the container. In a state of the system in which theyth oscilla­
tor has energy Ej9 the radiation with wave length between X and X + AX will 
have an energy E ' Ej where the sum E ' is extended over ally with vj between 

Q 

c/X and x , AX and c is the velocity of light. The problem reduces to com­
puting the Ej as a function of the temperature, and this can be dealt with (as 
Rayleigh [1842-1919] saw in 1900) by applying the fundamental algorithm 
of statistical mechanics. In fact, except for having infinitely many oscilla­
tors instead of 3/*, the dynamical system has the same structure as the one 
that arises in computing the specific heat of a solid made up of n atoms. 
One finds easily that the energy of theyth oscillator is independent of vj and 
equal to kT where k is Boltzmann's constant. Ignoring the fact that 
£ Ej is predicted to be infinite (classical statistical mechanics and classical 
j 

continuum mechanics are incompatible as indicated above), one immediate­
ly deduces that the amount of energy in the part of the spectrum with wave 
length between X and X + AX is just £7* times the number of vàsuch that c/vj 
is between X and X + AX. When the container is a rectangular parallele­
piped, a simple application of Fourier analysis permits an explicit determi­
nation of the possible vj and the conclusion that for a sufficiently large vol­
ume V there is an approximately continuous distribution with density 
—3- V. This immediately implies Rayleigh's law stating that the energy den­
sity in the spectrum at wave length X is 

87r(f)» ± fZc. SirkTV 
c3 Kiyd\^\)" X4 • 

While Rayleigh's law was in gross disagreement3 with experiment for small 
X (experiments did not suggest an infinite total energy), agreement was good 
for large X. More precisely agreement was good when 7X was large. Thus 
the range of good agreement increased with temperature. Once again statis­
tical mechanics seemed to be valid only at sufficiently high temperatures. A 
few years earlier Wien (1864-1928), with some theoretical justification, had 
found that one could fit the data well for small Xrwith an empirical formu­
la of the form _ where A and b are constants. 

X5 

Quantum theory began in 1900 when Max Planck (1858-1947) found a 
startlingly simple but rather mysterious argument leading to a reconciliation 
of the contradictory formulae of Rayleigh and Wien. If one notices that 
Wien's formula differs from Rayleigh's only in replacing \Tbybe'b/XT, it is 



HARMONIC ANALYSIS AS EXPLOITATION OF SYMMETRY 591 

easy to guess Planck's formula. Indeed Ux is very close to e~1/x when x is 

small, and very close to x when x is large. Planck's formula may be obtained 

from Rayleigh s by writing — ^ — = — r ^ — and replacing XF by 
he K K 

b/eb/XT- 1 where b = -j- and h is a new constant of nature introduced by 
Planck. This is not how Planck obtained his formula, however, and what is 
really significant and interesting is the physical hypothesis that led him to it. 

Consider the fundamental algorithm of statistical mechanics. It may be 
written in the form F - -kT log P where P = J • ^ * J e~HfkT dqt • • • 
dq3n dpi • • • dp3n and P = e~F/kT is the so called partition function. The 

00 

formula for P in terms of H may be rewritten as J e~x,kT d(3(x) where /3 is the 
- 00 

measure on the real line such that j3 of any interval ƒ is the dqu • • • , dp3m 

measure of H~\I). When the dynamical system is a harmonic oscillator of 
frequency J>, one computes easily (since 0 is two-dimensional) that @(I) is 
just - times the length of I when I lies in x > 0 and (3(- oo,0) = 0. Thus 
P(T) = \"e~x/kT— = — . It follows at once from the thermodynamical rela-

v v P'(T) 
tionship between energy and free energy that E(T) = kT2 v_ /, so that in 
the case of a harmonic oscillator, E(T) = AT as stated earlier. Suppose now 

dx that the measure j3 = — is replaced by a discrete approximation to it. 

Choose an arbitrary number h and let us replace j3 by a measure &h concen­
trated at and having the value h at each of the equally spaced points 0, a, 2a, 
3a, • • • . An interval with n such points will have $h measure nh and j3 
measure between ^ and—. Thus j(3 and jS/, will agree asymptotically if 

" " 00 

and only if a = hv. Using & instead of 0, one finds Ph(T) = £ e-*«*/*r _ 
h hv " = 0 

I _£-*,/*rand Eh{T) --^HPFZ\ • Of course as /i tends to zero so that &h ap­
proaches 0, Eh{T) has kT as a limit as one would expect. However, if one 
stops short of zero at just the right value (Planck's constant) one gets a 
formula for Eh(T) which, when substituted for kT in Rayleigh's derivation, 
gives the correct distribution law for all Tand X. 

This is not of course how Planck proceeded.4 He couched his argument in 
more physical terms. In essence, however, the argument was the one I have 
given. Planck did not intend to stop short at a non-zero value of h. He 
found it convenient to follow the time-honored custom of beginning his 
analysis with a discrete approximation and meant to pass to the limit of zero 
h. It is fortunate for physics that he was alert enough to notice that the right 
answer fell out before the limit was reached. 

As Einstein (1879-1955) pointed out in 1907, the failure of the law of Du-
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long and Petit at low temperatures can be understood in exactly the same 
kT 

way. Replacing — by 1 - e~
hv,kT as the partition function of a harmonic os­

cillator of frequency v, one finds that the specific heat of an n atom solid is 
3/7 d hv 

not 3nk but £ -4̂ r »,/«• 1 • E a c h t e r m t e n d s t 0 k a s ^approaches oo, 
y=i ai e J — l 

but its distance from the limiting value k depends upon T/vj. Thus the high 
frequency components will be suppressed at low temperatures. Some de­
grees of freedom will indeed be "frozen." 

In spite of these successes, the physical significance of the argument re­
mained completely obscure. To make any sense at all out of it one had to as­
sume that for some mysterious reason an oscillator of frequency v could not 
occupy the whole continuum of energy states previously thought possible. It 
was restricted to energies of the form nhv where n is a non-negative integer. 
It was to be a quarter of a century before this mysterious quantization was 
to be "understood" in the sense of being a consequence of the laws of a new 
mechanics — the subtle refinement of classical mechanics known as quan­
tum mechanics. In the meantime a number of other cases were found in 
which it was possible to "explain" physical phenomena and derive formu­
lae agreeing with experiment by arbitrarily "quantizing" energy or momen­
tum. Perhaps the most striking examples are Einstein's explanation of the 
photo-electric effect in 1906 and Bohr's (1885-1962) explanation of the 
spectrum of the hydrogen atom in 1913. The body of results so obtained be­
tween 1900 and 1925 is sometimes referred to as "the old quantum theory." 

14. THE LEBESGUE INTEGRAL, INTEGRAL EQUATIONS, AND THE 
DEVELOPMENT OF REAL AND ABSTRACT ANALYSIS 

In 1900 I. Fredholm (1866-1927) announced an interesting new approach 
to the theory of certain linear integral equations, and in the winter of 
1900-1901 this work was reported upon in the seminar of David Hubert 
(1862-1943). In 1902 the thesis of H. Lebesgue (1875-1941) appeared. It 
contained a theory of measure and integration which came to be more or 
less universally accepted as the appropriate one for most purposes. Both 
events had their roots in the work of the early nineteenth century on meth­
ods for dealing with the partial differential equations of mathematical phys­
ics (see sections 8 and 9), and both were of fundamental importance for the 
future development of analysis. 

Lebesgue's thesis was the culmination of a long development which I 
shall not attempt to trace in any detail. The failure of Fourier series to con­
verge everywhere for continuous functions having insufficient smoothness 
had led to much debate and soul-searching about the true nature of func­
tions and the best way of defining the definite integral. Well-known early 
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studies of the question were made by Cauchy in 1823 and Riemann in 1854. 
The problems involved led Cantor (1845-1918) to his general theory of sets 
in 1884-85 and to various attempts to measure their "size." The correct way 
of going about this was perceived by E. Borel (1871-1956) and briefly indi­
cated by him in 1898. Lebesgue developed Borel's ideas about measure and 
applied them to integration. For a full account, including the contributions 
of Jordan, Baire, and others, the reader may consult the recent book by 
Thomas Hawkins [<$]. 

This new flexible and much more general theory of integration had a con­
siderable impact not only on the theory of Fourier series (and integrals), but 
also on the theory of integral equations and probability theory. One highly 
unsatisfactory feature of the old theory of Fourier series was the lack of any 
necessary and sufficient conditions for a particular sequence of complex 
numbers to be the Fourier coefficients of a function in a certain class or vice 
versa. Already by 1907 this circumstance had been remedied by the beauti­
ful and important Riesz-Fischer theorem. This asserts that the mapping ƒ— 

5"~îo* f(x)e~inxdx sets up a one-to-one correspondence between all Lebesgue 
measurable complex valued functions ƒ on the interval [0, 27r] such that 
J *\f(x)\2dx < oo and all sequences {c„} of complex numbers such that 

00 00 1 _ 

£ \c„\2 < oo. In this correspondence E \cn\2 =-z- L \f(x)\2dx, 
n =-oo n=-oo Zit 
and one identifies two functions ƒ when they differ only on a set of 
measure zero. The interesting part, of course, is that every square summable 
sequence actually arises as a sequence of Fourier coefficients for some func­
tion, and this of course could not be true without including the quite general 
Lebesgue integrable functions. Actually Riesz and Fischer (who wrote inde­
pendent papers) proved a considerably more general theorem applying to 
orthogonal functions in general. Moreover, they made it clear that their re­
sult was an easy consequence of the central fact that the set of all square in­
tegrable functions is "complete" with respect to "mean convergence.'* 
Every sequence which is a Cauchy sequence in the sense of mean conver­
gence has a square integrable limit. The analogue for Fourier integrals was 
formulated and proved by Plancherel and published in 1910. 

A necessary and sufficient condition of equal importance but of a rather 
different character is due to G. Herglotz (1881-1953). If fi is any finite non-
negative measure on the interval 0 < x < 2-K (and one identifies 0 and 2TT), 
then one calls the complex numbers cn = c e~inxdyi(x) the Fourier coefficients Jo 
of fi. It is trivial to verify that the sequence n — c„ is positive definite in the 
sense that £ cn.mZnZm > 0 for every finite sequence Z_̂ , Z_f+1, • • •, Z0, Zu 

• • •, Z r of complex numbers. Conversely, as shown by Herglotz in 1911, 
every positive definite sequence is the sequence of Fourier coefficients for a 
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unique positive measure jt. The analogue for Fourier integrals was first 
stated and proved twenty-one years later by Bochner (1899—). 

Fredholm's work on integral equations was stimulated by slightly earlier 
work of Volterra (1860-1940), and this work in turn can be understood as 
the result of looking at Neumann's solution of the Dirichlet problem in 1870 
(see section 9) from a new point of view. This new point of view is of central 
importance in modern abstract analysis (functional analysis) and has be­
come so familiar that it is now hard to believe that it was startlingly new in 
1887. In that year Volterra began to publish a series of papers systematically 
developing a theory of functions in which the arguments need not be 
fc-tuples of numbers but may be other functions. In particular, he intro­
duced and stressed the point of view that when one performs an operation 
on a function which leads to a number (e.g., when one evaluates a direct in­
tegral), this is analogous to substituting a number in a formula to get an­
other number. He called such functions "functions of lines" — a term soon 
replaced by "functional." A closely related step, which became part of the 
same program, was to think of the operations of analysis such as differenti­
ation as again analogues of functions. In other words, one can have general­
ized functions in which the ranges as well as the domains are sets of func­
tions. These Volterra called operations or operators. 

Neumann had solved the Dirichlet problem by way of a preliminary re­
duction to a linear integral equation — for functions on the surface of the 
region in question. Then in 1896 Volterra studied a class of integral equa­
tions that could be solved by the same method. Moreover, he interpreted 
and clarified the method using his operator point of view. Let Tx(J)(y) 
= \y

a K(x, y)f(x)dx where K is a continuous function of two variables and a 
is a fixed constant. Then to solve the integral equation 

is to solve the operator equation ƒ = <p - TK(<P) = (/ - TK)v, and one has 
(ƒ - TK)(I + TK + 71 + • • ) = / where ƒ is the identity. 71 is an integral 
operator defined by a kernel Kny and 71 + 71 + • • • makes sense as the in­
tegral operator defined by Kx + K2 + • • • . Thus <p = (ƒ 4- 71 + 71 + 
' •*)ƒ = ƒ + TKl(J) + TK2(f) + • • • . Fredholm showed how to use analytic 
continuation to deal with more general cases in which I + 71 + 71 + • • • 
does not converge. The idea is that I - X71 will fail to have an inverse only 
at the zeros of a certain entire function 6, and (I - \TK)'lôf\) can be devel­
oped as an everywhere convergent power series in X. 

Fredholm's results were quite beautiful and interesting, but there is little 
doubt that their greatest importance lies in the fact that they inspired Hil-
bert to spend a decade making an intensive study of linear integral opera­
tors. Hubert's work on the subject was first published in a series of six arti­
cles between 1904 and 1910, and then again as a book Grundziige einer 
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allgemeinen Theorie der Linearen Integralgleichungen, which appeared in 
1912. Hubert concerned himself above all with the existence of eigenfunc­
tions and eigenvalues for his integral operators, that is, with functions ƒ and 
constants X such that T(J) = X/for the operators T. Moreover, he took an 
abstract algebraic approach, thinking of an integral operator as an infinite 
analogue of a matrix, and introduced the "Hilbert space" of all infinite se­
quences cu c2, • • • of complex numbers such that |ci|2 + |c2|

2 + • • • < » 
as the corresponding analogue of the space of all Ai-tuples of complex num­
bers. He made the connection with function spaces via expansions in sys­
tems of orthogonal functions and thereby inspired the work of Riesz and 
Fischer discussed above. 

In the purely algebraic case, a n w x « matrix au with av = Wjt was known 
to be "diagonalizable" in the sense that there exists a basis of mutally or­
thogonal eigenvectors for the operator defined by the matrix. Hilbert set 
out to generalize this result to infinite matrices in Hilbert spaces working 
with the quadratic form £ ayxpcj instead of the matrix itself. Assuming a^ 
= a,, and a strong continuity property called complete continuity, he was 
able to prove the obvious analogue of the algebraic result. Since many inte­
gral operators can be shown to be completely continuous, Hilbert's theorem 
had wide applicability to the differential operators that occur in mathemati­
cal physics. On the other hand, complete continuity is too strong a require­
ment for many purposes, and Hilbert's most striking achievement in this 
area is his formulation and proof (in the special case of a bounded self-ad­
joint operator) of what is today called the spectral theorem. From Hilbert's 
point of view, he found the analogue for a bounded quadratic form in infi­
nitely many variables of the classical theorem asserting that a linear change 
of coordinates reduces every quadratic form to a linear combination of 
squares. The difficulty produced by dropping the hypothesis of complete 
continuity is that sums have to be replaced by integrals. Anticipating later 
concepts one can say that, in effect, Hilbert showed that every bounded 
self-adjoint operator in Hilbert space can be decomposed as a "continuous 
direct sum" or "direct integral" of constant operators. The replacement of 
sums by integrals makes it difficult to attach a meaning to such concepts as 
the "multiplicity of occurrence" of an eigenvector and so to discuss "equiv­
alence" of operators or forms. This difficulty can be met, and a preliminary 
version of the resulting "spectral multiplicity theory" appeared in the 1907 
thesis of Hilbert's student Hellinger (1883-1950). Hellinger published an im­
proved version in 1909, and Hahn (1879-1934) showed in 1911 that further 
improvements and simplifications could be made by making systematic use 
of the theory of the Lebesgue integral. One usually speaks today of the 
Hahn-Hellinger theory. The modern theory of unitary group representa­
tions, which contains classical harmonic analysis as a very special case, may 
be regarded as a sort of blend of the spectral theorem combined with the 
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Hahn-Hellinger theory on the one hand and the group representation theory 
of Frobenius and Schur (see section 15) on the other. Thus this work of Hu­
bert, Hellinger, and Hahn is of the greatest importance for our main theme. 
I shall formulate their results more precisely in section 16. 

The work of Hubert and Lebesgue described above led naturally to a very 
fruitful approach closely allied to the operator point of view advocated and 
developed by Volterra twenty years earlier. This approach consists in look­
ing at sets of functions as infinite-dimensional analogues of Euclidean space 
with individual functions as "points." One can then think of convergence 
of functions in geometrical terms and apply one's geometric intuition to get 
new insights. The concept of an abstract metric space was introduced by 
Fréchet (1878-1973) in 1906. The following year Fréchet and E. Schmidt in­
troduced geometric language into the study of Hubert's sequence space, and 
Fréchet and F. Riesz (1880-1956) observed that the same language could be 
applied to the space of square summable functions. Indeed, the Riesz-Fis-
cher theorem implied that the two spaces were isomorphic. Between 1907 
and 1918 this geometric point of view was applied to a number of concrete 
function spaces different from Hubert space by several mathematicians, 
among whom the undisputed leader was F. Riesz. The modern axiomatic 
approach was started in 1922 by a paper of S. Banach (1892-1945). 

Concurrently with the discovery of the Riesz-Fischer theorem and the rise 
of the function space concept, another less abstract branch of analysis was 
developing out of applications of "summability" methods to the study of 
divergent Fourier series. The main initial stimulus was a paper by Fejér 
(1880-1957) published in 1904. Let S„ be the sum of the first n terms of the 

Fourier series of a function/. Fejér proved that —l- - converges uni­

formly to ƒ whenever ƒ is continuous, and in 1905 Lebesgue proved that if ƒ 

is measurable and such that { \f(x)\ dx < oo, then S l ( x ) + ' " + &(*) 

converges to ƒ(*) for all x except for a set of measure zero. Two years after 
that, Fatou (1878-1929) proved an analogue of Lebesgue's theorem using 
"Abel summability" instead of the "Cesarô summability" of Fejér and Le­
besgue. In Abel summability one replaces 

Si -f S2 + * * * + S„ nax + (n-\)a2 + - - - + an 

n n 
where S„ = at + • • • + a„ by ax + ra2 + • • • where 0 < r < 1 
and calls lim {ax + ra2 + • • •) the Abel sum if it exists. For Fourier 

00 00 

series of the form £ Cnein\ the Abel sum is Hm E cnreine = lim 
00 

E CrZn where z = reie. Thus Fatou's theorem implies that a measurable 
n = o 
function on the circle whose absolute value has a finite Lebesgue integral 
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and whose negative Fourier coefficients are zero is the set of boundary 
values of a function of a complex variable analytic in |z| < 1. A closely 
related corollary connects harmonic functions in the unit circle with ar­
bitrary measurable, absolutely integrable boundary functions. An impor­
tant new element was introduced in 1909 and 1910 when Hardy (1877-1947) 
and Littlewood (1885-1977) began to study what came to be called 
Tauberian theorems. These are theorems allowing one to deduce the con­
vergence of a series from its summability in various senses when appropriate 
auxiliary conditions are satisfied. Such a theorem was proved by Tauber in 
1897 under rather strong conditions. In the decade or so following 1910, 
Hardy and Littlewood collaborated in a series of papers that improved 
Tauber's theorem in a number of non-trivial ways. 

These Tauberian theorems proved by Hardy and Littlewood (with contri­
butions from other mathematicians as well) turned out to be of central im­
portance in applying Fourier analysis to number theory in a new way. Let 
n — <p(n) be a complex-valued function on the integers. The most general 
character on the additive group of all the integers is n — zn = rneind where 

00 

z * 0 and the "Fourier transform" of <p is E <p(n)zn. When \z I = 1 so that 
/?=-oo », 

the corresponding character is unitary, this reduces to_£ <f>(n)ein9, the func­
tion whose Fourier coefficients are the <p(n). Of course this latter function 
will not exist unless <p(n) — 0 as \n\ — oo.On the other hand, if p(n) = 0 for 

00 

n < 0 and <p(n) is not too badly unbounded as n -* oo, then L <p(n)zn = 
oo n— — oo 

£ <p(n)reine will be defined and analytic for all z with |z| < 1, and 

this analytic function may be regarded as an analytic continuation of the 
00 OO 

"non-existent" function £ <p(n)eind. Moreover, when £ <p(ri)eint does 
n= 0 n= 0 

exist, studying Abel summability and Tauberian theorems amounts to 
00 

studying the relationship of z — £ <p(n)zn to its boundary values. More 
generally, one can use similar methods to relate the asymptotic behavior of 
£ (p(n)zn as Id — 1 to the behavior of <p(n) for large n. For various func-
n = 0 
tions <p of number-theoretical interest, such as the number of partitions of 
n, one can show by direct arguments that the "dominant" singularities of 

00 

z — E <p(n)zn as \z \ — 1 are at points of the form e{2*ipUq where p and q are 
n — 0 

integers. Moreover, one can obtain quite precise information about the way 
oo 

in which E <p(n)rne{2iripn)/9 approaches oo as r tends to 1. Using this informa-
« = o 

tion, Hardy and his collaborators were able to apply Cauchy's theorem, 
Tauberian theorems, and delicate estimates to obtain useful asymptotic 
formulae for <p(n). The method is now known as the circle method. It was 
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used first by Hardy and Ramanujan (1887-1920) to study the number of 
partitions of n—the results being published between 1917 and 1919. Slightly 
later Hardy and Littlewood used it to study Waring's problem and in par­
ticular to obtain asymptotic formulae for the number of representations of 
n as a sum of a fixed number r of integer kth powers. They also showed that 
the prime number theorem of Hadamard and de la Vallée Poussin (see sec­
tion 10) is deducible from a Tauberian theorem. 

In 1914 Hardy introduced and studied a new class of functions—called 
Hp functions in his honor. If /?> 1, the class Hp consists of all analytic 
functions in | z\ < 1 have the property that \\f(rei0)\pd6 is bounded as a 
function of r. The study of this class was continued by F. and M. Riesz and 
led to a certain blending of function space ideas with those of the more con­
crete analysts such as Hardy and Littlewood. 

15. GROUP REPRESENTATIONS AND THEIR CHARACTERS 

In 1881 Weber defined a character of a finite commutative group G to be 
a complex valued function x on G such that x(xy) = X(*)x00 for all x and y 
in G. This definition was an abstract generalization of one given three years 
earlier by Dedekind in connection with his work on algebraic number the­
ory, which was inspired in turn by early work of Gauss and Dirichlet (see 
sections 6 and 12). While Weber's definition makes sense for arbitrary finite 
groups, it is more or less vacuous except insofar as the group has commuta­
tive aspects. Specifically, every character is identically one on the commuta­
tor subgroup and consequently the only characters not identically one are 
derived trivially from characters of commutative quotient groups. Group 
theory acquired a powerful new tool that was soon to become almost indis­
pensable when G. Frobenius (1849-1917) published a paper in 1896 showing 
that there is a natural generalization of the character notion that involves 
the whole group G in a significant and interesting way—even when G is 
non-commutative. Considering the impact that this generalization was to 
have on group theory, it is interesting to note that Frobenius and Klein were 
born in the same year. It is even more interesting that the new definition was 
more or less directly inspired by Dedekind and the needs of this work on al­
gebraic number theory. 

After Dirichlet's work of 1837-1840, the theory of binary quadratic forms 
was generalized in two different directions. On the one hand, the prelimi­
nary work of Legendre and Gauss on ternary quadratic forms developed in­
to a general theory of quadratic forms in n variables in the hands of Eisen-
stein (1823-1852), Hermite (1822-1905), and H. J. S. Smith (1826-1883). On 
the other hand, attempts to prove Fermat's "last theorem" and to general­
ize the quadratic reciprocity law led first Kummer (1810-1893) and then 
Kronecker (1823-1891) and Dedekind (1831-1916) to develop the theory of 
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algebraic number fields. The theory of binary quadratic forms is more or 
less equivalent to the special case of the latter theory in which the field is 
generated over the rationals by a root of a quadratic equation with integer 
coefficients. In that case the group of automorphisms of the field (the Ga­
lois group) is of order two and one can deal with it without thinking in 
group theoretic terms. More generally, a theory as complete as that of 
Gauss and Dirichlet is not available even today (except when the Galois 
group is commutative). It was in working out aspects of this still incomplete 
'theory (see section 19) that Dedekind was led to the problem that inspired 
Frobenius to introduce his "higher dimensional characters." Let G be a fi­
nite group of order h and let gx • • • gh be the elements. Let xgl * * * xgh be h 
independent variables parameterized by the elements of G and let d(Xi • • • 
xh) denote the determinant of the matrix | \xg.gj-i | |. Then 0 is a polynomial 
in h variables, which Dedekind called the group determinant. In a letter 
written to Frobenius in 1896 (and published in Dedekind's collected works), 
Dedekind states that many years earlier (around 1880) he had been led to 
study the group determinant through a consideration of the discriminant of 
an algebraic number field. He had soon discovered the interesting fact that 6 
factorizes into linear factors parameterized by the characters of G whenever 
G is commutative, and he had also factorized 0 for various special non-com­
mutative groups. But his attempts to generalize his theorem about commu­
tative groups to general non-commutative groups had failed, and one pur­
pose of his letter was to interest Frobenius in the problem (see Thomas 
Hawkins's article in this volume). 

Frobenius's response was prompt and effective. A correspondence en­
sued, and before the end of the year, Frobenius had published a paper on 
the theory of his new characters and another applying them to the solution 
of Dedekind's problem. Each Frobenius character x has a degree equal to 
its value at the identity element e, and it turns out that the distinct irreduci­
ble factors of 0 are parameterized by the Frobenius characters. Each factor 
has a degree equal to the degree of the corresponding Frobenius character 
and occurs with a multiplicity equal to this degree. 

Frobenius's original definition of character was a complicated one, which 
emerged from his analysis of Dedekind's problem. A year later, however, 
he showed that his definition is equivalent to another that is much simpler 
and more natural. Let us define an «-dimensional representation of the 
group G to be a homomorphism L of G into the group of all A? X n complex 
matrices of non-zero determinant. Let us define L to be reducible if a 
change of basis can be made which throws all matrices Lx simultaneously in­
to the form /f 4* 5! jj and let us define L to be irreducible if it is not reduci­
ble. For each representation L of G one obtains a complex valued function 
\L on G by setting \L(x) = Trace (Lx). \

L is called the character of L. The 
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classical characters of Dedekind and Weber are just the characters of the 
one-dimensional representations of G, and the new characters introduced 
by Frobenius are just the characters of the other irreducible representations 
of G. When the representation L is reducible as explained above, it is clear 
that x — Ax and x -+ Cx are also representations, and that xL(x) = X̂ W 
+ xc(x). It follows that the character x£of any representation L is a sumof a 
finite number of characters of irreducible representations and hence of 
characters in the new sense introduced by Frobenius. It will be convenient to 
adopt the following more or less standard terminology. A character in the 
sense of Dedekind and Weber is a one-dimensional character. The character 
of an irreducible representation is an irreducible character. A finite sum of 
irreducible characters, or equivalently the character of a (possibly reducible) 
representation, is a character. It follows at once from the definition that the 
characters of two representations are equal whenever one representation 
can be obtained from the other by a change of basis, and that every charac­
ter is a constant on the conjugate classes of the group. Since Frobenius was 
able to prove that any two distinct irreducible characters Xi and \2 are or­
thogonal in the sense that J^XiWxïÖö = 0, it follows that the irreducible 
characters are linearly independent and hence that there can be only finitely 
many of them. Indeed, it follows that there can be no more than h where h 
is the number of conjugate classes. Frobenius proved further that there are 
exactly A, and succeeded in his first paper in determining all of them for sev­
eral different non-commutative groups. 

Burnside (1852-1927) became interested in Frobenius's new theory almost 
immediately and began to publish papers on the subject in 1898. He found 
different proofs of Frobenius's main results and was a pioneer in emphasiz­
ing the advantages of taking representations rather than their characters as 
the basic objects of the theory. Frobenius's student Schur (1875-1941) saw 
things in this way also. In 1905 he published a systematic account of the 
whole theory from the representation theory point of view. In the theory of 
representations a key role is played by a theorem discovered by Maschke in 
a slightly different context and published by him in 1899. It asserts that 
every reducible representation is actually completely reducible in the sense 

that the basis may be chosen so that the matrices take the form (( Q* cl)' 

The theory of representations takes a more perspicuous form if one 
avoids a choice of basis and thinks in terms of abstract linear transforma­
tions. A representation L of G is then a homomorphism x -* Lx of G into 
the group of all non-singular linear transformations of some finite-dimen­
sional complex vector space f{L), and two representations L and M are 
equivalent if there exists a non-singular linear transformation T from V(L) 
onto V{M) such that TLXTX = Mx for all x. L is reducible if there exists a 
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proper subspace Vx of V(L) such that Lx (KO = Vx for all x. The restriction 
of the Lx to Vi defines a subrepresentation LVl whose space is Vu Maschke's 
argument shows that for every such subspace Vx there is another V2 with 
Ki + K2 = V(L) and Kj fl K2 = 0. Thus in an obvious sense L is the 
"direct sum" of Lv\ and Lvi- Iterating this procedure, one shows that every 
representation L is equivalent to a direct sum M1 e M2 e • • • e Mk where 
the Mj are irreducible. Moreover, it is not hard to show that this direct sum 
decomposition is essentially unique in the sense that if also t - i V ^ A I 2 ® 
• • • e A^ where the NJ are irreducible, then t = k and there exists a permu­
tation 7T such that MJ and N*U) are equivalent. Thus one knows the most 
general representation of G to within equivalence when one knows the most 
general irreducible representation of G to within equivalence. Since it can be 
shown that two representations are equivalent if and only if their characters 
are equal, it follows that there are only finitely many equivalence classes of 
irreducible representations. A representation of particular interest is the so-
called regular representation. Its space is the space of all complex-valued 
functions on G, and one defines the representation by translation: Lx{f)(y) 
= f(yx)> A fundamental theorem asserts that the regular representation is 
equivalent to a direct sum in which each equivalence class of irreducibles oc­
curs, and occurs with a multiplicity equal to the degree of its character; that 
is, the dimension of the representation space. It is suggestive to compare 
this fact with Frobenius's theorem on the factorization of group de­
terminants. 

There is an alternative route to the decomposition theory of group repre­
sentations which takes its origin in the theory of algebras (or hypercomplex 
number systems as they used to be called). Influenced by the work of Killing 
cited in section 11, Molien (1861-1941) published two papers in 1893 giving 
the first deep and general theorems about the structure of associative alge­
bras over the complex field. He introduced the notions of simplicity and 
semi-simplicity, and more or less proved the celebrated Wedderburn struc­
ture theorems in the complex case. (Similar results were obtained independ­
ently but slightly later by Cartan.) Then in 1897 (and apparently without 
knowledge of Frobenius's work) Molien applied his ideas to a particular al­
gebra that one can associate with a finite group—the so-called group alge­
bra—and obtained a number of Frobenius's more important results. For 
more particulars about the relationship between the work of Frobenius, 
Molien, and Burnside, as well as a detailed analysis of the correspondence 
between Dedekind and Frobenius and how Frobenius was led to invent 
characters, the reader is referred to three excellent articles by Thomas Haw­
kins [9, 70, and 77]. I am indebted to these articles for many of the histori­
cal facts stated in this section. 

In addition to solving Dedekind's problems and opening the door to a 
far-reaching extension of the method of harmonic analysis, Frobenius's dis-
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covery of non-one-dimensional irreducible characters provided group the­
ory itself both with a powerful new tool and with a fascinating and difficult 
new problem. In 1900 Burnside published two papers using characters to 
prove new theorems about the structure of finite groups, and shortly there­
after Frobenius did likewise. Then in 1904 Burnside used characters to 
prove the very striking theorem that any group whose order is of the form 
paq0 wherep and q are primes is necessarily solvable. For well over half a 
century no proof not using characters was known, and even today the char­
acter proof is by far the simplest. The new problem is that of actually find­
ing the irreducible representations and their characters for particular finite 
groups. This problem is easily solved in some cases but quite difficult and 
challenging in others. In the special case of the so-called "Chevalley 
groups" (analogues of semi-simple Lie groups in which the real and com­
plex fields are replaced by finite fields), study of this problem is a field of re­
search of considerable current interest and one in which important progress 
has recently been made. 

In studying the problem of finding the irreducible representations and 
characters of a finite group G, it is useful to consider the relationship of the 
representations of G to those of its various subgroups. Already by 1898 Fro­
benius had published a paper on the subject. In this paper he introduced the 
very important concept of an induced character. Let x be an arbitrary char­
acter of the subgroup H of the group G and let x° be the function on G 
which agrees with x on ƒƒ and is otherwise zero. Then define x* on G by the 

formula x*(*) = -TTR ^ xV^V"1)- Frobenius proved that x* is always a 
oyjtl) yeG 

character and called it the character of G induced by the character x of H. 
While x* need not be irreducible when x is, it is irreducible in many cases, 
and inducing is one of the most important ways of constructing non-one-di­
mensional irreducible characters. For nilpotent groups every irreducible 
character which is not one-dimensional is induced by a one-dimensional 
character of a suitable subgroup, and for many non-commutative groups a 
significant fraction of their irreducible characters may be so obtained. Fur­
ther insight into the nature of the inducing process may be obtained by con­
sidering the celebrated Frobenius reciprocity theorem. Let Xi and xi be irre­
ducible characters of G and a subgroup H respectively. Then x? expressed 
in terms of the irreducible characters of G contains Xi exactly as many times 
as the restriction of Xi to //contains Xi. One verifies easily that the charac­
ter of the regular representation of G is equal to the character induced by 
the unique irreducible character of the subgroup {e} consisting of the iden­
tity alone. The Frobenius reciprocity theorem applied to this case yields at 
once the facts about the structure of the regular representation stated ear­
lier. Another important elementary fact relating characters of subgroups to 
characters ofgroups is concerned with product groups. If G = Gi x G2and 
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Xt and xi are characters of Gt and G2 respectively, then x, y — Xi(x)XaÛ0 is 
a character of G which is irreducible if and only if xi and xi are both irredu­
cible. Moreover, every irreducible character of G can be so obtained by 
composition from characters of Gx and G2 respectively. 

That characters and group representations might have something to do 
with Fourier analysis seems to have first been recognized by Hermann Weyl 
(1885-1955) in 1927. But an essential first step was taken by Schur in 1924. 
Because of connections with the branch of algebraic geometry known as 
"invariant theory," Schur became interested in studying representations of 
the rotation group in n dimensions and discovered that he could carry over 
the main features of the character and representation theory of finite groups 
if he replaced summation over the elements of a finite group by a suitable 
integration over the compact manifold constituted by the elements of the 
rotation group. Hurwitz had made use of such an integration in 1897 in a 
method he discovered for constructing invariants. Schur adapted Hurwitz's 
integral to his needs. From a modern point of view, Schur and Hurwitz 
made use of the fact (proved by A. Haar in 1933) that every separable local­
ly-compact group admits a measure (unique up to a multiplicative constant) 
that is defined on all Borel sets, is finite on compact sets, is invariant under 
right translation, and is not identically zero. When the group is a Lie group, 
the existence of this measure can be established easily using concepts from 
differential geometry. Using integration with respect to "Haar measure" to 
replace sums over the group elements, Schur was able to carry over 
Maschke's argument and prove the decomposability into irreducibles of an 
arbitrary representation of the rotation group. He was able to show also 
that an irreducible representation is determined to within equivalence by its 
character and to find all irreducible representations together with their char­
acters for the groups with which he concerned himself. 

Weyl had been informed of Schur's results in advance of publication. In 
the same year he published excerpts of a letter to Schur explaining how his 
results could be generalized to arbitrary semi-simple Lie groups by making 
use of work of Cartan that had appeared eleven years earlier in 1913. Car-
tan, working with Lie algebras, had solved the analogous infinitesimal 
problem. Weyl worked out his ideas in detail and published them in three 
papers which appeared in 1925 and 1926. Then in 1927 Weyl took the cru­
cial step toward relating characters and representations to Fourier analysis.5 

In that year, in collaboration with his student Peter, he published a proof of 
the celebrated Peter-Weyl theorem. If L is an irreducible representation of 
any group, then the vector space spanned by the matrix elements with re­
spect to a basis is independent of the basis chosen and is invariant under 
right and left translations. Moreover, the vector spaces so obtained from in-
equivalent representations are mutally orthogonal with respect to "Haar 
measure" when the group is a compact Lie group. In one formulation the 
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Peter-Weyl theorem asserts that for every compact Lie group, the linear 
span of these finite-dimensional orthogonal subspaces is uniformly dense in 
the space of continuous functions on the group. In another it asserts that 
one obtains a complete system of orthogonal functions for the group by 
choosing an orthogonal basis in each subspace. Specialized to the case of 
the one-dimensional torus group, the Peter-Weyl theorem is just the com­
pleteness of the functions x — einx with its implications for expansibility in 
Fourier series. The proof of the Peter-Weyl theorem is closely related to the 
proof (see section 14) that a completely continuous self-adjoint operator has 
a basis of eigenvectors. In fact, it is possible to deduce the Peter-Weyl theo­
rem from the latter result. More generally, let the compact Lie group G act 
on the Riemannian space S so as to preserve the underlying metric and let it 
act transitively in the sense that for each st and s2 in S there exists an # in G 
with (Si)x = s2. For each A: in G and each complex-valued function ƒ on S, let 
VX(J) denote the function s — f({s)x). Then each Vx is a linear transforma­
tion and x — Vx defines a representation of G in any finite-dimensional vec­
tor space M of complex-valued functions on S which happens to be mapped 
onto itself by all Vx. Let us call this subspace irreducible if the correspond­
ing representation is irreducible. In 1929 Cartan published a paper (admit­
tedly inspired by the paper of Peter and Weyl) proving that Mt and M2 are 
orthogonal whenever the corresponding irreducible representations of G are 
inequi valent, and moreover that there exists a complete orthogonal set of 
continuous functions on S whose members belong to irreducible invariant 
subspaces M. The Peter-Weyl theorem is the special case in which S = G 
and the action is by group multiplication. In the special case in which S is 
"symmetric," Cartan proved in addition that any two invariant irreducible 
subspaces which are not identical define inequivalent representations of G. 
In the subspecial case in which S is the surface of a sphere in three spaces 
and G is the rotation group, Cartan's result implies the completeness of the 
surface harmonics of Legendre and Laplace (see section 7). The connection 
between group representations and surface harmonics was recognized by 
Weyl in his book on group representation and quantum mechanics pub­
lished in 1928. 

16. GROUP REPRESENTATIONS IN HILBERT SPACE 
AND THE DISCOVERY OF QUANTUM MECHANICS 

The extension of the theory of group representations and characters from 
finite groups to compact Lie groups does not produce many significant 
changes. One of the few is that the number of irreducible characters is coun-
tably infinite rather than finite. This implies of course that no representa­
tion can behave like the regular representation of a finite group in contain­
ing a representative of every equivalence class of irreducibles unless one per-
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mits infinite-dimensional representations in some sense. Nowadays, nothing 
seems more natural than to define the regular representation of a compact 
Lie group G to be a representation L whose space is the Hubert space of all 
complex-valued functions on G which are square integrable with respect to 
Haar measure and where Lx(f)(y) = f(yx). If one does so (and suitably gen­
eralizes the direct sum notion to apply to infinite sums) one finds that the 
Peter-Weyl theorem implies a very straightforward generalization of the 
structure theorem for the regular representation of a finite group. This gen­
eralization states that the regular representation of a compact Lie group is a 
direct sum of finite-dimensional irreducible subrepresentations and that 
each equivalence class occurs with a multiplicity equal to its dimension. 
Similarly, Cartan's theorem about functions on S can be stated in terms of 
the decomposition of the representation L of G in (£2 (S, fi) defined by set­
ting Lx{f)(s) = f((s)x). The Lebesgue integral and Hubert spaces of square 
integrable functions were still strange and unfamiliar objects to most math­
ematicians in the 1920s, however, and a systematic theory of group repre­
sentations in an infinite-dimensional Hubert space was slow to develop. 
When it did, this development was directly inspired by the discovery of 
quantum mechanics in the period between 1924 and 1927, especially by von 
Neumann's success in putting this theory into a rigorous, mathematically 
coherent form based on the theory of operators in Hubert space. 

The "old quantum theory" initiated by Planck's paper of 1900 was re­
placed by the much more satisfactory quantum mechanics during a period 
of about three years beginning at the end of 1924. In late 1924 and early 
1925, Heisenberg (1901-1976) and Schrödinger (1887-1961) respectively 
published two apparently very different methods for deducing the spectrum 
of the hydrogen atom without imposing arbitrary quantization rules. These 
methods were later shown to be equivalent. More importantly, they turned 
out to provide the key to the puzzle. After a few years of intensive activity, 
difficult to trace in detail, physicists were in possession of a subtle refine­
ment of classical mechanics which had classical mechanics as a limiting case 
and from which the quantum rules of the old quantum theory followed in a 
logical and consistent manner. Besides Heisenberg and Schrödinger, the 
chief architects of this new quantum mechanics were Born (1882-1970), Jor­
dan (1902—), and Dirac (1902—). 

The key idea in the finished theory is that one must give up the naïve no­
tion that the state of a physical system at a given time can be described by 
the positions and velocities of its particles. Measurements interfere with one 
another in a manner that becomes more pronounced the lighter the particles 
are, and in the case of electrons it is very pronounced indeed. It turns out, 
however, that it makes sense to assign simultaneous probability distribu­
tions to all positions, velocities, and various functions of these and that 
such a collection of probability distributions may be considered to be a state 
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of the system. Indeed, the laws of quantum mechanics permit one to calcu­
late all probability distributions at time h when they are known at time t2 < 
it. 

The physicists' formulations of the laws permitting one to make these cal­
culations and draw various conclusions from them were somewhat vague 
and unsatisfactory from the standpoint of a pure mathematician, and von 
Neumann (1903-1956) became interested in clarifying them. He succeeded 
admirably, and in 1927 published a remarkable paper showing how a subtle gen­
eralization of Hilbert's spectral theorem was the key to the whole question. 
Altering slightly von Neumann's definition and terminology, let us define a 
projection-valued measure on the real line to be a mapping E -+ PE assign­
ing a projection operator PE in a separable Hubert space Jf(P) to each Borel 
set E in the line R in such a fashion that 1) PEnF = PEPF for all E and F, 2) 
P4 = 0 and PR = I where 0 is the empty set and I is the identity operator, 
and 3) Pu EJ = SPEj whenever the £} are pairwise disjoint. Let us say that 
the projection-valued measure P has bounded support if P[aib] = I for some fi­
nite interval [a,b] and countable support if there exists a countable subset A 
of R such that PA = I. Given a vector <p in the Hubert space JC(P) it is easy 
to check that the function E — (PE(<P) • <p) is a measure on the line which is 
finite when P has bounded support. When this is the case, one can form the 

00 

integral J xd(Px(<p) • <p)f and it is not difficult to show that there exists a 
- ° ° oo 

unique bounded linear operator A such that (A(<p) • <p) = J xd(Px(<p) • <p) 
- 00 

for all vectors <p. Moreover, the bounded linear operator A is self-adjoint in 
the sense that (A(<p) • ^) = (v • Aft)) for all <p and ^ in *#\P). In terms of 
projection-valued measures, Hubert's spectral theorem can now be stated 
very simply. It is just a converse of the result just stated. For every bounded 
self-adjoint operator A there exists a unique projection-valued measure PA 

defined on the real line and having bounded support such that (A(<p) • <p) = 
00 

{ xd(Px(<p) • ip) for all <p inJf(P). To understand the one-to-one corres-
- 00 

pondence between bounded self-adjoint operators and projection-valued 
measures on R with bounded support set up by the spectral theorem, it is 
useful to consider the special case in which A has a basis of eigenvectors tps% 

00 

A(<pj) = \j<pj. In that case, P has the set U l\H of eigenvalues as count­

able support. PE =\*LP\\J) anc*P\\j\is the projection on the vector space of 
all <p withi4(^) s \j<p. 

While the spectral theorem was in a sense just what was needed, it did not 
go far enough. Von Neumann's first task was to extend it so that all projec­
tion-valued measures were involved and not just those of bounded support. 
The problem was to find a corresponding extension of the class of bounded 
self-adjoint operators. Extending an idea of E. Schmidt, von Neumann 
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found the answer in a certain class of operators that are not necessarily 
bounded and are defined on a dense subspace & of Jf(P). Given such an 
operator A, let A* be defined as follows: A*(\l/) is defined if and only if 
(A((p) • ^) is continuous as a function of (p and then is the unique vector 6 in 
,WXP) such that (A((p) • \p) s (<p • 0). One says that A is self-adjoint if A* is 
defined on <£ and only on 0 , and there agrees with A. With the concept of 
self-adjointness extended in this way to possibly unbounded operators, it 
became possible to extend the spectral theorem so that it set up a one-to-one 
correspondence between all self-adjoint operators on the one hand and all 
projection-valued measures on R on the other. 

With the spectral theorem so extended, von Neumann was now able to 
unify the various probabilistic statements of the physicists in one simple 
general principle. This may be stated as follows: To each physical system 
there corresponds a complex Hilbert space (usually separable) whose one-
dimensional subspaces define the states of the system. To every observable 
(position coordinates, momentum coordinates, etc.) there corresponds a 
self-adjoint operator. Given the self-adjoint operator A corresponding to a 
particular observable, let PA denote the associated projection-valued mea­
sure and let (p denote any unit vector. Then E — (PE(<P) • <p) is a probability 
measure on the real line which depends only on the one-dimensional sub-
space to which <p belongs. This is the probability distribution assigned to the 
observable corresponding to A by the state corresponding to the one-dimen­
sional subspace of complex multiples of <p. 

Notice that in every state the observable corresponding to A takes a value 
outside of the spectrum of A with probability zero. When the spectrum of A 
is discrete or partially discrete, the values taken on by the observable are 
correspondingly restricted. This is the source of the mysterious "quantiza­
tion rules" of the old quantum theory and explains why some observables 
are quantized and others are not. Similarly, the impossibility of finding 
states in which two different observables have highly concentrated probabil­
ity distributions at the same time may be traced to the lack of commutativity 
of the corresponding self-adjoint operators. In fact, the celebrated Heisen-
berg uncertainty principle may be formulated as an inequality on the prod­
uct of the dispersions of two probability distributions where the lower 
bound involves the commutator of the corresponding operators. 

In the special case of a system of n "spinless," "distinguishable" par­
ticles it is possible to make these abstract statements more concrete. Let the 
masses of the n particles be/«i, m2, • • •, mn and let their coordinates xx yx Z\ 
• • • x„yn zn be relabeled as ql9 qu • • -, qZn. Let pi, • • -, A»* be a relabeling 
of ffiiidxi/dt), mi(dyx/dt)9 • • -, m„(dzn/dt). Then the Hilbert space of the 
system may be taken to be the space of all complex-valued functions on 
Euclidean 3n space which are square integrable with respect to Lebesgue 
measure, and when this is done, the operators Q, an(J Pj corresponding to 
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the qj and pj are the following: QAv) is defined whenever qj<p and <p are both 
square integrable and Qj((p)(qi • • • q3n) = qMqi * • • q*n). PA<p) is defined 
whenever <p is absolutely continuous in the yth variable and (p and - £ are 

both square integrable and PJ&)(q\ • • • #3n) = y-r -£- (#1 • • • <73„) where A 
is Planck's constant (see section 13). * 

Since the Q, commute with one another there is no problem in discussing 
the joint probability distribution of the qà and it is easy to deduce from von 
Neumann's general principle that in the state described by the function <p 
the probability that the coordinates qy be in the region R of 3n space is 
fc • • • Jl^toi * • • Q3n)\2dqi • • • dq3n- While not every classical observable 
has a quantum counterpart, there are many that do, and those that do are 
usually ones whose classical definition may be written in such a form in 
terms of the qs and ps that the same formula applied to the Qj and Ps makes 
sense as a self-adjoint operator. For example, the classical angular momen-

cty dx 
turn of a particle about the z axis is m(x -4r - y-jr) - Q1P2 ~" P1Q2 and 
Q1P2 - P2Q1 is 1 times a self-adjoint operator which defines the quantum 
analogue of angular momentum about the z axis. This operator (when its 
domain is suitably defined) has a discrete spectrum with the integer 

multiples of -r- as eigenvalues. In 1913, Bohr derived the spectrum of the 

hydrogen atom from the assumption that angular momentum could only 

take on the values 0, ± y ~ , ± 2 y , etc. 
Thus far we have discussed only quantum statics and said nothing about 

how the state of a system varies with the time. The physicists' answer to this 
question carries over immediately to von Neumann's formulation. If t — <pt 

is a one parameter family of unit vectors describing the state of the system 
at any time /, then this vector-valued function of / must satisfy a differential 
equation of the form =p- = - ^ H(<pt) where H is the self-adjoint operator 

at n 
defining the total energy of the system. Up to possible ambiguities of do­
main this operator H is well defined whenever the classical expression for 
the energy is the sum of a potential energy term which is a function Kof the 

qj alone and the usual kinetic energy term E -~ (-77) + (~dr) +("wf) r 

One simply rewrites the kinetic energy in terms of the/?,, substitutes^ . a 

2717 oqj 

for each ps and adds on the operator of multiplication by V(qt • • • q3n). 
Written out in concrete form, -^- = -^- H((pt) becomes the celebrated 
Schrödinger equation — a linear partial differential equation in 3/7 +1 var­
iables. An immediate consequence of Schrödinger's equation is that the ei-
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gen vectors of the self-adjoint operator if corresponding to the energy play a 
special role. Indeed, if H(<p) = X<p, then eixt<p satisfies Schrodinger's equa­
tion, and since <p and eiXt<p define the same state, <p defines a so-called sta­
tionary state — a state which does not change with time. Conversely, every 
stationary state is easily shown to have this form. In other words, the eigen­
vectors of H are on the one hand the stationary states and on the other the 
states in which the energy has a definite sharp value. It turns out that when 
some external perturbation causes an atom to shift from one stationary 
state to another of lower energy, the energy difference manifests itself as a 

AE quantum of electromagnetic radiation of frequency equal to —. Thus the 

problem of predicting the spectral lines emitted by an atom reduces to find­
ing the eigenvalues of the appropriate operator H. (Reduces is perhaps too 
strong a word. When one investigates the mechanism more closely, one 
finds that some lines occur with zero intensity and so are not observed.) 
While Bohr's simple idea of quantizing angular momentum was sufficient 
to predict the eigenvalues of the H for the hydrogen atom, the old quantum 
theory was quite incapable of dealing with atoms having more than one 
electron. Even with quantum mechanics the problem is difficult, because it 
is far from trivial to find the eigenvalues of the appropriate H. Indeed, one 
has to resort to approximate methods of various kinds. 

Von Neumann did not content himself with clarifying and rigorizing the 
conceptions of the physicists. In two further papers published in 1927 he 
made a basic contribution to physics in that he showed how to combine the 
ideas of quantum mechanics with those of statistical mechanics and produce 
a "quantum statistical mechanics." This seems difficult if not impossible at 
first, because classical statistical mechanics is based on the consideration of 
joint probability distributions for all the dynamical variables; that is, on the 
consideration of probability measures in the 6rt-dimensional "phase space" 
of all possible óAZ-tuples of position and momentum coordinates. The Heis-
enberg uncertainty principle seems to preclude a quantum mechanical ana­
logue of phase space. However, von Neumann found an analogue of proba­
bility measures in phase space in what are now called von Neumann density 
"matrices" (more accurately density operators). We already have seen that 
a unit vector <p in the underlying Hubert space assigns a probability measure 
on the line to each self-adjoint operator and hence to each observable. More 
generally, let Tbe a self-adjoint operator with a basis <pu <p2, • • • of eigen­
vectors and let the eigenvalues yu y2, • • • be non-negative and such that yx 

+ y2 + • • • = i. Then for each self-adjoint operator^ we may consider 
00 

the set function E -+ Trace(7Pg) = E y,{PÊ(<Pj) • <Pj) and verify at once 

that it is an infinite convex combination of the probability measures E — 
{P£<Pj) • <PJ) and hence a probability measure itself. Here, of course, P4 is 
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the projection-valued measure corresponding to A by the spectral theorem. 
The generalized states so defined by non-negative self-adjoint trace opera­
tors with Trace 1 are related to the states defined by unit vectors just as 
probability measures in phase space are related to points in phase space. In 
each case, it is a question of comparing a convex set with its set of extreme 
points. To distinguish them one now speaks of mixed states and pure states. 
The mixed states (or mixtures as von Neumann called them) are von Neu­
mann's substitutes for probability measures in phase space. His substitute 
for \ae~H/kTd£ is Trace (e~H/kT) where in the second expression H is the self 
adjoint operator corresponding to the energy observable. Just as \a~H/kTdÇ 
may be written in the form J00^ e~x/kTd(i(x) where /3 is the image of f by H 

00 

(see section 13), so Trace(e~H/kT) may be written in the form E e~E'/kT 

where Eu E2, • • # are the (not necessarily distinct) eigenvalues of H. In the 
systems to which statistical mechanics applies, H has a pure point spec­
trum.) This may be rewritten as \"a>er*'kTdfJq(x)9 where jS, is the measure 
that counts the number of eigenvalues in each set. In other words, as sug­
gested by Planck's discovery, quantum mechanics tells us that in forming 
the partition function T — \e"x/kTd0(x)9 the continuous measure j8 must be 
replaced by a discrete measure. In addition, it tells us what discrete measure 
to choose. Known facts about the relationship of measures on the line to 
their Laplace transforms and the observation that classical and quantum 
statistical mechanics agree at high temperatures suggest that (iq and f3 should 
be asymptotically equal to constant multiples of one another. This sugges­
tion, formulated as a theorem, turns out to include as special cases various 
theorems on the asymptotic distribution of eigenvalues proved earlier by 
Weyl and Courant and later by a number of mathematicians, among whom 
Titchmarsh (1899-1963) may be especially mentioned. 

Group-theoretical ideas were introduced into quantum mechanics in quite 
different ways in two papers published in 1927 by Weyl and Wigner 
(1902—) respectively. Part I of Weyl's paper is devoted to a discussion (in­
dependent of von Neumann's) of the concept of a mixed state. Parts II and 
III contain the group theory. Let A be any bounded self-adjoint operator in 

a Hilbert spaced. For all real numbers t, let Ut = eiAt = I + iAt + ^ r ~ 

UAtY 
+ v • • •. The series converges for all /, and it is not hard to verify that 

each U, is unitary and that t — Ut is a unitary representation of the additive 
group R of the real line. Moreover, this representation is continuous in the 
sense that t — Ut(<p) is a continuous function from the real line to the Hil­
bert space for all <p in the Hilbert space. It is not difficult to verify that A is 
uniquely determined by the representation U so that there is a natural one-
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to-one correspondence between bounded self-adjoint operators on the one 
hand and certain continuous unitary representations of R on the other. 
Without actually formulating a theorem, Weyl suggested that von Neu­
mann's extension of the spectral theorem to unbounded operators should 
make it possible to extend the correspondence just described to one between 
all continuous unitary representations of R and all self-adjoint operators. 
At the same time, he pointed out that diagonalizing A, when this is possible, 
is equivalent to decomposing the group representation as an infinite direct 
sum and that the spectral theorem correspondingly must be equivalent to 
some sort of continuous decomposition theorem for U. 

These suggestions of Weyl were given a solid mathematical foundation by 
Stone (1903—). In a short note published in 1930, Stone sketched a proof of 
the following theorem: Let ƒ — Ut be an arbitrary continuous unitary repre­
sentation of R. Then there exists a unique projection-valued measure 
P on R such that for all tp in the (separable) Hubert space J^((/), one has 
(U*(<p) • <P) = \&*d(P,(ip) • <p) identically in x. Conversely, every projection-
valued measure P on R arises in this way from some continuous unitary 
representation 1/of R. Combining the one-to-one correspondence between 
representations and projection-valued measures produced by Stone's 
theorem with the one between self-adjoint operators and projection-valued 
measures produced by von Neumann's extension of Hubert's spectral 
theorem, one has a natural one-to-one correspondence between representa­
tions and self-adjoint operators, which reduces in the case of bounded 
operators to that defined above. Actually, one can even make sense of the 
formula e"' in the general case by using the "operational calculus" implied 
by the spectral theorem. Stone's note was the third in a series devoted to the 
theory of operators in Hubert space. Von Neumann's paper formulating 
quantum statics did not actually contain a proof of the generalized spectral 
theorem, and Stone found a different proof which he sketched in an earlier 
note. Von Neumann's proof appeared in a long and famous paper 
published in 1929. 

In Schrödinger's equation as formulated by the physicists, the domain of 
the operator H is left vague. This is an important gap in the theory because, 
as emphasized in Weyl's paper, the time evolution of the system is deter­
mined by the representation / — e{2*i/h)Ht. This representation is not known 
until H is precisely defined as a self-adjoint operator with a definite do­
main. In the language of the theory of partial differential equations, the in­
itial value problem does not have a unique solution unless appropriate 
boundary conditions are imposed. It is interesting that the same condition 
on an operator that makes it suitable for assigning probability distributions 
to states also makes it suitable for defining a dynamics in which the present 
state uniquely determines all future states. 
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In his 1927 paper on group theory and quantum mechanics, Weyl also 
pointed out that unitary representations of the real line are technically easier 
to deal with than unbounded self-adjoint operators that are not everywhere 
defined. Moreover, he showed that the unitary representations associated 
with the position and momentum operators for a set of n particles form a 
system with very simple and natural group-theoretical properties. Specifi­
cally, let Ui = <?'Q>'and V{ = e^. Then (U{)(J)(Qu • • •, <73„) = el^f(qu 

sh 
q3n) and V{{j)(qu • • -, q3n) = f(qu q2, • • -, ?,-i, <7, + ̂ , <7/*i, • • \ #>„). 

From this one computes easily that the following commutation relations are 
satisfied: Uit £/* - £/* U\x = V{x Vt2 - F* Vit = 0 for ally, ky su s2, andWV* 
= e~{isth*)n*VRJj

t for ally, k, s9 and t. Using the first set of relations, one ob­
tains a continuous unitary representation U of the additive group of 
3fl-dimensional vector space of all w-tuples of real numbers by setting 

U*i>'i- <3« = WtUi2 "*' U^n* a n d a n o t h e r y b y setting 
V' ,. ••.,,„ =VitV*, • • • V?" . Moreover, the second set of relations is 
equivalent to the following simple commutation relation between U and V: 
II V = />-<<*'**> <*l'l*- ' +*3n'3«> K T/ Tf 
^ « , . • • • . r3f l ^ 5 , . s 2 . . . . . 4 j | i — C K S i . . . . , S3n Utx, • • • . t3n- H 

we recall that the most general continuous character (of absolute value one) 
on the group of 3fl-tuples can be written uniquely in the form su s2, • • •, s3n 

_> e-(«/./2T) (s, ,,•• +53nr3w) ? ^jg j a s t reiation can be written more simply and 
suggestively in the form USVX = x(s)VxUt9 where s stands for the general 
3tf-tuple 5i, • • •, 53n and x for the general character s = Si, s2, • • •, s3« — 
e-dhn*){sxtx+- . -̂ „ta^ L e t g n o w d e n ote the additive group of all 3/i-tuples 
of real numbers and let G denote its (isomorphic) group of all continuous 
characters of absolute value 1 (unitary characters). If we define WS9X = 
USVX> we "almost" obtain a continuous unitary representation of the com­
mutative product group G x G. However, W{Sx,Xx){S2,x2) = **Wxix2 = 
Vsts2VXtX2 = USiU,2VXlVX2 = USlXi{s2)VXxUSlVX2 = Xi(S2)WSl.,tWS2.X2 

so that W(Jl ,x t) {s2, x2) is equal to WSl ,Xx WSl. X2 only up to multiplication by a 
complex number of modulus one. Wis what is known as a projective or ray 
representation of G x ô. Such representations for finite groups were 
studied by Schur beginning in 1904. Weyl pointed out that they occur 
naturally in quantum mechanics because two vectors in Hubert space deter­
mine the same state when one is a constant multiple of the other. He also 
pointed out that while an irreducible ordinary representation of a finite 
commutative group is necessarily one-dimensional, an irreducible projective 
representation of such a group can be multi-dimensional. 

Weyl regarded it as highly significant that the position and momentum 
operators for a quantum mechanical system of n interacting particles are re­
lated in such a simple way to a projective unitary representation of a 
6fl-dimensional vector group, which, as he suggested, turned out to be irre­
ducible. In fact, as stated by Stone in the paper cited above and as proved 
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shortly afterwards by von Neumann, the projective representation Wis, to 
within unitary equivalence, the only irreducible projective unitary represen­
tation o f G x C having $i,Xi, s2,Xi — X2(s2) as its corresponding multiplier. 
Some years later, WeyPs views were shown to be essentially correct in that 
methods related to his made it possible to go a long way toward deducing 
Schrodinger's equation and the form of the position and momentum opera­
tors from plausible assumptions about invariance and symmetry. Of course, 
the commutation relations satisfied by [/and Vare just the celebrated Hei-
senberg commutation relations for the Q, and Pj in global form. It is per­
haps not too far from the truth to assert that the essential idea of Weyl is 
that one does not have to assume the truth of the Heisenberg commutation 
rules — rather that they may be deduced from plausible a priori symmetry 
considerations. 

Wigner's paper, as already suggested, applied the theory of group repre­
sentations in a completely different way. In the first place, it was concerned 
with non-commutative finite groups rather than with continuous commuta­
tive groups, and in the second place, it dealt with the technique of finding 
approximate eigenvalues of the energy operator rather than with founda­
tional questions. Let H be a self-adjoint operator whose eigenvalues are to 
be found. Suppose that H can be written in the form H0 + J where H0 has 
known eigenvalues and eigenvectors and J is in some sense "small." One can 
then attempt to estimate the eigenvalues of if as follows: Replace H0 + JbyH0+ 
eJ where e is a variable parameter, assume that the eigenvalues of H0 + eJ 
vary smoothly with e and can in fact be expanded in power series in e, com­
pute the first few terms and set e = 1. Suppose that X° is an eigenvalue of H0 

whose corresponding eigenspace M is finite-dimensional, and let yf/u fa, 
• • •, fa be an orthonormal basis for M. One cannot expect that the n occur­
rences of X° as an eigenvalue will all change in the same way as e varies 
from zero to one. Instead, one must seek n different functions X?(e), • • •, 
X£(e), each of which reduces to X° when e = 0 and is an eigenvalue of H0 + 
eJ for small e. If these n functions can be expanded in powers of e, \%e) = X° 
•f Xje + \je2 + • • •, then a simple analysis allows one to conclude that the 
Xî, Xi, • • •, Xi are the n eigenvalues of the matrix ((J(fa) • fa)). This is the 
fundamental theorem of so called "first order perturbation theory," and in 
many problems one gets a useful approximation to the eigenvalues of H0 + 
7 by using only the first two terms of the series and setting I = 1. 

Now, whatever one may think about the validity of the assumptions lead­
ing to this approximation, finding the eigenvalues of ((J(fa) • fa)) is a well-
defined mathematical problem. Moreover, it is usually rather non-trivial be­
cause eigenvalues of high multiplicity are the rule rather than the exception. 
They occur whenever the underlying mechanical system possesses symme­
tries. These are reflected in automorphisms of the state space which are im­
plemented by unitary operators which commute with the energy operator. 
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On the other hand, let U be a unitary representation of a group G in a Hu­
bert space3f(U)which decomposes as a direct sum of finite-dimensional ir­
reducible representations L1, L2, • • • in finite-dimensional orthogonal in­
variant subspaces Jfl, Jf2, • • •. Suppose that ris any self-adjoint operator 
which commutes with all Ux and has a pure point spectrum. It follows from 
elementary considerations that each eigenspace of T is an invariant sub-
space for U and hence that t h e ^ may be chosen to be inside the eigen-
spaces. This implies, however, that for every U whose dimension is greater 
than one there will be an eigenvalue whose multiplicity is at least equal to 
this dimension. 

It would take us too far afield to give all the details, so let it suffice to say 
that the high order matrices ((/(^,) • &)) which one finds it necessary to di-
agonalize turn out to commute with all the operators Lx of some representa­
tion x -+LX of a finite or compact group G. The matrices of this representa­
tion are explicitly known with respect to the basis fo9 and one can exploit 
these facts to simplify rather considerably the problem of diagonalizing 
((Jij)) = (CW«) • ifo)). The easiest case is that in which no irreducible consti­
tuent of L occurs more than once. In that case, the decomposition of L into 
irreducibles is necessarily a decomposition of the operator defined by ((ƒ<,)) 
as a direct sum of constants. Moreover, one can compute these constants di­
rectly from the characters of G, the JiJy and the matrix elements of the Lx 

without solving any equations of higher degree. More generally, when mul­
tiplicities occur in the decomposition of L, the same methods may be used 
to reduce the problem to diagonalizing matrices of lower dimension. The di­
mensions that occur are the multiplicities. 

In the generality described in the preceding paragraphs, the method 
emerged gradually in a sequence of papers by Wigner and by Wigner and 
von Neumann in collaboration, published in 1927 and 1928. In Wigner's 
first paper, he considered only the symmetric group on n objects. This arises 
because of the identity of the electrons in an «-electron atom. In an earlier 
paper he had managed the three-electron case without using the theory of 
group representations as such. Moreover, he credits von Neumann with 
having called his attention to the existence and applicability of the latter 
theory. 

Weyl followed up his 1927 paper with a remarkable book published in 
1928. Based on a course of lectures Weyl gave at the Eidgenossische Tech­
nische Hochschule in Zurich in the winter semester of 1927-28, this book, 
Gruppentheorie und Quantenmechanik, was destined to become one of the 
great classics of mathematical physics. In addition to a presentation in de­
veloped form of the group-theoretical ideas of Wigner, von Neumann, and 
himself, it contained an astonishingly complete, coherent account of the 
conceptual structure of quantum mechanics, together with its application to 
concrete physical problems. Perhaps for pedagogical reasons Weyl had little 
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to say about von Neumann's use of the spectral theorem to deal with obser­
vables whose operators are not discretely decomposable. Thus for a full ap­
preciation of the extent to which the physicists' discoveries could be incor­
porated into a beautiful and rigorous mathematical model, one had to read 
Weyl's book in conjunction with von Neumann's presentation of his own 
ideas in book form. This book, Mathematische Grundlagen der Quanten-
mechanik, appeared in 1932. On the other hand, it must be emphasized that 
both in physical content and in the extent to which it integrated group repre­
sentations with physics, the book went far beyond the brief indications 
which I have given here. In particular, Weyl added considerably to what 
could be found in the literature of the time, and more than once it has 
turned out that some "new" idea in physics could be found hidden away in 
some little-understood part of Weyl's book. A considerably revised second 
edition appeared in 1930 and an English translation in 1931. 

It is difficult to overemphasize the importance for physics (and 
chemistry) of the discovery of quantum mechanics. It did much more 
than explain away the inconsistencies between classical mechanics and 
the mysterious quantum rules of Planck, Einstein, and Bohr. Now 
it was possible (at least in principle—and subject to certain qualifica­
tions to be indicated below) to deduce all the properties of matter 
from its atomic constitution and Rutherford's hypothesis of 1911 that 
an atom of atomic number n consists of n "electrons" of charge -e 
interacting with one another and with a much heavier nucleus of 
charge ne according to Coulomb's law. Of course in applying Cou­
lomb's law one has to replace classical mechanics by quantum me­
chanics. Moreover, one has to determine the fundamental charge e 
and the relevant masses by suitable experiments. After that, the theory 
(as modified by the discovery of electron "spin" and the Pauli exclu­
sion principle) provides a mathematically well-defined procedure 
(which may be extremely difficult to carry out in practice) for comput­
ing the free energy function, the electric and magnetic properties, etc., 
of any piece of matter whose atomic constitution is known. In the same 
sense, the theory allows one to compute the binding energies of all 
molecules and in other ways to deduce the laws of chemistry from first 
principles. As stated by Dirac in the introduction to a paper published 
in 1929 (in volume 123, series A of the Proceedings of the Royal Soci­
ety of London), 

The general theory of quantum mechanics is now almost complete, the imperfections 
that still remain being in connection with the exact fitting in of the theory with relativity 
ideas. These give rise to difficulties only when high speed particles are involved, and are 
therefore of no importance in the consideration of atomic and molecular structure and 
ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one 
neglects relativity variation of mass with velocity and assumes only Coulomb forces be­
tween the various electrons and atomic nucleii. The underlying physical laws necessary 
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for the mathematical theory of a large part of physics and the whole of chemistry are 
thus completely known and the difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble. 

It was Dirac himself who showed how to reconcile Einstein's light quanta 
with Maxwell's equations. In a paper published in 1927 he pointed out that 
Maxwell's equations could be looked upon as the equations of motion of a 
dynamical system with an infinite number of degrees of freedom. When the 
standard procedures of quantum mechanics are applied to this dynamical 
system, one obtains a quantum mechanical system which can be reinterpret­
ed as a system of particles (photons or light quanta). Dirac was perhaps the 
first physicist to see the new quantum mechanics as a logically coherent sys­
tem, and his book on the subject is another great classic. While less satisfac­
tory from the standpoint of a pure mathematician than the books of Weyl 
and von Neumann, it was more acceptable to physicists and had an enor­
mous influence. First published in 1930, it has gone through many editions. 

The key to using quantum mechanics to explain the formation of mole­
cules from atoms was found by Heitler (1904—) and London (1900-1954), 
who applied it to the hydrogen molecule in a paper published in that magic 
year 1927. Shortly thereafter they showed in independent papers that in 
dealing with molecules with more than two electrons, one could apply the 
representation theory of the symmetric group in much the same way that 
Wigner had done. The fifth chapter of Weyl's book contains an exposition 
of their ideas as interpreted by him and includes a beautiful group-theoret­
ical explanation of chemical valence. 

In 1931 Wigner published a book on the application of the theory of 
group representations to the analysis of atomic spectra. He went on in the 
1930s to publish a series of fundamental and influential papers showing 
how to apply that same theory to a wide variety of quantum mechanical 
problems. 

17. THE DEVELOPMENT OF THE THEORY OF UNITARY GROUP 
REPRESENTATIONS BETWEEN 1930 AND 1945 

It follows at once from Stone's theorem of 1930 connecting self-adjoint 
operators, unitary representations of the real line and projection-valued 
measures on the real line (see section 16), that the work of Hubert and his 
students and coworkers on self-adjoint operators in Hubert space, as well as 
the later work of Stone and von Neumann on the unbounded case, can be 
reinterpreted as work on the problem of analyzing the unitary representa­
tions of R, the additive group of the real line. The spectral theorem itself is 
the analogue of the theorem stating that any unitary representation of a 
compact Lie group is a direct sum of irreducible representations, and the 
spectral multiplicity theory of Hahn and Hellinger is the analogue of the 
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theorem stating that two direct sums of irreducible representations are 
equivalent if and only if the same irreducibles occur with the same multipli­
cities. Hahn and Hellinger dealt only with bounded self-adjoint operators, 
but in 1932 Stone published a now classic book on the theory of linear trans­
formations in Hubert space, which among other things contains the details 
of his own approach to the spectral theorem. Chapter VII of Stone's book is 
devoted to an improved exposition of the Hahn-Hellinger theory genera­
lized to the unbounded case. Although it has a reputation for being compli­
cated and difficult, the Hahn-Hellinger theory is actually quite easy to ex­
plain. I shall do so below in a more general context. 

As matters stood at the end of 1932, one had all the ingredients of a com­
plete theory of the unitary representations of the compact Lie groups, of 
certain finite groups, and of two non-compact groups. The two non-com­
pact groups were the additive group R of all real numbers and the additive 
group Z of all integers. In the case of Z, the most general unitary represen­
tation is of course n — Un where U is an arbitrary unitary operator. Since /ƒ— 
(ƒƒ + / ) ( ƒ / - 0"1 can be shown to set up a one-to-one correspondence be­
tween all self-adjoint operators and all unitary operators, the spectral theo­
rem, etc., for self-adjoint operators takes care of both R and Z. It must be 
confessed, however, that although the ingredients were there, their conse­
quences for unitary group representations had not yet been spelled out. In 
particular, although it is an easy consequence of the Peter-Weyl theorem 
that every unitary representation of a compact Lie group is a discrete direct 
sum of irreducibles, this was not stated or proved in the literature until 
1943. Moreover, the connection of the Hahn-Hellinger spectral multiplicity 
theory with the problem of classifying unitary representations of commuta­
tive groups was not explicitly pointed out until the 1950s. 

An important stimulus to developing the theory of unitary group repre­
sentations for infinite groups in a framework more general than that of 
compact Lie groups was a remarkable paper by A. Haar (1885-1933) pub­
lished in 1933 and already mentioned in section 15. The notion of a topological 
group had been introduced by Schreier (1901-1929) only a few years before and 
Haar proved that whenever such a group is separable and locally compact, 
it admits a measure invariant under right translation which is defined on all 
Borel sets, is finite on compact sets, and is non-zero on open sets. (That 
such a measure is unique up to multiplication by a multiplicative constant 
was shown a few years later by von Neumann). Of course a left invariant 
measure with the same properties must also exist, but the two need not be 
equal. Groups for which the left and right invariant measures coincide are 
called unimodular and include the compact groups. Thus every compact 
separable group admits a unique left and right invariant Haar measure 
which assigns the measure one to the whole group. As pointed out by Haar, 
the arguments of Peter and Weyl can be applied to the most general com-
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pact separable groups once one has Haar measure to use to replace the 
Hurwitz integration process. 

Another important stimulus was provided in 1934 when L. Pontrjagin 
(1908—) (inspired by the needs of duality theorems in topology) published a 
paper extending the known duality between finite abelian groups and their 
character groups to one between arbitrary discrete countable commutative 
groups on the one hand and separable compact commutative groups on the 
other. Let G be an arbitrary countable commutative group, and let us define 
a character on G to be a function x from G to the complex numbers of mod­
ulus one such that x(xy) = x(*)xO0 for all x and y in G. Then just as in the 
finite case, the pointwise product of two characters is again a character, and 
the set G of all characters is a group with multiplication as the composition 
law. Again as in the finite case, for each x in G the mapping x — xOO is a 
character fx of G. If one gives G the weakest topology which makes all char­
acters/, continuous, it is not difficult to show that G becomes a topological 
group which moreover is compact and separable. Conversely, let A be any 
compact separable commutative topological group and let Â denote the 
group of all continuous homomorphisms from A to the complex numbers 
of modulus one. Then A is countable and discrete, and as before each mem­
ber a of A defines a character/, of Â by way of the definition/a(x) = x(#)-
Using Haar's extension of the Peter-Weyl theorem applied to A and G, 
Pontrjagin was able to show that the maps x — / — and a — ƒ« from G to 
G and from AtoÂ are one-to-one and onto, and that in the case of A and Â 
that x — ƒ* is an isomorphism of topological groups. Thus every separable 
compact commutative group arises as the character group or dual of some 
countable discrete commutative group and conversely. There is a natural 
one-to-one correspondence between separable compact commutative 
groups on the one hand and countable discrete commutative groups on the 
other. 

In the following year (1935), E. R. van Kampen (1908-1942) extended 
Pontrjagin's duality to a more general and more symmetrical one involving 
arbitrary locally-compact commutative groups. In particular, he was able 
to dispense with the hypothesis of separability. If G is an arbitrary locally-
compact commutative group, one defines G just as before as the set of all 
continuous functions x from G to the complex numbers of modulus one 
such that x(xy) = x(*)xO0 for all x and y. G becomes a locally-compact 
topological group if one declares a set O of characters to be open whenever 
for each xo in 0 there exists a compact subset C of G and e > 0 such that 
\x(x) - Xo(x)\ < e for all x in C implies x € C. Just as before, one defines 
fx(x) = x(x)> and van Kampen's duality theorem asserts that x — fx is 
simultaneously a homeomorphism and a group isomorphism of G on G. 
Every locally-compact commutative group is the dual of its dual. In the par-
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ticular case in which G is an /i-dimensional real vector group, G and ô are 
isomorphic and the theorem is obvious. 

Among the many properties of this duality relation, the following are 
particularly elegant and useful: a) If H is a closed subgroup of the locally-
compact commutative group G, and HL is the subgroup of all x in G such 
that \{h) = 1 for all h in ƒƒ, then H1-1 = H and restricting xtoH sets up a 
one-to-one map of the quotient group G/H± onto H. This map is both a ho-
meomorphism and an algebraic isomorphism—an isomorphism of topo­
logical groups. In particular, a character of a closed subgroup can always be 
extended to a character of the whole group, b) Let ^ be a continuous homo-
morphism from Gx to G2 where Gi and G2 are both locally compact commu­
tative groups. Then for each \ in G2, the function x —> xWM) is a character 
X* on Gi and it is obvious that x —• X* is a homomorphism. It is actually a 
continuous homomorphism called the dual of ^, which we may denote by 
\l/*. One can prove that ^** s ^ and that ^ has a dense range if and only if 
\{/* is one-to-one. More generally, if AT* is the subgroup on which ^* reduces 
to the identity, then (N*)x is the closure of the range of \(/. 

This last fact is the basis of an interesting application of the duality theo­
rems to a topic in the harmonic analysis of functions on the real line. As al­
ready noted, the most general continuous character on R is x — eixy = Xy(x) 
so that R may be identified with R. However, it will be convenient here not 
to identify R and R. Let D be R made into a discrete group by ignoring the 
topology, and let ^ be the identity map of D onto R. Then ^ is a continuous 
homomorphism which is one-to-one. Hence ^* is a continuous homomor­
phism of Ê =R into a dense subgroup of the compact character group D of 
D. Moreover, since ^ has all of R for its range, ^* is one-to-one. Thus the 
device of making R discrete yields a natural imbedding of the real line onto 
a dense subgroup of a compact group. Evidently the continuous complex-
valued functions on the compact group D are in natural one-to-one corres­
pondence with the members of a certain subclass of the bounded continuous 
complex-valued functions on the real line. These turn out to be precisely the 
so-called "almost periodic" functions introduced in 1924 by Harald Bohr 
(1887-1951). 

Bohr's doctoral thesis of 1910 was on the summability of Dirichlet series, 
and his early work was primarily concerned with the further study of such 
series with particular emphasis on the Riemann zeta function and the loca­
tion of its zeros. In collaboration with Landau (1877-1938), he published a 
paper in 1914 showing that the non-trivial zeros, if not on the central line, 
must at least be clustered about it. He made studies of the value distribution 
of the zeta function and other Dirichlet series on vertical lines and ultimate­
ly was led to ask for a characterization of those complex-valued functions 

00 

on the line which can be represented in the form t — E One'***9*'0, where s 



620 G. W. MACKEY 

is fixed real number and the ay and X, are suitable sequences of complex and 
00 

real numbers respectively. Writing c„ = ane'x^^ this becomes t —• E 
n - l 

cne'iK\ which reduces to a Fourier series when the X„ are integer multiples of 
00 

a fixed real number. More generally, the function t — £ cne'ix^ will not be 
n = 1 

periodic but will be "almost periodic" in the sense of having many "ap­
proximate" periods. Bohr gave a precise definition and in three long papers 
published between 1924 and 1926 presented a detailed theory of this new 
class of functions. One key theorem states that a bounded continuous func­
tion on the real line is almost periodic (in the sense of having enough ap­
proximate periods) if and only if it is a uniform limit of functions of the 
form de*1* + • • • + ce*** where the X, are real. Another asserts that every 
almost-periodic function ƒ has a well defined "mean value" M(f). Using 
M(J) instead of y\ K f(xWx> o n e c a n develop an analogue of Fourier series 
expansions assigning to each almost-periodic function ƒ the formal series 
L cneix»x where c„=M{fe~iK*) and M(fe~iXx)=0, for all but couniably many X. 

Bohr's theory aroused considerable interest at first, but, as I have already 
indicated, it was destined to be subsumed under the rubric of the duality 
theory of locally-compact commutative groups. In fact, the mean value 
M(j) turns out to be just the Haar integral of the extension of ƒ to the com­
pact completion D of the real line and the Fourier series expansions to be re­
ducible to the Peter-Weyl expansion on D. 

In 1927 Bochner showed that Bohr's definition in terms of approximate 
periods can be reformulated in a way that makes sense for arbitrary groups. 
A function is almost periodic in Bochner's sense if it is bounded and contin­
uous, and if the set of all functions which can be uniformly approximated 
by its translates is compact in the topology of uniform convergence. For any 
locally-compact commutative group G, one has a theory of almost-periodic 
functions analogous to that of Bohr, and this theory can be reduced to the 
theory of functions on a compact group by taking the dual or adjoint of the 
natural map of the discretization of G into G just as for R. Von Neumann 
published a more general paper in 1934 developing a theory of almost-peri­
odic functions on an arbitrary non-commutative group G. Of course the 
theory could be vacuous, and in 1935 A. Weil (1906—) showed that when­
ever G has sufficiently many almost-periodic functions, one can imbed it 
densely in a compact group K in such a fashion that the theory reduces to 
the Peter-Weyl theory on K. 

The theory of almost-periodic functions on the group Z of all integers un­
der addition turns out to have interesting connections with number theory. 
Rather than considering the whole of Z, let A be the dense subgroup of Z 
consisting of all elements of finite order. The same argument as before 
shows that Z has a natural dense imbedding as a subgroup of the separable 
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compact group Â. Moreover, if Ap is the subgroup of A consisting of all ele­
ments whose order is/?* for some k, then A is isomorphic to the direct prod­
uct of all the compact groups Âp. The restrictions to Z of the continuous 
functions on Â are just the almost-periodic functions on Z whose non-zero 
Bohr-Fourier coefficients are those corresponding to the characters in A (n 
— e2xirn where r is rational). Moreover, such a restriction <p is multiplicative 
in the sense that <p(nm) = <p(n)<p(m) for n and m relatively prime if and only 
if the original function on Â = Il Ap is a product of continuous functions on 

the Ap. Since each Ap is dense in Z, there is a natural dense imbedding of Z in 
each Âp, and the multiplication in Z has a unique continuous extension to a 
multiplication in Ap. The ring which Ap thus becomes is isomorphic (alge­
braically and topologically) to the ring of all /?-adic integers and its "field 
of quotients'' is the field of /?-adic numbers (see section 20). As will be 
explained more fully later, the Hardy-Littlewood results on Waring's prob­
lem (see section 14) have illuminating interpretations in terms of almost-
periodic functions on Z. 

The coherent theory of locally-compact groups which are either compact 
or commutative made possible by the results of Peter and Weyl, Haar, Pon-
trjagin, and van Kampen published between 1927 and 1935, inspired the 
publication of two very influential books a few years later. Pontrjagin's To­
pological groups was published in Russian in 1938, and an English transla­
tion appeared in 1939. L'intégration dans les groupes topologiques et ses 
applications à l'analyse by André Weil appeared in 1940. Although there is 
a large overlap, the two books are quite different in emphasis and to some 
extent in content. The key to the difference is revealed in the extra words in 
Weil's title. Pontrjagin is concerned above all with structure theorems for 
locally-compact groups and barely mentions harmonic analysis. Weil em­
phasizes harmonic analysis and shows in detail how one can define a Four­
ier transform for suitably restricted functions on any locally-compact com­
mutative group and so include Fourier series and Fourier transforms in one 
and several variables in one unified theory. Specifically, if fi is a choice of 
Haar measure in G, then Weil defines the Fourier transform of a ̂ -integra­
ble function ƒ to be the function ƒ on G such that/(x) = ƒ xMfMdi^x) for 
all x in G. When ƒ is both integrable and square integrable, he shows that/ 
is both continuous and square integrable and that the arbitrary constant in 
the Haar measure £ in G can be so chosen that ƒ — ƒ preserves the Hubert 
space norms: J [f(x)\2dii(x) = J |/(x)|2d£(x)- Since the domain and range can 
be shown to be dense inF2(G, /i) andiP(G, £) respectively, it follows that ƒ 
— ƒ has a unique extension to be a norm-preserving map of ̂ 2(G, fi) onto 

<^2(G, p) just as in Plancherel's theorem about the classical Fourier trans­
form. In addition to a proof of the generalized Plancherel theorem, Weil's 
book contains a statement and proof of a generalized Bochner-Herglotz 
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theorem, a study of how Fourier transforms turn convolution and multipli­
cation into one another, and a number of theorems about summability and 
pointwise convergence of generalized Fourier transforms. Weil's book 
makes it quite clear that the natural domain of classical commutative 
Fourier analysis is the study of the Fourier transform on general locally-
compact commutative groups. The extra generality so provided was to 
prove of importance in applications of harmonic analysis to both number 
theory and probability. We have already hinted at one application to num­
ber theory, and there were to be many others. It is perhaps worth noting 
that Chevalley's "idèles," which were to play a central role in these applica­
tions, were introduced in 1936 — almost at the same time as the duality 
theory itself. 

Let 11 be a finite measure in the dual G of the locally-compact commuta­
tive group G, and let us define #, the Fourier transform of /*, to be the con­
tinuous function on G defined by the equation p(x) = JX(*)ÛWX)- One veri­
fies at once that this function is "positive definite" in the sense that 
L CiCjfUXiXf1) >: 0 for all pairs xu x2, • • •, xn, cu c2, • • •, cn of w-tuples 
where the Xj are group elements and the c, are complex numbers. The gener­
alized Bochner-Herglotz theorem of Weil asserts conversely that given any 
continuous positive definite function ƒ on G, there exists a unique finite 
("Radon") measure ̂  on G such that £ = ƒ. We shall see in the next section 
that this theorem is important in applications to probability theory. It is al­
so interesting in that it turns out to be equivalent to the spectral theorem for 
unitary representations of locally-compact commutative groups. In 1929 
Wintner (1903-1958) published a paper showing that the Herglotz theorem 
itself implied the spectral theorem for unitary operators (and so for unitary 
representations of Z, the additive group of the integers). Then in 1933 Boch-
ner and Khinchin (1894—) independently proved that Stone's spectral theo­
rem for unitary representations of the real line can be derived in the same 
way from Bochner's real line analogue of Herglotz's theorem. The argu­
ment can easily be extended to the general case. This was done in 1943 and 
1944 in independent papers of Ambrose (1914—), Godement (1921—), and 
Naimark (1909—). The key point in connecting unitary representations with 
positive definite functions can be explained very easily: Let x — Ux be a con­
tinuous unitary representation of any topological group, and let <p be 
any vector inJf(t/), the space of U. Then it is trivial to verify that x — 
(Ux(tp) • ip) is a continuous positive definite function on G. Indeed, 
£ c,ô(C/^;V) • <P) = (2 CjUXj (<p) • £ c;t/vv>))> 0. 

As one might guess immediately from the case of the real line, the spectral 
theorem for locally compact commutative groups G asserts the existence of 
a one-to-one correspondence between continous unitary representations U 
of G and projection-valued measures P on G such that (Ux(<p) • <p) = 
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J x(x)d(Px(*p) • <p) for all <p m3?(U). It immediately implies the generalized 
Bochner-Herglotz theorem for all continuous positive definite functions on 
G which may be put into the form x — (Ux(<p) • <p). We need only take fi(E) 
= (PE(<P) • <p). Conversely, assuming the truth of the Bochner-Herglotz the­
orem, one can write (Ux(<p) • <p) = j x(x)df*<p(x) and obtain the spectral theo­
rem by studying the dependence of ^ on <p. Actually, as observed by Gel-
fand and Raikov in 1943, there is a very simple argument showing that every 
continuous positive definite function on a topological group can indeed 
be thrown into the form x — (Ux(<p) • <p). Thus the spectral theorem and the 
generalized Bochner-Herglotz theorem are equivalent results. 

As remarked earlier, the spectral theorem for locally-compact commuta­
tive groups is the analogue of the theorem that any unitary representation of 
a compact group is a direct sum of irreducible representations. When com­
bined with the essential uniqueness of the decomposition, this last theorem 
tells us that to classify all unitary representations it suffices to classify the ir­
reducible ones. The uniqueness theorem for unitary representations of lo­
cally-compact commutative groups has a more subtle formulation and is 
less easy to prove but is still not very difficult. Moreover, it is essentially 
contained in the Hahn-Hellinger spectral multiplicity theory for self-adjoint 
operators mentioned in section 14 and developed between 1907 and 1911. 
Because of the spectral theorem, the problem of determining all continuous 
unitary representations of a locally-compact commutative group G to with­
in equivalence is the same problem as determining all projection-valued 
measures P on G to within equivalence. Moreover, the solution of this sec­
ond problem is independent of the group structure of G and depends only 
on its measure-theoretic structure—more precisely on the system consisting 
of the set ô and its a Boolean algebra of Borel sets. When G (and hence G) 
is separable, then G is either finite, countable, or isomorphic as a Borel 
space to the real line. Hence when the solution of the problem is not trivial it 
may be deduced at once from the solution given by Hahn and Hellinger for 
projection-valued measures on the line. 

I shall present this solution in a modernized form. Let S be a Borel space 
which is either countable or such that for each finite measure fi on S there 
exists a Borel set N of measure zero such that S-Nis Borel isomorphic to a 
Borel subset of a separable complete metric space. Such an S is said to be 
metrically standard. For each finite measure n defined on all Borel subsets 
of S, let us define a projection-valued measure PM on S whose values are 
projections in the Hubert space ^2(S, /i) by setting PE(f)(s) = <pE(s)f(s), 
where <pE(s) is 1 for s in E and zero for s not in E. Using the Radon-Nikodym 
theorem on the existence of "densities" for measures having the same sets 
of measure zero, it is almost immediate that there exists a unitary map F of 
&2(S, id) on <2*(S, n2) such that VPE

l V'1 = Pf for all E if and only if ^ and 
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li2 have the same sets of measure zero. To get insight into how general pro­
jection-valued measures of the form PM can be, it is useful to look at the spe­
cial case in which P is supported by a countable set A Q S. It is easy to see in 
that case that P is equivalent to some PM if and only if P{7} has a zero- or 
one-dimensional range for all 7 e A. It is almost trivial that P is uniformly 
one-dimensional in this sense if and only if P has a commutative commuting 
algebra; that is, that PET = TPE and PES = SPE for all £ implies ST = TS. 
This result suggests that in the general case the PM are precisely the P's with 
commutative commuting algebras. In fact, this theorem is true and more­
over not difficult to prove. Let us say that P is multiplicity f ree if its com­
muting algebra is commutative. Moreover, let us say that Pl and P2 are dis­
joint if TPE = PIT fox all E implies that T = 0. If we define direct sums of 
projection-valued measures in the obvious way, then the rest of the Hahn-
Hellinger spectral multiplicity theory can be summed up in the following 
propositions: 

1) P*1 and P*2 are disjoint if and only if ^ and fi2 are supported by disjoint 
Borel subsets of S; i.e., are mutually singular measures. 

n times 
2) If P and P1 are multiplicity free and P e P e • • • is equivalent to 

m times 
p1 ep1 e• • -, then n = m andPand P1 are equivalent. (Here m and n may 
take on the value 00.) 

3) An arbitrary projection-valued measure on S in a separable Hubert 
space may be written in the form 00 p00 e P1 e 2P2 e 3P3 © • • • where some 
terms may be missing and the Pj are disjoint, multiplicity free, and uniquely 
determined up to equivalence. 

Let fi be a finite measure defined in the dual G of the locally compact 
commutative group G. For each x in G and each ƒ in F2(G, fi) let Utff)(x) = 
x(x)fbc)' The reader can easily check that x — C/̂ is a unitary representation 
of G and that PM is the projection-valued measure on G canonically associ­
ated to C/M by the spectral theorem. On the other hand, C/M has an obvious in­
terpretation as the "direct integral" with respect to /i of irreducible (one-di­
mensional) representations of G. 

The results described so far have little to say about the unitary representa­
tions of groups that are neither compact nor commutative. The systematic 
theory of the unitary representations of such groups began to be developed 
rather abruptly in 1946, a year after the end of World War II. Three impor­
tant contributions were made earlier, however, and I shall conclude this sec­
tion with brief descriptions of these. Every irreducible unitary representa­
tion of a commutative group is one-dimensional and every continuous uni­
tary irreducible unitary representation of a compact group is finite-dimen­
sional unitary representations at all—except for the identity. In order to 
have a sufficiency of irreducible representations, one has to allow them to 
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be infinite-dimensional. Also in order to have a reasonable theory, one has 
to define irreducibility in a topological rather than in an algebraic manner. 
The continuous unitary representation £ of G is said to be irreducible if 
there exist no closed invariant subspaces. That there are in some sense 
"enough" infinite-dimensional irreducible unitary representations was 
proved by Gelfand and Raikov in 1943, in the same paper in which they 
proved that every continuous positive definite function is of the form x — 
(Ux((p) • (p). They did so by using the fact that the positive definite functions 
defined by irreducible continuous unitary representations are the extreme 
points in the convex set of all positive definite functions. 

For a large (but far from exhaustive) class of locally compact groups, new 
phenomena appear which have to do with the possible structures of the 
commuting algebras of unitary representations. When the representation is 
a discrete direct sum of irreducibles, their commuting algebras are direct 
sums of algebras, each of which is isomorphic to the algebra of all bounded 
operators in a Hubert space. One might hope in general for a direct integral 
of such algebras, but as first pointed out by Murray (1911—) and von Neu­
mann in 1936, it is possible to have a commuting algebra with a trivial cen­
ter that is not isomorphic to the algebra of all bounded operators in any Hu­
bert space. In a series of four papers published between 1936 and 1943, 
Murray and von Neumann made a detailed study of these strange new gen­
eralizations of full matrix algebras. They called them factors. After 1950 it 
became important to classify unitary representations according to the na­
ture of the factors associated with their commuting algebras. 

The third contribution was a now famous paper published by Wigner in 
1939, containing an analysis of the possible irreducible unitary representa­
tions of the so-called inhomogeneous Lorentz group. This is the group gen­
erated by the translations in space-time and the celebrated Lorentz group of 
special relativity. According to the latter theory (advanced by Einstein in 
1905), this group is the true group of symmetries of space-time. Because of 
the principles enunciated by Weyl and described in section 16, one expects a 
close relationship between the possible relativistic Schrödinger equations 
and the irreducible unitary representations of the inhomogeneous Lorentz 
group. It will be easier to describe Wigner's results in a later section. 
Here it will suffice to remark that Wigner's paper, while incomplete in 
certain respects, was the first to obtain a genuine classification of the 
irreducible unitary representations of a group having no non-trivial 
finite-dimensional unitary representations. Moreover, completing 
Wigner's analysis was to be a major stimulus to the systematic develop­
ment which began in 1946. 
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18. HARMONIC ANALYSIS IN PROBABILITY; ERGODIC 
THEORY AND THE GENERALIZED HARMONIC 

ANALYSIS OF NORBERT WIENER 

One of the several major consequences of the introduction of the Le-
besgue integral (see section 14) was to make possible a convenient and rigor­
ous mathematical framework in which to discuss the many mathematical 
problems that arose as probability theory found more and more applica­
tions in science, engineering, and human affairs. This framework emerged 
gradually between 1909, when E. Borel published a paper emphasizing the 
importance of countable additivity in probabilistic considerations, and 
1933, when Kolmogorov's (1903—) book Grundbegriffe der Wahrschein-
lichkeitsrechnung appeared showing how naturally all the main ideas of 
probability theory could be formulated in measure-theoretic terms. Impor­
tant landmarks along the way were the papers of Wiener (1894-1964) on 
"Brownian motion" which appeared between 1920 and 1923, and a paper 
of Steinhaus (1887-1972) published in 1923. Among other things, Stein-
haus's paper related the peculiar convergence properties of expansions in 
terms of the so-called "Rademacher functions" to the fact that these func­
tions are not only orthogonal but are "independent" as "random varia­
bles." 

The measure-theoretic framework for probability may be described very 
simply. One starts with a suitably restricted measure space 8, fi such that 
ft(ö) = 1, and thinks of the points co in fi as "events" in the "universe" 0 of 
all possible events. If E is a measurable subset of fi, then n(E) is the proba­
bility that the event that actually occurs is in the set E. The space fi, p is giv­
en and fixed once and for all, and probability theory concerns itself with 
measurable functions defined on fi. These are given the suggestive name of 
"random variables" and are usually (but not necessarily) real valued. If g is 
a real-valued random variable, then the probability that g takes on a value 
in the Borel set F of real numbers is just fiig'^F)). Thus the behavior of the 
random variable g taken in isolation is completely determined by the mea­
sure a on the real line F -* fiig'^F)). This is a probability measure in the 
sense that a([ - oo, oo]) = 1 and is what is called the distribution of the ran­
dom variable g. When it exists, Jö g(x)dfi(x) = \™œxda(x) is called the 
expected value or expectation of the random variable g, and if this is de­
noted by f, then i(g(x) - g)2du(x)= f °° (x - g)2 da(x) is called the variance 

- 0 0 

of g. It is clear that g has an expectation and a finite variance if and only if g 
is in Sf2(Q9 /i). Of course, as long as only one random variable is involved, 
there is little point in introducing the "universe" fi. Everything can be ex­
pressed in terms of the measure a. It is in dealing with relationships between 
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different random variables that the usefulness of Q becomes clear — espe­
cially when there are infinitely many. 

Let gt and g2 be two real-valued random variables and let at and a2 be the 
probability measures in the real line R that define their distributions. Then 
w — gi(<*0, g2(co) is a measurable function ^ from Q to R x R and setting 
fi(F) = ii{)l/~l(F)) defines a probability measure j3 in R x R which is far from 
uniquely determined by c*i and a2. It is called the joint distribution of the 
random variables gi and g2. lig2 = gl> then j3 is supported by the curves = 
x1. On the other hand if gi and g2 are so-called independent random varia­
bles, then j3 is the product measure at x a2, i.e., 0(Ft x F2) = ai(Fi)a2(F2). 
In fact, this is the definition of independence, and this definition seems to 
capture quite completely the intuitive notion of what it means for random 
variables to be "independent." Of course, there are many possibilities inter­
mediate between independence on the one hand and functional dependence 
(gi = F°gi) on the other. Random variables may be more or less "correlat­
ed." If gi and g2 are ini?2(Q, fi) and have expectations at and a2 respectively, 
then it is easy to verify that gx - at and g2 - a2 are orthogonal functions 
whenever gt and g2 are independent. The converse is not true, but J (gi(x) -
#îXgiC*) - a2)dfi(x) can be used as a rough index of the extent to which gt 

and g2 are not independent. It is called the correlation coefficient of the two 
random variables gt and g2. 

The idea that one could have a mathematical theory of a dependency rela­
tion weaker than strict functional dependency was a new and exciting one in 
the late nineteenth century. It is due to Sir Francis Galton (1822-1911), who 
became interested in continuous aspects of human inheritance (arm length, 
height, etc.) more or less at the same time as his exact contemporary Gregor 
Mendel (1822-1884) was concerning himself with the discrete aspects of in­
heritance in plants. He introduced the correlation coefficient in the 1870s 
(after much reflection), but being no mathematician defined it incorrectly. 
His book Natural Inheritance, published in 1889, caught the imagination of 
a young applied mathematician named Karl Pearson (1857-1936), who cor­
rected Galton's concept of correlation and devoted the rest of his career to 
founding mathematical statistics. 

Apart from modern refinements, the idea of thinking in terms of random 
variables and their expectations, variances, and higher moments goes back 
to work of Tchebycheff (1821-1894), as already mentioned in section 3. 
One of Tchebycheff's achievements was to use these concepts together with 
a famous inequality that bears his name to give a very simple proof of a gen­
eralized form of Bernoulli's "weak law of large numbers." This proof can 
be particularly elegantly formulated if one uses the modern definition of a 
random variable. I shall present it here as an example of the convenience of 
the modern framework. Let fu f2, • • • be a sequence of independent ran-
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dom variables and let each f, have the expected value a. Let „̂(co) = 
/i(qQ+/2(co) + • • • + / » for H = 1, 2, • • •. Then <pn(œ) - a has zero 

n 
as expected value and j (̂ „(co) - a)2dii(d) = 
j y,(o,)-a + /,(co)-a + • • • +M»)-ayda =J_ f | ( / i ( w ) _ ^ ^ 

If each ƒ* has finite variance less than or equal to ô, it follows that f (<p„(c*>) 

- a)2dfi(œ) < -52. = Ô/AÎ. Now let £? be the set in which |̂ n(w) - a| >e . 

Then J fo,(o) - a)2rf/i(a?) > e2/*(£?) so ii{El) < -^y. Thus for each e > 0 

and each rj > 0, one can find n0 so that n > n0 implies /*(£?) < 77. Now 

M^e) is the probability that /t(^) + ' ' ' + A M differs from a by less 

than e. We have proved that this probability can be made arbitrarily small 
by choosing n sufficiently large. Bernoulli's weak law of large numbers is 
the very special case in which the distributions of the/ are all identical and 
are concentrated in a finite number of points. His proof was much more 
complicated. 

Let fl9 f2, - • • be a sequence of independent random variables with a 
common distribution a, and suppose that the fj have zero expected value 
and finite variance p. One verifies at once that <pn = f* + f2 + * ' * "*" f* 
has zero expected value and variance—. Thus ^„Vwhas zero expected value 

and variance v. The central limit theorem of de Moivre and Laplace, in its 
simplest form, says that the distribution a„ of <pn\[n converges as n tends to 
00 to a probability measure of the form ce"'2/a2dx. Here a2 and c are unique­
ly determined by the fact that the variance must be v and the measure a 
probability measure. The first rigorous proof was given by Tchebycheff's 
student Markov (1856-1922) along lines suggested by Tchebycheff (see sec­
tion 3). Shortly thereafter, a simpler proof was given by Liapunov 
(1858-1918), another student of Tchebycheff. Liapunov's proof makes use 
of Fourier transforms and is an interesting example of the application of 
harmonic analysis to probability. The idea is very simple. It depends on the 
easily checked fact that if fx and f2 are independent random variables with 
distributions ô  and a2, and a is the distribution of fx + /2, then a is the 
"convolution" of ax and a2. It then follows from the general properties of 
Fourier transforms that the continuous positive definite functions a, c*i, ct2 

obtained by taking the Fourier transforms of the measures are related by the 
equation û = fooi. (I may mention in passing that specialists in probability 
theory refer to the Fourier transform of a probability measure as its charac­
teristic function.) Now if fu f j , • • • , ƒ „ , • • • is a sequence of independent 
identically distributed random variables, the sum/i + f2 + • • • + ƒ„ will 
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have a distribution whose characteristic function is gn where g is the charac­
teristic function of the common distribution a of the fj. Thus 
/ i + * * * + fn wjn h a v e a distribution whose characteristic function is.y — 

(g(y\fn))n. To prove the central limit theorem one need only investigate the 
limit of (g(yyfn))n (which turns out to be easy), verify that it is the character­
istic function of a distribution of the form ce~x2/°2tfx, and prove an appropri­
ate continuity theorem for the Fourier transform and its inverse. Liapu-
nov's proof is not explicitly of this form, but in 1935 Levy (1886-1971) 
proved a theorem stating that the one-to-one map from probability mea­
sures to positive definite functions defined by the Fourier transform is a ho-
meomorphism when the two spaces are given natural topologies. The cen­
tral limit theorem in the simple form stated above is essentially a corollary 
of this theorem in harmonic analysis. 

The so-called strong law of large numbers could not even be formulated 
until the concept of a set of measure zero was available. One says that the 
strong law of large numbers holds for a sequence fufi, • • • of random var­
iables having a common expectation a if lim *1^.+ * * * *-* " ^ = g for 

w—» n 
almost all w; that is, if the sequence .M*0) + * ' ' + ƒ*(<*>) converges to a 

n 
with probability one. That this is so for independent random variables with 
a common distribution and finite variance was proved by Cantelli 
(1875-1966) in 1917, a less general result having been proved earlier by 
E. Borel. 

Quite generally, a singly or doubly infinite sequence of random variables 
/ it ƒ2, • • • or • • •, ƒ-!, /o, ƒ,, / 2 , • • • is called a discrete parameter stochastic 
process. The various sequences /i(o>), /2(w), • • • or • • •, /.i(w), /o(<*>), • • • 
arising from the points co of fi are called the sample sequences of the pro­
cess. When the random variables are not independent, one classifies pro­
cesses by the nature of the dependency relations that exist. These are deter-

n times 

mined by the joint probability distributions in R x R x • • • x R = Rn as­
sociated with the finite subsequences ƒ*,ƒ*•!, • • • ,ƒ*•„-!. For example, if the 
distribution in Rn is independent of k9 the process is said to be stationary. 
Perhaps the most important and widely studied class of all is the class of 
Markov processes. To define this class one needs the notion of "conditional 
probability." Let a be a probability measure in R x R and let à be the pro­
jection on the first factor, i.e., a(F) = <x{F x R) for each Borel subset F of 
R. By a simple and fundamental theorem in measure theory, there exists for 
each x in R a probability measure ft in R such that OL(E X F) = 
\E @x(F)dà{x) for all Borel sets E and F. The measures & are uniquely deter­
mined (mod 5 sets of measure zero). If two random variables ƒ and g have a 
as joint probability distribution, one says that &(£) is the conditionalprob-
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ability that g is in E given that ƒ takes the value x. The generalization to sev­
eral variables is obvious. Thus if/*, ƒ*•!, * • •,ƒ*•«-! are random variables in 
a process, one can introduce Pxk.xM.•••.***,., the conditional probability 
distribution for fk+n-x given that fk = **, fM = x**i, • • *,/«+»-2 = **+«-2. The 
process is said to be a Markov process if j3v iJWa is independent of n 
and of xk> • • -, JC*+„-3 and depends only on x*+„-2. It is said to be a Markov 
process with stationary transition probabilities if ftrà...-iJWa = jS^^ is 
also independent of k + n; that is, if there exists a map x — ft/ of real 
numbers into probability distributions such that j3v .**+„-2 = &L-2- ^ n e 

can think of the sample sequences of such a process as generated by a "ran­
dom walk." Choose an arbitrary starting point xx. Move to x2 "at random" 
using the probability measure (3X[. Then move to x3 "at random" using ft/2, 
etc. In the special case in which the probability distribution of the ƒ are all 
supported by a fixed finite set — say (l, 2, • • -, A:}—one says that there is a 
"finite state space" and x — ft/is defined by a k x A:matrix. Markov began 
the theory in 1906 with an analysis of the finite state case. 

Instead of a sequence of random variables / i , / 2 , • • -, it is convenient in 
many problems to consider a family t —> ƒ, of random variables parameter­
ized by a real number t (interpreted as the time in most applications). While 
there are additional technical complications (of a highly non-trivial nature) 
and one brand new problem, in broad outline the theory of continuous 
parameter Markov processes is similar to the theory of the discrete 
parameter case. Of course, one has sample functions instead of sample se­
quences, and the measure fi in the universe 0 leads to a measure in the space 
of all sample functions. The celebrated Wiener measure is of this character. 
In fact, Wiener's theory of Brownian motion, developed in the early 1920s, 
is the theory of the most important special case of a continuous parameter 
Markov process with stationary probabilities and continuous state space. 
The general theory of such processes was inaugurated by Kolmogorov in an 
important paper published in 1931. The new problem arises out of a dif­
ference between discrete and continuous parameter Markov processes that 
is analogous to that between unitary representations of the groups Z and R. 
In the first case, the representation n — Un is uniquely determined by the 
single unitary operator Ut. In the second case, since R has no least element, 
one must differentiate and express t — Ut = emt in terms of its "in­
finitesimal generator" iH in order to describe the representation by a single 
operator. In a continuous parameter Markov process, the transition prob­
abilities are described by a probability measure ft/,v»a which depends in 
general on three real variables and has the following interpretation: 
ft/.r, .t2 (f) is the probability that fh will have a value in Fgiven that fh has the 
value x ( U < t2). In the stationary case &',,,*, =/8jrU»r2-*1 so that there are ef­
fectively only two variables. Quite generally, let x — yî and x — yi be two 
mappings of R into probability measures in R, and suppose that x — yi(E) is 
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measurable in x for y = 1, 2, and all E. Then the two step random walk us­
ing first x — yl and then x — yi leads to a mapping x —• yl of /? into prob­
ability measures which one can think of as the composite 7*07* of 71 and 
y2. It follows from the definition of a continuous parameter Markov pro­
cess that 0t'3,t2o jSr̂ r, = &t^tx when tx < t2 </3, a relationship known as the 
Chapman-Kolmogorov equation. When the transition probabilities are sta­
tionary so that Pt[,t2 = j3o,r2-v this reduces to 0dUl*t2 = @ó,t°&ó>t2 so that the 
j8o,r constitute a one-parameter semi-group under composition. This has an 
infinitesimal generator that is defined by a linear operator in a suitable 
function space. The new problem lies in choosing this function space in such 
a way that one can recover the /?0',t from the infinitesimal generator. In the 
case of an infinite discrete state space, one has a one parameter semi-group 
of infinite matrices and one can differentiate to get an infinite matrix. This 
would seem to be the infinitesimal generator, but unfortunately it does not 
determine the semi-group. One needs "boundary conditions" in addition. 
Papers published by Doob (1910—) in 1942 and 1945 and by Levy in 1951 
did much to clarify the situation, but there has been room for much subse­
quent work by other mathematicians. In the case of a continuous state 
space, the problems are even more difficult. In Wiener's theory of Brown-
ian motion, the formal infinitesimal generator is a constant times d2/dx2, 
and more generally one defines a diffusion process in such a way that its 
formal infinitesimal generator is a second order ordinary differential 
operator (with rather general coefficients). W. Feller (1906-1970) devoted a 
large fraction of a distinguished career to a study of the determination of 
the process from its (suitably defined) infinitesimal generator in this case. 
Many applications of probability theory involve Markov processes, and as 
in physics one starts by knowing the infinitesimal generator. 

The other much studied and extensively applied class of stochastic pro­
cesses is the class of stationary processes — both discrete and continuous 
parameter. This class is also the most relevant to our main theme because its 
theory is related in an intimate way both to harmonic analysis and to the 
branch of mathematical analysis known as ergodic theory. Ergodic theory is 
one of the newer branches of mathematics, essentially non-existent before 
1931. Moreover, it turns out to have a number of significant connections 
with the theory of unitary group representations and increases the scope of 
harmonic analysis in a manner which is only now beginning to be explored. 
Let us begin with a brief account of the nature and history of ergodic the­
ory. 

Let T denote the phase space of a classical dynamical system and let Ut be 
the one-to-one transformation of T into itself which is such that Ut(y) is the 
point of T that describes the state of the system t time units after it was de­
scribed by 7. (We consider only systems that are "reversible" in the sense 
that the Ut exist.) Then Utl+,2 = UhUt2 and we have an action of the additive 
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group of the real line on I\ Let H be the real-valued function on T that de­
fines the energy, and for each real number E for which H'\E) is not empty 
let TE = H~\E). Then the sets TE are carried into themselves by the C/„ and 
moreover, each of them admits a natural measure QE which is Ut invariant. 
Furthermore, for the systems of interest in statistical mechanics (see section 
13), QE(TE) is finite. As part of the program for deducing the fundamental 
algorithm of statistical mechanics, Boltzmann wanted to prove the follow­
ing theorem: Let g be a bounded continuous real-valued function on IV 
Then the "time average" lim -^\l g(Ut{y))dt is equal to the "space aver­

i l » / ° 

age" —Tp-T J r E g(y)dQE(y) for all choices of 7. Boltzmann naively hoped to 
base a proof of this theorem on the hypothesis that each trajectory or path 
t — Ut(y) goes through every point of the constant energy hypersurface 
rE. Putting together the Greek words ergon 'work' and odos 'path,' he 
called his hypothesis the ergodic hypothesis. The validity of this hypothesis 
was much debated, and it was ultimately shown to be untenable for topo­
logical reasons that now seem obvious. While various alternative hypothe­
ses were proposed, nothing much could be deduced from them, and the sub­
ject remained in a state of uncertainty and confusion for over half a cen­
tury. 

Ergodic theory in its modern sense came into being in 1932 as a con­
sequence of the following sequence of events: In May 1931, B. O. Koop­
man (1900—), inspired by Stone's paper of 1930 on unitary representa­
tions of the real line and by von Neumann's 1929 work on the spectral the­
orem, published a short note making an observation that today seems quite 
obvious. He pointed out that if one forms the Hubert space^2(IV QE), one 
can obtain a unitary representation V of the real line by setting Vt(f)(y) = 
f(Ut(y))- He also pointed out that Stone's theorem permits one to assign a 
projection-valued measure to the system, and suggested that it might be 
fruitful to relate the properties of this projection-valued measure to the 
properties of the system. Koopman discussed his work with von Neumann 
before it was published, and this conversation suggested to von Neumann 
the possibility of applying operator-theoretic methods to prove the equality 
of space and time averages in statistical mechanics. That Koopman's work 
might be so applied was also suggested to von Neumann by Weil6 a short 
time after Koopman's paper appeared. These facts are stated in the intro­
duction to a short note by von Neumann published in early 1932. In this 
note von Neumann proves what is now called the mean ergodic theorem. 

This asserts that for any ƒ i n ^ I V QE), the time averages^ \T
0f(Ut{y))dt = 

fT converge in the Hubert space metric to a function ƒ which is a constant on 
the Ut orbits. If the action of Ut on rE is "metrically transitive" in the sense 
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that there are no measurable invariant subsets (excep£ sets of measure zero 
and their complements), then it is easy to show that ƒ is almost everywhere 
equal to the constant —T=TT j f(y)dQE(y). Except for replacing transitivity 

QE(* E) 

by metric transitivity and using convergence "in the mean" instead of 
pointwise convergence, this is just what Boltzmann had wanted to do. In 
fact, whenever the hypothesis of metric transitivity can be verified, the 
physical conclusions desired by Boltzmann follow. Pointwise convergence is 
not really needed, but it too can be proved. Shortly after learning of von 
Neumann's result, G. D. Birkhoff (1884-1944) proved the much more diffi­
cult pointwise ergodic theorem. For ƒ integrable with respect to QE, the time 
averages — \If(Ut(y))dt converge for almost all y to an integrable function ƒ 

which is constant on the Ut orbits. As before, if the action is metrically 

transitive, ƒ is almost everywhere equal to ,3E. . 
QE(\ E) 

Let us look more closely at the hypothesis of metric transitivity. It is very 
close to the original ergodic hypothesis of Boltzmann, but differs from it in 
one important respect. The ergodic hypothesis may be reformulated as the 
hypothesis that TE has no proper subsets that are invariant under the Ut. 
The hypothesis of metric transitivity seems to be only slightly weaker. It ex­
cludes proper invariant subsets, but only those which are measurable and 
not measure-theoretically improper. One might suppose at first that this 
weakening made little difference — that under reasonable regularity condi­
tions metric transitivity could be reduced to ordinary transitivity by discard­
ing an invariant set of measure zero. This naive supposition is false. Consid­
er the action of the infinite cyclic group Z on the circle \z\ = 1 defined by 
setting (z)n = zeine where 0 is an irrational multiple of w. The ordinary arc 
length measure in |z| = 1 is preserved, and every Z trajectory is countable 
and hence of measure zero. Cannot some of these trajectories be gathered 
together into a measurable set other than by taking almost all of them or al­
most none? A simple argument using Fourier analysis shows that they can­
not. One need only study the Fourier coefficients of the characteristic func­
tion of a Z-invariant measurable set to see that every such set is either of 
measure zero or the complement of a set of measure zero. Metric transitiv­
ity, though analogous to ordinary transitivity, is not reducible to it and in 
fact turns out to be much more general. 

That non-transitive metric transitivity can exist at all was noted for the 
first time only a few years earlier. Following the lead of G. W. Hill 
(1838-1914) and Poincaré (1854-1912), G. D. Birkhoff had been studying 
the qualitative properties of low-dimensional dynamical systems whose 
equations of motion could not be integrated. Using Poincare's idea of "sur­
faces of section," he could reduce problems about actions of the real line on 



634 G. W. MACKEY 

three-dimensional manifolds to problems about actions of the integers on 
two-dimensional surfaces. In this connection and in collaboration with Paul 
Smith (1900—), he published a long paper in 1928 on the structure of such 
surface transformation groups. This paper contains a definition of metric 
transitivity and the example sketched above. 

It seems to have been von Neumann, however, who first realized the far-
reaching significance of the new concept. A slight modification of the exam­
ple of Birkhoff and Smith shows that it is possible for the real line to act in a 
metrically transitive manner on a compact manifold of arbitrarily high di­
mension. Thus (though the question seems difficult to settle in concrete 
cases) it is at least conceivable that many, and even most, dynamical systems 
have the property that the action defined by the time evolution of the system 
is metrically transitive on the constant energy hypersurfaces. As von Neu­
mann emphasized, the hypothesis of metric transitivity is exactly the right 
substitute for Boltzmann's untenable ergodic hypothesis. Because of this 
and because ''ergodic** is shorter than "metric transitivity," it has become 
customary to follow von Neumann's lead and call a metrically transitive ac­
tion an ergodic action. Of course, a transitive action or even one reducible 
to a transitive action by neglecting an invariant set of measure zero is auto­
matically ergodic. It will be convenient to distinguish between the two possi­
bilities by using the terms essentially transitive and properly ergodic depend­
ing on whether there is or is not an orbit of positive measure. 

The existence of proper ergodicity raises a host of interesting questions, 
and modern ergodic theory may be loosely defined as the branch of mathe­
matics that attempts to answer them. The first detailed paper on the subject 
was published by von Neumann in 1932 and is entitled "Zur Operatoren-
methode in der klassischen Mechanik." Theorem 1 of the paper is von Neu­
mann's mean ergodic theorem, which is proved in detail. Theorem 2 is a 
fundamental decomposition theorem underlining the fact that the ergodic 
actions are the fundamental building blocks out of which all measure-pre­
serving actions can be constructed. Consider the action of the infinite cyclic 
group Z on the unit disk \z\ < 1 in the complex plane defined by setting (z)n 
= zeine where 0/TT is irrational. This action preserves the area measure in the 
disk but is far from ergodic. Indeed, for 0 < a < 1, the set of all z with \z\ 
< a is both invariant and measure-theoretically proper. On the other hand, 
the circles \z\ = r fiber the disk, and the area measures may be recovered 
from the arc measures in the fibers by an integral over 0 < r < 1. 
Moreover, these fibers are invariant so that the given action is in an obvious 
sense a "direct integral" of the actions in the fibers. Finally, by an argu­
ment already sketched, the fiber actions are all ergodic. Thus the given 
measure-preserving action decomposes as a "direct integral" of ergodic ac­
tions. Von Neumann's Theorem 2 asserts (with mild regularity assump­
tions) that a fibering (not necessarily with good topological properties) per-
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mining such a decomposition always exists and is essentially unique. 
Theorem 5 makes a beginning on the difficult and still unsolved problem of 
classifying the possible "essentially different" ergodic actions of R by giv­
ing a complete classification in a special case. Let f —• Vt be the unitary 
representation of the real line associated with the action by Koopman's con­
struction. Let Vt = eiHt where His self-adjoint. If//has a basis of eigenvec­
tors (equivalently if V is a discrete direct sum of irreducibles), then the ac­
tion is said to have a pure point spectrum. Given such an action, let Xi, X2, 
• • • be the eigenvalues of // . It is easy to see that the X, all occur with 
multiplicity one and constitute a subgroup of the additive group of the real 
line. Von Neumann showed that actions with a pure point spectrum are 
determined to within an obvious equivalence by the countable subgroup of 
eigenvalues of //, and that every countable subgroup occurs. The action is 
properly ergodic if and only if the subgroup is dense, and this happens if 
and only if the subgroup is not the set of all integer multiples of a fixed posi­
tive real number. Using group duality (which was discovered two years 
later), it is very easy to describe the properly ergodic action associated with 
a dense countable subgroup D of the real line. Think of D as a subgroup of 
R and let ^ be the natural isomorphism of D into R. Then ^* (see section 17) 
is a dense imbedding of R in D. The action of R on D defined by setting (x)t 
= y//*(t)x preserves Haar measure in D and is the required properly ergodic 
action. Theorem 6 is concerned with the properties of an interesting class of 
ergodic actions of R constructed out of ergodic actions of Z and real-valued 
functions. A main conclusion is that not only do there exist ergodic actions 
with point spectrum {0}, but that these are the rule rather than the excep­
tion — at least in the class considered by von Neumann. Von Neumann's 
paper stimulated many others and ergodic theory developed rapidly. By 
1937 E. Hopf (1902—), one of the more active workers, was able to publish 
a short book on the subject. For a while there was hope that an ergodic ac­
tion would be completely determined by its spectrum (as in the pure point 
spectrum case), but that hope turned out to be illusory. Even in the case of 
ergodic actions of the integers there is no immediate hope of obtaining 
either a complete classification or a characterization of the spectra that can 
arise. 

Although ergodic theory originated in statistical mechanics, it had little 
impact on that subject until rather recently. In the first few decades of its 
existence, its most important applications by far were to the theory of sta­
tionary stochastic processes. Consider first the discrete parameter case and 
let • • '9f-ufo,fi9 ' ' ' be the random variables of our stationary process. 
There is no essential loss in generality in assuming that the functions^ sepa­
rate the points of the universe Q in that o) — • • -,/-i(c*>),Moo),Moo), • • • is a 
one-to-one map of Q into the product space of countably many replicas of 
R.lf fi' is the image of fi in the product space, the complement of the image 
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of fi will be of measure zero. Hence there is no loss in generality in identify­
ing fi with the space Rz of all real-valued functions on the integers. When 
this is done,/„(co) is just u(n)9 and translation provides a natural action of Z 
on Ö such that fn(o)) = /o(Mfl). Moreover, the definition of stationarity 
translates into the statement that fi is invariant under the Z action. In other 
words, a discrete parameter stationary stochastic process is uniquely deter­
mined by the system consisting of a measure-preserving action of Z on a 
probability measure space fi, JX and a single measurable function ƒ on fi. The 
random variables of the process are of course the functions w — f([u]n) for 
n = • • •, - 1,0, 1, 2, • • \ Similarly, although the argument is less straight­
forward, a continuous parameter stationary stochastic process is defined by 
the system consisting of a measure-preserving action of R on a measure 
space Ö, fi and a measurable function ƒ on fi, the random variable ft being œ 
— /(M0« While the measure-preserving action of R or Z canonically asso­
ciated with a stationary stochastic process need not be ergodic, the underly­
ing universe fi can always be measure-theoretically fibered into ergodic 
parts by the theorem of von Neumann stated above. Moreover, any actual 
event w e Ö will belong to some ergodic part, and for most applications of 
the theory one can forget the rest of fi. For these reasons there is little loss in 
generality in considering only stationary stochastic processes in which the 
action is ergodic. Actually, it is quite easy to show that when the random 
variables are independent (which can happen only in the discrete parameter 
case) then the underlying action is ergodic! 

Suppose then that our stationary stochastic process is defined by an ergo­
dic action of R or Z on a probability measure space fi, fi and a real-valued 
measurable function/. If the random variables have expectations, so that 
\(f(œ))dfi(œ) < oo, we may apply the pointwise ergodic theorem of G. D. 
Birkhoff. There is a discrete version as well as a continuous one, and it 

* +u . f i . 1 1 v A<*) + / ( w l ) +/(co«2) + • • • + / ( W A Î ) 

asserts that for almost all co, hm ^-^—— -—— '- — '-
n— » n + l 

exists and equals \f(o))dfi(o)). But f((u)n) = /„(co), and j/(o;)^(a;) is the com­
mon expectation of the random variables/,. Thus the discrete version of the 
pointwise ergodic theorem is nothing more or less than the strong law of 
large numbers for arbitrary (ergodic) stationary stochastic processes. As 
such it is a considerable generalization of the Borel-Cantelli theorem, which 
states the strong law for independent identically-distributed random varia­
bles. It is curious that this interpretation of the pointwise ergodic theorem 
was not immediately recognized. While G. D. Birkhoff's proof was an­
nounced and sketched in late 1931, and Kolmogorov's book on measure 
theoretic foundations appeared in 1933, the book does not mention the er­
godic theorem. The connection between the ergodic theorem and the strong 
law of large numbers was not mentioned in print until 1934. It was pointed 
out in three independent papers published in that year by Doob, E. Hopf, 
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and Khintchine respectively. 
Suppose now that the random variables have finite variances so that ƒ is 

in<^2(0> /*)• Let G = Z or R depending upon whether we are in the discrete 
case or the continuous case. Let x — Vx be the unitary representation of G 
defined by the Koopman construction. Then (VX(J) •.ƒ) is a positive definite 
function canonically associated with the process, and by the Bochner (or 
Herglotz) theorem Vx(f) • ƒ = \x(x)dv(x) where v is a finite measure on G, 
i.e., on the circle or the line. This measure is called the spectrum of the pro­
cess and plays an important role in its theory. Another interesting conse­
quence of the pointwise ergodic theorem is that the function x -* ( VJJ) • j)> 
and hence the spectrum v can be determined from the "complete past" of 
almost any sample function. For definiteness let us look at the continuous 
case. Then Vx(f)(œ) = /(M*), and since ƒ and Vx(f) are both square integra-
ble, their product (Vx(J)\f = g is integrable. Hence, by the ergodic theorem, 

lim -nn\lg(lo)](t))dt exists for almost all co and equals JiKco)cW<o) = KiJ) • ƒ. 

Now g(M(0) = 7(M(0)/(M (x - 0) = MWJpc - 0 where t - f£) -
./([«]/) is the sample function attached to the point co of the universe 0. 

1 fT 

Thus, for almost all <o, lim -7 J0/«(-0./U* - t)dt exists and equals Vx(f)*f. 
It can be computed for negative x when one knows fjjt) for / < 0, and 
since it is an even function of x, this determines it for all x. The significance 
of this result lies in the fact that the theory of stationary stochastic processes 
is mainly applied to the statistical analysis of so-called "time series" — such 
as occur for example in economics and meteorology. One thinks of the sam­
ple functions t — fjj) as "possible" functions describing the temperature, 
say, or the price of wheat as a function of the time. One supposes that the 
variation of temperature or wheat prices actually observed is given by a 
function f^ chosen "at random" from S according to the probability 
measure /A. Looking at how fUo(t) has behaved for t < 0 (i.e., in the past), 
one can compute the Fourier transform of the spectrum of the whole sto­
chastic process. It is just the so-called "autocorrelation function" lim — 

T — 00 I 

Jo A ( " 0/o>0(* - t)dt of the sample function/„o. 
Some appreciation of the significance of the spectrum of a process may 

be had by looking at its discrete components, if any. Suppose that the mea­
sure v of which Vt{f) • ƒ is the Fourier transform has an "atom," i.e., that 
K(M) =É 0 for some X in R. This happens precisely when there exists <p ^ 0 
in^2(8, /i) such that Vt(<p) s eixt<p, and then <p is uniquely determined up to a 
multiplicative constant and ƒ may be written uniquely in the form ƒ = c<p + 
fL where <p and fL are orthogonal in iP(Q, /*). Now /w(0 = fl\u\i) = 
c<p([œ]f) + /-KMO = ce'xV(ü>) + /-KM/). Thus every sample function has 
a canonical decomposition as the sum of a constant multiple of the periodic 
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function eiXt and a sample function of a new process defined by f1. The 
spectrum of the new process is the same as that of the original except for the 
removal of the atom at X. Other atoms can be removed similarly, and in fact 
one can write ƒ = L Cj<pj + g where the <pj and g are mutually orthogonal, 
\(Pj(o))\ s l, Vt(<Pj) = ê Vy» and £ defines a process whose spectrum has no 
atoms. Correspondingly, the sample function in ƒ„ may be written fJJ) = 
£ C/̂ /oOe'V + gjjt). The terms c/pfa)ePv are called the "hidden periodici­
ties" of the sample function. Using the ergodic theorem just as before (but 
applied to ƒ£,), one finds that the coefficient c/pjfa) may be computed from 
the past of almost any sample function by the formula 

WX«)= lim UT
0M-t)e'^dt. 

7"-oo l 

This formula is essentially identical with that used by Bohr (see section 17) 
in computing the expansion coefficients of almost-periodic functions. In­
deed, when the c, do not go to zero too slowly, the difference fjjt) - gM) is 
an almost-periodic function in Bohr's sense. In any case, it is a generalized 
almost-periodic function whose values for / > 0 are determined by its 
values for t < 0. There can be no true randomness in our stochastic process 
if the underlying ergodic action has a pure point spectrum. 

The consequences of ergodic theory for the statistical study of time series 
just described were pointed out in the 1930s, the major publications being 
papers by Khintchine and Wold published in 1934 and 1938 respectively. 
They provided a justification for and a conceptual clarification of methods 
already in use by scientists and statisticians in studying specific time series. 
The determination of hidden periods goes back to work of the physicist 
Schuster (1851-1934) beginning in 1898. The use of the autocorrelation 
functions goes back to before 1920. A much-cited paper by Yule 
(1871-1951), published in 1927, makes use of autocorrelations in studying 
sunspot data. 

In 1930 Norbert Wiener published a long memoir entitled "Generalized 
harmonic analysis," which though conceived in a different spirit was in ef­
fect a remarkable anticipation of the theory of stationary time series. He 
had been engaged in trying to help electrical communication engineers cope 
with some of the problems of circuit design, and these problems seemed to 
require applying harmonic analysis to functions which were neither square 
summable nor periodic and, moreover, were more general than the almost-
periodic functions of Bohr. For reasons which I shall not attempt to de­
scribe, Wiener decided to study measurable functions for which the auto­
correlation function exists and is continuous. As we have seen, it is a conse­
quence of the ergodic theorem that the sample functions of stationary sto­
chastic processes constitute a rich source of examples. While the ergodic 
theorem was not stated or proved until a year or so after Wiener's paper ap­
peared, practically all the examples offered by Wiener were essentially sam-
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pie functions and were defined using randomness. On the other hand, Wie­
ner did not at the time think of himself as studying a whole statistical en­
semble of functions at once as in the case of the ƒ*,, but as studying a single 
function. His chief concern was to define the spectrum of the function, 
which he had to do without using Bochner's theorem (Bochner's theorem 
was published in 1932). 

In studying carefully the relationship between a function and its spec­
trum, Wiener found himself in need of a more powerful Tauberian theorem 
than any that existed (see section 14), and was thereby led to write his prize-
winning paper "Tauberian theorems," which was published in 1932. 

Later Wiener came to realize the merits of thinking of his functions as 
sample functions. This led him to the important insight that the coded mes­
sages with which the communication engineers had to deal were close ana­
logues of time series. Modern communication engineering makes heavy use 
of his discovery. 

From the point of view of this article the relationship between Fourier in­
tegrals, Fourier series, almost-periodic function expansions, and Wiener's 
generalized harmonic analysis is best viewed as follows: Let S, ft be a suit­
ably restricted measure space and let the real line R act upon S to preserve p. 
Harmonic analysis on R is concerned with decomposing the unitary repre­
sentation Kof R defined in<f2(S, fi) by the Koopman construction. Now by 
von Neumann's decomposition theorem, the given action can be decom­
posed into ergodic actions, and correspondingly V decomposes as a direct 
integral of Koopman representations — one for each ergodic component. 
This part of the decomposition is basically geometry, and one may think of 
harmonic analysis proper as the decomposition of V when the action is 
ergodic. We now divide into four cases according to whether ergodic action 
is properly ergodic or essentially transitive, and also according to whether 
n(S) is finite or infinite. When the action is essentially transitive, S may be 
taken to be R modulo a closed subgroup which is necessarily either {0} or 
the subgroup of all integer multiples of a, and the action is then just transla­
tion on the quotient group. Depending upon whether the subgroup is {0} or 
not, that is upon whether /x(S) = oo or /x(S) < oo, one is reduced to the 
Fourier transform or to Fourier series. When the action is properly ergodic, 
one can no longer identify S with the real line or one of its quotient groups. 
However, the decomposition of the Koopman representation Kmay still be 
regarded as defining a decomposition of real-valued functions on the real 
line, namely the functions / — f([s]t) for each s in S and each ƒ ing2(S, fi). 
Indeed, for each E and each s the function t — P]^f)([s]t) may be regarded 
as the component of t — f([s]t) whose spectrum is in the set E. When fi(S) < 
oo, this analysis is essentially the generalized harmonic analysis of Wiener 
— carried somewhat further than Wiener carried it. When in addition Kis a 
discrete direct sum of irreducible (and hence one-dimensional) représenta-
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tions, one recovers a slight generalization of Bohr's theory of almost-peri­
odic functions (see section 17). The case in which /*(S) = oo does not seem 
to have been investigated. 

19. EARLY APPLICATIONS OF GROUP REPRESENTATIONS TO NUMBER 
THEORY—THE WORK OF ARTIN AND HECKE 

In the first quarter-century of its existence, the theory of representations 
of finite groups had many applications to group theory itself. I have already 
mentioned the theorem on the structure of groups of order paq0. To my 
knowledge, however, there were no applications to other fields such as 
physics, number theory, or probability until the 1920s. The extensive appli­
cations to quantum mechanics, which began in 1927 (see section 16) have 
had the most publicity, but they were not the first. Appropriately, in view of 
Dedekind's role in inspiring Frobenius, the first application outside group 
theory seems to have been to Dedekind's own creation — the theory of alge­
braic number fields. It was made in a celebrated paper of Artin (1898-1962) 
entitled "Über eine neue Art von L-Reihen," published in 1923. 

Before attempting to explain the nature and significance of what Artin 
did in this paper, I must devote a few paragraphs to sketching the origins of 
the theory of algebraic number fields and the course of its development be­
tween its beginnings in the 1870s and the publication of Artin's paper in 
1923. 

As observed by Gauss in 1830, the problem of finding the integer solu­
tions of the equation x2 + y2 = n may be usefully approached by factoring 
x2 + y2 as the product of x + iy and x - iy. The set of all complex numbers 
of the form x + iy where x and y are integers is a ring called the ring of 
Gaussian integers. Like the ordinary integers, the Gaussian integers admit 
"unique" factorization into "primes." One calls a Gaussian integer a unit 
if it has a multiplicative inverse, and a prime if it cannot be written as a 
product of Gaussian integers other than units and products of units with 
itself. It is then easy to prove that every Gaussian integer is a product of 
primes and that this factorization is unique up to reordering and multiplica­
tion by units. The units are 1, - 1, /, and - ƒ. Now since (a + ib)(a - ib) = 
a2 + b2

9 it follows at once that every Gaussian prime is a factor of some or­
dinary integer and hence of some ordinary prime. To determine the Gaus­
sian primes, it thus suffices to factor the ordinary primes, and it is obvious 
that an ordinary prime p which is not already a Gaussian prime must be of 
the form x2 + y2 and factor into x + iy and x - iy. It is not difficult to show 
that x + iy and x - iy are always Gaussian primes and are equal mod units 
only when/? = 2. In that case (1 + /) = (1 - 0(0- Thus once one knows for 
which primes p one can solve x2 + y2 = p, one knows all Gaussian primes. 
To solve x2 + y2 = n, one then has only to factor n into Gaussian primes 
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and then divide the factors into two classes in such a way that each class 
contains just one of each pair of conjugates. 

The advantage of this approach is that it may be applied not only to 
quadratic Diophantine equations other than x2 + y2 - n, but to higher 
order equations as well. For example, when m is odd, one can study the 
equations xm + ym = n by factoring xm + ym as the product {x + uy)(x + 
œ2y) • • • (x + œm'ly)(x + y) where co is a primitive rath root of 1. There is a 
difficulty, however, in that the ring generated by c*> need not have unique 
factorization. If it did, one could obtain enough information about the sol­
vability of xm + ym = n to prove Fermat's famous conjecture about the 
nonexistence of integer solutions of xm + ym = zm when m > 2. Indeed, in 
the early 1840s, Kummer (1810-1893), overlooking the possible failure of 
unique factorization, thought he had a proof of the Fermât conjecture in 
the general case. This mistake led him to attack the problem of finding a 
substitute for the unique factorization law and to solve the problem for the 
particular case of the ring generated by the rath roots of 1. The "ideal num­
bers" he introduced as substitutes for primes sufficed to deal with various 
special cases of the Fermât problem, but the general case remains open to 
this day. 

If one passes from xm + ym to a general homogeneous form of the mth 
degree ûrwx:

m + am-\Xm~ly + • • • + ctoym, one can still approach the problem 
of solving Diophantine equations of the form a„^m + am-xx

m~ly + • • • + 
tf(j>m = n by factoring the left-hand side. One can write it as tf„j>m((x/»m + 
am-x{x/y)m-1 + • • • + a0) = a^dx/y)- cct)((x/y) -a2)- • -((x/y) - otm) 
= am{x - 0L^y){x - a*y)- • -(x - a„j>), where the a, are the roots of aOTx:

m + 
cim-iXm~x + • • • + a0 = 0, and attempt to generalize Kummer's ideas to the 
ring generated by the a,. It turned out to be not at all obvious how to do 
this. The problem remained unsolved until attacked in different ways by 
two younger mathematicians, Kronecker (1823-1891) and Dedekind 
(1831-1916). Although Kronecker was Kummer's pupil, his solution was 
published a decade after that of Dedekind, and proved the less popular. De-
dekind's theory appeared in 1871 as supplement X to the second edition of 
Dirichlet's lectures on number theory. Various revised forms appeared in 
later editions. 

Given an equation amxm + • • • + a0 = 0 with integer coefficients, let< "̂ 
be the smallest set of complex numbers containing all the roots of the equa­
tion and closed under addition, multiplication, and division. In other 
words, let^Fbe the so-called algebraic numberfield generated by the roots in 
question. Every member of ^"satisfies some polynomial equation with inte­
ger coefficients, and those that satisfy such an equation with leading coeffi­
cient 1 are said to be algebraic integers. The set R of all algebraic integers in 
^is a ring, and Dedekind concerned himself with factorization in this ring. 
For each non- zero algebraic integer x in R, one can form the set Ix of all xy 
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for y in R and prove that IXl = IXj if and only if xx = ux2 where w is a unit. 
Moreover, it is easy to see that for all xx and x2, IXlx2 = LJx2 where the latter 
is defined to be the set of all sums y xzx + y2z2 + • • • y^r where the y3 are in 
ƒ,, and the Zj are in /»2. Thus factorization can be translated into properties 
of the sets Ix and then one doesn't have to be concerned about the arbitrari­
ness produced by units. Dedekind's key observation is that in those rings for 
which unique factorization does not hold, one can augment the subrings Ix 

with other subrings in such a way that unique factorization is restored. Each 
Ix in addition to being a subring has the property that z e IX9 and.y e R implies 
zy e Ix. Dedekind defined a subring to be an ideal whenever it has this prop­
erty. When R has unique factorization, the ideals correspond one-to-one to 
the elements mod units. Otherwise there are always ideals which are not of 
the form Ixy and Dedekind thought of them as defining "virtual" or "ideal" 
elements — hence the word ideal. Defining an ideal / in R to be prime when 
it cannot be written in the form IJ2 where Ix and I2 are (not necessarily dis­
tinct) ideals, Dedekind was able to prove that every ideal may be written in 
the form 7Î« 7Î» • • • J> where the ƒ, are distinct prime ideals and are uniquely 
determined up to a rearrangement. 

An ideal of the form /, is said to be principal, and one can show that the 
factorization of principal ideals leads to all prime ideals — indeed that every 
prime ideal "lies over" one and only one ordinary prime p in the sense that 
it occurs in the factorization of Ip. For any ideal ƒ other than {0}, one can 
introduce an equivalence relation in R by setting x s y mod /if x - y is in /, 
and show that there are only a finite number of equivalence classes. The 
number of these is denoted by N(I) and called the norm of the ideal. When R 
is the ring of ordinary integers N(IX) is just |JC|. More generally, N(IJ2) = 
N(IX)N(I2)9 and when p is an ordinary prime N(IP) = pm where m is the di­
mension of the field considered as a vector space over the rationals. Thus 
every prime ideal lying over p has a norm which is a power of p. Actually it 
turns out that with the exception of a finite number of so called "ramified" 
primes, all the prime ideals lying over p are distinct and have the same norm 
pk. If there are t of these, then pki = pm

9 so k and t are divisors of m. 
Knowing t for each prime p and knowing how the ramified primes behave 
tells us N(I) for all possible ideals I. This information is summed up in the 
Dedekind zeta function of the field, which is defined by the equation ^ (*) 

= E -—rr— the sum being over all non-zero ideals. Of course one has also 
ƒ N(I)3 

f (s) = L s where <pAri) is the number of ideals of norm n. 
/i = i n 

In the special case in which the field ^ i s a two-dimensional vector space 
over the rational numbers, a so-called quadratic extension, then f#(s) coin­
cides with the function S , ' which Dirichlet attached to a binary quad-

/i = i n 
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ratic form a third of a century earlier (see section 6) in his proof of the exist­
ence of an infinity of primes in an arithmetic progression. In fact, the the­
ory of the binary quadratic forms of a fixed discriminant D is more or less 
equivalent to the ideal theory in the algebraic number field generated by 
VZ5, and the theory of algebraic number fields as worked out by Dedekind 
and his successors may be looked upon as a far-reaching generalization of 
the theory of binary quadratic forms of Gauss and Dirichlet. In this general­
ization, the algebraic number fields whose integers admit unique factoriza­
tion correspond to quadratic forms of class number one. For more general 
algebraic number fields there is a finite commutative group that generalizes 
the group formed by the inequivalent classes of quadratic forms of a given 
discriminant under Gauss's composition law (see section 6). This is the 
group of ideal classes, which may be defined as follows: One declares the 
ideals Ix and I2 to be in the same class if there exist elements x and y such 
that IJX = I2Iy. This equivalence relation divides all ideals into a finite num­
ber of classes and the number h is called the class number of the field. It is 
obvious that the class of IP depends only on the classes to which / and P be­
long, and that the resulting composition law makes the classes into a com­
mutative group. In addition to the problem of determining^ (n) (the num­
ber of ideals of norm n), one has also the more delicate problem of deter­
mining for each ideal class c the number ^ (n) of ideals of norm n in that 
class. This latter problem is the analogue of the problem of finding the 
number of representations of AÏ by a particular quadratic form, and as with 
that problem n -* <pc

f (ri) is not a multiplicative function of n (see section 6), 
but a linear combination of such functions with one term for each character 
of the ideal class group. 

Generally speaking, the theory of algebraic number fields parallels the 
theory of binary quadratic forms except for the extra complications pro­
duced by passing from a second to a higher degree equation. Of course, 
these added complications can be quite serious, and one has as complete a 
knowledge of the function n -+<p^ (n) as in the quadratic form case only 
when the Galois group (i.e., the group of automorphisms of#) is a commu­
tative group. In that case, one has a generalization of the quadratic reci­
procity law in that whether or not Ip is a prime ideal — and more generally 
the numbers of prime ideals into which Ip decomposes — depends (for the 
unramified primes) only on the congruence class of p relative to some fixed 
modulus m. That this is so is by no means obvious. It is a consequence of 
Rummer's results on the field generated by the mth roots of unity and of a 
remarkable theorem conjectured by Kronecker in 1886 and first completely 
proved by Weber (1842-1913) in 1887. This theorem asserts that every# 
with a commutative Galois group is contained for some m in the field gener­
ated by the mth roots of unity. Very little is known about the dependence on 
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p of the prime decomposition law when the Galois group is not commuta­
tive. 

Let Sf be as above with Galois group G, and for each subgroup H of G let 
&H be the subfield of all x in ̂ such that a(x) = x for all automorphisms a of 
ƒƒ. In its modern form, one of the main results of the Galois theory of equa­
tions (see section 11) asserts that every subfield of ,^is a n ^ and that H — 
&H sets up a one-to-one inclusion inverting correspondence between the sub­
groups of G and the subfields of &. Now each 9H has a subring of integers 
RH and one can consider generalizing the problem of factoring the ideals Ip 

to that of factoring the ideals in R generated by the prime ideals in RH. In 
other words, one can study ideal factorization in &relative to an arbitrary 
subfield &H. Moreover, in view of the facts stated above about the case in 
which H = G and&H is the rational subfield Q, it is natural to hope for im­
mediate results only when H is Abelian; in other words, to study first those 
extensions'^)/ in which the relative Galois group is Abelian. 

Extending the classical results of Gauss, Dirichlet, and Kummer to 
relatively Abelian extension fields turned out to be far from easy. Important 
preliminary results were obtained by Kronecker in 1882 and by Weber in 
1891, 1897, and 1898. Hubert is usually credited with having begun the sys­
tematic general theory, however, in a series of papers published between 
1898 and 1902. Even the case of a relative quadratic extension proved to be 
difficult; it was the only one that Hubert worked out in full detail. 
However, he outlined how the theory should look for a more general 
Abelian relative Galois group and made a number of conjectures which 
were established in the next two decades by his student Furtwangler 
(1864-1939) and by Takagi (1875-1966). Takagi, who brought the subject to 
a certain degree of completion in two important papers published in 1920 
and 1922 respectively, not only proved Hubert's conjectures, but made im­
portant conceptual advances as well. For a more complete account of the 
relationship between the work of Kronecker, Weber, Hubert, Furtwangler, 
and Takagi the reader is referred to Hasse's article "History of class field 
theory," published in the proceedings of the 1965 Brighton Conference on 
algebraic number theory. 

In generalizing the quadratic reciprocity law, Hubert was led to an 
elegant new formulation in the classical case. It is based on a concept in­
troduced by him and called the norm residue symbol. Let # be a quadratic 
extension field of the rational field Q. Then the norm residue symbol 
assigns a character xf of the multiplicative group Q* of Q to each prime p 
and to oo. This assignment is such that x/W = ± 1, and for each r and^, 

Xp(f) = - 1 for only finitely many values of p. Thus II x/W makes sense. 
p 

Hubert showed that the classical quadratic reciprocity law (see section 6), 
together with its two supplements, is completely equivalent to the assertion 



HARMONIC ANALYSIS AS EXPLOITATION OF SYMMETRY 645 

that IT \f (r) = 1 for all non- zero rational numbers r (p of course ranges 

over all primes and oo). Hubert's definition of the character x?depended on 
the factorization of Ip in the ring of integers of # in a way which it will be 
easier to describe in section 20 below. 

For each prime, the characters x/that arise as ^varies over the quadratic 
number fields turn out to form a subgroup Ap of the group of all characters 
of order 2. Hilbert also showed that a system/? —• xP of characters of order 2 
arises as p —• \f for some if if and only if the following conditions are 
satisfied: 1) xP e Ap for all p including oo; 2) for all but a finite number of 
values of p, xP(n) = 1 whenever p does not divide n; 3) n xP(f) = 1 for all 

p 
non-zero rationals r. In this sense, Hilbert described all possible quadratic 
extensions of Q in terms of the character groups Ap. In his theory of relative 
quadratic extensions, he found generalizations of both the quadratic 
reciprocity law and the theorem about the possible quadratic extensions of 
Q. 

When one goes beyond the quadratic case to more general Abelian exten­
sions, the system p — xP of characters of order 2 must be replaced by a finite 
set of systems p — xP> where the xP are now only of finite order and where 
the finite set forms a group under pointwise multiplication. This finite 
group turns out to be isomorphic to the Galois group of the field if. (Of 
course when the Galois group is of order two, it suffices to specify the 
unique system p — xP which does not correspond to the identity.) In the 
generalization to relative fields, the prime ideals for the base field#H replace 
the primes, and the symbol oo gets replaced by several such symbols — one 
for each possible dense imbedding of ifH in the real or complex number 
fields. 

With this background it is possible to describe Artin's 1923 application of 
group representations to number theory. It is based on Artin's discovery 
that for each if there is a canonical way of assigning a Dirichlet series s —> 
L(s> X> &id to every pair ifH, x consisting of a subfield ,fH of *f and a 
character x of the Galois group H of ^relative to tfH. Artin's definition of 
L(s9 x> £id depends in turn upon certain facts about the action of H on the 
prime ideals in R which lie over a fixed prime ideal V in RH. It turns out that 
(with the exception of a finite number of "ramified" prime ideals ^) //acts 
transitively on the prime ideals of R lying over V and that the subgroup of H 
leaving a given one of these fixed is always cyclic and, moreover, has a 
canonical generator. Since the conjugacy class of this generator is evidently 
the same for all prime ideals on R lying over ̂ , we have a natural map V—> 
Cy of (unramified) prime ideals in RH into the conjugacy classes in //. Now 
for each V and each representation T of //, the determinant of 
(/ - IWOP)"5) where / is the identity is easily seen to depend only on the 
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conjugacy class to which x belongs — and of course on s and V. Choosing x 
to be any element in Ce* this determinant becomes a well-defined function 

/«(s) of s and V. The Artin "I function" L(s9 x,£H) is n -7-7-; where T 

is any representation of character x. 
Although it is possible to define fv (s) for the ramified prime ideals as 

well, it suffices for many purposes to look only at the unramified ones and 
to identify two Dirichlet series when one can be transformed into the other 

by multiplying or dividing by a finite number of factors of the form 

where Q is a polynomial and p is an ordinary prime. Modulo such factors 
one can then verify the truth of the following relationships: 
(1) When x is the identity character, L(s> x, &H) is the zeta function of # 

relative to ^ . 
(2) L(s9 xi + XI*&H) = L(s9 xu >J?H)L(S, XI, &H) for all characters Xi and X2 

of if. 
(3) If x* is the character of H induced by a character x of some subgroup 

Hx of H (see section 15), then £(5, x*V̂ /#) = L{s, x,^/,)-
Applying (3) to the case in which Ht contains only the identity and x is one-
dimensional, and using the fact that x* is then the sum of all irreducible 
characters Xu X2, • • % Xi each occurring with multiplicity xfc)* one finds 
that L(s, Lxj(e)xj><°?H) = L(s, l,^).It now follows on applying (2) and (1) to 

the left- and right-hand sides respectively that II L(s, X/> &idxj(e) = f f(s). In 
j 

other words, the zeta function of any ^(modulo the equivalence relation 
mentioned above) can be factored as a product of the Artin L functions at­
tached to the irreducible characters of any fixed subgroup H of the Galois 
group G of 9. This factorization is significant because when H is com­
mutative, it follows from the work of Takagi that $>(s) factors as a product 
of generalized Dirichlet L functions and that Artin's L functions for the 
characters of H coincide (modulo equivalence) with the generalized 
Dirichlet L functions. Moreover, this coincidence of the two kinds of L 
functions is not an immediate consequence of the definitions, but is 
equivalent to one of the main theorems of class field theory. In fact, a few 
years later Artin was able to give a new proof of this theorem and 
reorganize the whole subject in a conceptually advantageous way by starting 
with a direct proof of the identity of the two kinds of L functions. 

The identity of the two kinds of £ functions in the commutative case pro­
vided for the first time a natural generalization of the Dirichlet L functions 
for fields with a non-commutative Galois group, and therefore a tool with 
which to attack "non-commutative class field theory." Using the relation­
ship L(s, X*>&H) = L(s9 x, <%,), one can express Artin L functions based on 
non-commutative characters in terms of generalized Dirichlet L functions 
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to the extent that general characters on G can be expressed in terms of 
characters induced by one-dimensional characters of subgroups. Using this 
device, Artin was able to establish various important properties of his new 
L functions and to show that others would follow if one could prove that 
every character of an arbitrary finite group can be written as a linear com­
bination with positive and negative integer coefficients of characters in­
duced by one-dimensional characters of subgroups. A proof of this difficult 
theorem about finite groups was found by Brauer (1901-1977) and pub­
lished in 1947. Brauer was a student of Schur and his most important im­
mediate successor in developing the representation theory of finite groups. 

Another early application of the theory of group representations to 
number theory was provided by Hecke (1887-1947) in 1928. It is perhaps 
more accurate to say that it was an application to the theory of modular 
forms, but the connection of the latter theory to questions in number theory 
— especially the theory of w-ary quadratic forms (see sections 10 and 22) — 
is so close that it seems appropriate to speak of an application to number 
theory. Let T0 denote the subgroup of the group SL(2, R) of all 2 x 2 real 
matrices of determinant 1 consisting of the matrices with integer coeffi­
cients. Let rN be the normal subgroup of T0 consisting of all ("5) in T0 for 
which a - 1, d - 1, b, and c are divisible by N. Then (see section 10) a 
modular form of weight k and level N is an entire function on the upper 
half-plane satisfying the identity f(^) = (cz + d)2kf(z) for all (c

flS) éTN 

(and certain growth conditions as well). It was known that for each fixed k 
and TV, the modular forms of weight k and level TV form a finite-dimensional 
vector space. Hecke was concerned with the problem of finding an explicit 
basis for this space. For forms of level 1, such a basis was described in sec­
tion 10. The basic idea of Hecke's paper was to break this problem down in­
to subproblems as follows: For each modular form ƒ of level N and weight 
k, consider the set of all functions z - ƒ(;£§) {cz + d)'2k for (?5) eT0. 
When (?S) ëTNf these all reduce to ƒ itself. More generally, since r* has finite 
index in T0, these functions span a finite-dimensional vector space J(s. For 
each (to) er0, then g — g(^) (cz + d)~2k is a linear transformation L(«j) of 

Jis into itself, and the mapping (?5) — L^ is a representation of T0. Since 
L/ab\ is the identity whenever CS) is in the normal subgroup r*, this repre­
sentation is in effect a representation of the finite quotient group TO/TAT. Let 
t///f = <MX e eJ/2 e • • • e *A(* be a decomposition of J(f as a direct sum of ir­
reducible L-invariant subspaces, and letX be the component of ƒ in ̂ . It is 
evident that each^ is a modular form of weight k and level N but is special 
in being intrinsically associated with a particular irreducible representation 
of r0 /IV Hecke suggested the strategy of looking at the irreducible 
representations of IVr* one at a time and for each representation W seek­
ing a basis for those particular modular forms intrinsically associated with 
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W. It is not difficult to see that this problem is more or less equivalent to the 
following: For each irreducible representation Woî T0/TNy let us define an 
entire function g from the upper half-plane to the vector space of W to be a 
modular Wform of weight k if it satisfies the identity 

*G£) = (cz + d)2kW(abd)g(z) for all M)eT0 

as well as an appropriate growth condition. The equivalent problem then is 
to find a basis for the modular W forms of weight k. 

In order to carry out this program, one has first to determine the irreduci­
ble representations of T0/TN. When N = NtN2 with Nt and N2 relatively 
prime, one has IVr* SL r0/rNi x IVr^. Hence it suffices to consider the 
case in which Nis a prime power. In the case in which Nis actually a prime 
p, To/r* is isomorphic to the group of all 2 x 2 matrices of determinant 
one with coefficients in the field of p elements. Its representations are 
relatively easy to find and were described by Frobenius in 1896. For higher 
powers of p, the problem is more difficult and was not completely solved 
until very recently. Hecke confined himself to the case of prime N. The 
representations of IVI1 a were determined in the 1933 thesis of Hecke's stu­
dent Praetorius and independently by Rohrbach a year earlier. 

2 0 . IDÈLES, ADÈLES, AND APPLICATIONS OF PONTRJAGIN-VAN KAMPEN 
DUALITY TO NUMBER THEORY, CONNECTIONS WITH ALMOST-PERIODIC 

FUNCTIONS, AND THE WORK OF HARDY AND LITTLEWOOD 

The representation theory of finite groups and compact Lie groups on the 
one hand, and the Pontrjagin-van Kampen duality theory on the other, con­
stitute two rather different generalizations of the harmonic analysis of the 
nineteenth century. The first of these began to have applications to number 
theory and to physics in the middle 1920s;these applications have been dis­
cussed in sections 16 and 19. Applications of the Pontrjagin-van Kampen 
duality theorem began in 1936 with the introduction by Chevalley (1909—) 
of the concept of an idèle and the idèle group of an algebraic number field. 
The idèle concept is based in turn on the notion of a p-adic number in­
troduced in 1901 by Hensel (1861-1941). If p is any prime, the p-adic 
distance Qp(ru r2) between two rational numbers rt and r2 is defined to be p~k 

where k is determined by the relationship rx - r2 = — p \ m and n being in­
tegers not divisible by p. The /7-adic numbers are then the elements of the 
field Qp obtained by completing the rational field Q with respect to the 
p-adic distance just as the real field is obtained by completing Q with respect 
to the distance Qa>(rt9r2) = \rt - r2\. It turns out that every/7-adic number 
can be written uniquely in the form pn(a0 + axp + a2p

2 + •••)» where each 
a, = 0, 1, 2, • • -, p - 1 , a0 # 0, and that every sequence of such a/s occurs. 
Those p-adic numbers for which n > 0 are called p-adic integers. They form 
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a compact open subring of the field of all /?-adic numbers which is ac­
cordingly locally compact. The additive group of Qp and the multiplicative 
group Qp* of all non-zero elements of Qp are both totally-disconnected, 
locally-compact commutative groups. Moreover, the additive group is 
isomorphic to its own dual. In terms of Qp* it is quite easy to complete the 
definition of the norm residue symbol of Hubert mentioned in the last sec­
tion. If the relevant quadratic extension field ^of Q is generated by y[D, it 
can be shown that the set of all x2 - y2D is a subgroup of Qp* of index 2 and 
one defines xf to be the restriction to Q* of the unique character of Qp* 
which is 1 on the subgroup and - 1 otherwise. For fixed /?, the xf for dif­
ferent quadratic extension fields & are precisely those characters of Q* of 
order two which are continuous in the /?-adic topology. Those /?-adic inte­
gers which are units in the ring of all /7-adic integers, that is those of the 
form a0 + a^p + • • • with a0 ^ 0, are called the p-adic units. They form a 
compact open subgroup Up of the group Qp*, and the quotient group is the 
infinite cyclic group. 

For the special case of the rational number field Q, Chevalley's idèles are 

the members of a certain subgroup I of the infinite product(IIQp*)x R*. 

This subgroup consists of all members {xp}9 x of this product group such 
that xp e Up for all but a finite number of primes/?. While this entire infinite 
product group is not itself a locally-compact group in any simple or natural 
way, the subgroup of idèles can be given a simple locally-compact topology. 
Quite generally, let GUG29- • • be any sequence of locally-compact groups, 
each member G, of which admits a compact open subgroup Kj. Let G be the 

subgroup of II Gj consisting of all sequences JCt, JC2, • • • with Xj e Kj for all 

but finitely many indices j . Then G contains the compact product group K 

= n Kj as a subgroup and there are only countably many K cosets. Defining 
j 

a subset Ö of G to be open whenever its intersection with each right K coset 
is open, one obtains a topology in G which converts it into a locally-
compact topological group in which A' is a compact open subgroup. The 
group G is called the restricted direct product of the G, with respect to the 
Kj. The idèle group is the direct product of/?* and the restricted direct prod­
uct of the Qp* with respect to the UP9 and as such has a locally compact 

topology. The subgroup II Up is compact in this topology and ÏIUP x R* is 
p P 

open. 
Since Q* has a natural dense imbedding in each Qp* as well as in /?*, one 

has a natural imbedding of Q* into the full product group II Qp* x R*. 
Moreover, it is easy to see that for each r e Q*, r as an element of Qp* is in 
Up for all but finitely many/?. Hence the image of r in II Qp* x R* is actual­
ly in the idele group I. In other words, one has a natural imbedding of Q* as 
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a subgroup I0 of the idèle group ƒ, and the members of this subgroup I0 are 
called the principal idèles. It turns out to be possible to prove that the 
subgroup I0 of all principal ideles is a closed subgroup so that the quotient 
group I/Io — the so-called idele class group — also has a natural locally-
compact topology. 

The significance of the idèle class group can be most easily appreciated 
by considering its characters of order two and confronting their determina­
tion with Hubert's formulation of the quadratic reciprocity law in terms of 
his norm residue symbol. A character of the idèle class group is of course a 
character of the idèle group which is identically one on I0. A character of the 
idèle group is uniquely determined by a system {xP}>Xa> where xP is a char­
acter on Qp* and x» is a character on R*. Not every system occurs, how­
ever. One sees easily that a system {xP}, x<» arises from some character of ƒ 
if and only if for all but finitely many/?, xP(w) = 1 for all u e Up. Remember­
ing that every character of Qp* defines a character on Q* which determines 
it uniquely, we see that the characters on ƒ correspond one-to-one to certain 
systems {xP}, x» of characters on Q*9 and that the condition that such a 
system satisfies Hubert's criteria (see section 19) for being associated with a 
quadratic extension field is precisely that it defines a character of order two 
on I which is identically one on I0. In other words, Hubert's description of 
all possible quadratic extension fields in terms of systems of characters of 
order 2 on Q* may be reformulated as the statement that they correspond 
one-to-one in a natural way to the characters of order two on the idèle class 
group I/IQ. Of course, characters of order two correspond one-to-one to 
closed subgroups of index two, and more generally the Abelian extension 
fields of Q of finite degree correspond one-to-one to the closed subgroups 
ofl/Io of finite index. 

Now consider the dual (I/I0) of I/I0. Its subgroups of finite order corres­
pond one-to-one to the closed subgroups of finite index of I/I0 and in fact 
are the duals of the corresponding quotient groups. Moreover, it follows 
from the Artin reciprocity law that each quotient group is canonically 
isomorphic to the Galois group of the corresponding extension field. Thus 
the subgroups of finite order of (I/I0) are the duals of the Galois groups of 
the finite Abelian extensions of Q. More generally, one can consider the in­
finite extension fields generated by countable sets of finite Abelian exten­
sions of Q, including the maximal one consisting of all algebraic numbers. 
They correspond one-to-one to the infinite subgroups of the group (I/Io)/ of 
all elements of finite order of (I/I0). Their Galois groups may be identified 
with the duals of these infinite subgroups and so given a compact, totally 
disconnected topology. The group (I/I0)y itself is the dual of the quotient of 
I/Io by its connected component. Thus the quotient of I/I0 by its connected 
component is a totally disconnected compact commutative group which can 
be identified with the Galois group of the maximal Abelian extension of Q 
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and whose closed subgroups correspond one-to-one to the finite and infinite 
Abelian extension fields of Q. As indicated by the title of his 1936 paper, 
"Généralisations de la théorie du corps de classes pour les extensions in­

finies, " Chevalley's original motivation in introducing idèle groups was to 
have a method of describing infinite Abelian extension fields analogous to 
that of Hubert and Takagi for the finite ones. For this purpose, idèles were 
indispensible. It turned out, however, that the idèle group notion simplified 
the finite theory as well, and in 1940 Chevalley published a paper redoing 
the whole of class field theory in terms of idèles. In his thesis of 1933, 
Chevalley had simplified class field theory in other ways, and his 1940 paper 
blended the two kinds of simplification. In particular, he replaced many 
complicated arguments using Dirichlet series and complex analysis with 
simpler arguments involving the theory of topological groups. For the sake 
of simplicity we have defined the idèle group and the idèle class group only 
for the rational field Q. However, Chevalley dealt with the general case in 
which Q is replaced by an arbitrary algebraic number fields and the Qp by 
the completions of #with respect to metrics defined by the prime ideals in 
the ring of integers of 9. 

An additive analogue of the idèle group of an algebraic number field was 
introduced in 1945 by Artin and Whaples (1914—). It is defined as a re­
stricted direct product group over the prime ideals and the "infinite 
primes" just as in the idele case. But now the additive groups of the com­
pleted fields are used in place of the multiplicative ones, and the compact 
open subgroups with respect to which the restricted product is taken are not 
the unit groups but the closures in the %*-adic topologies of the integers of 
the field. The members of this additive infinite "product" group were 
originally called valuation vectors, but are now usually called adèles. Adèles 
can be multiplied together as well as added; they form a ring (the adèle ring 
of the field) under these two operations. The idèle group is precisely the 
group of units of the adèle ring, but its topology as a subset of the adèle ring 
is not the same as its topology as an idèle group. 

Artin and Whaples introduced adèles as a tool in giving an axiomatic 
characterization of algebraic number fields. In the course of doing so, they 
went further than Chevalley had in demonstrating the utility of idèles in for­
mulating and proving the facts of algebraic number theory. Actually, their 
characterization of algebraic number fields was included in a characteriza­
tion of a parallel class of fields having prime characteristic. Let p be a prime 
and let Zp denote the finite field of p elements. Then the field Zp(x) of all ra­
tional functions with coefficients in Zp is a countable field, which is in an 
obvious sense the simplest infinite field of characteristic p. As such, it is a 
characteristic p analogue of the rational field Q, and one can develop a the­
ory of the finite algebraic extensions of Zp(x) which is quite analogous to the 
theory of algebraic number fields. Artin laid the foundations for such a the-
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ory in his 1921 Ph.D. thesis. This thesis, published in 1924, dealt with the 
quadratic extensions of the fields Zp(x). Artin and Whaples showed that any 
field satisfying certain simple axioms was necessarily a finite algebraic 
extension of either Q or Zp(x). 

In his 1950 Ph.D. thesis, Tate (1925—), carrying out a suggestion of Ar­
tin, showed how to use harmonic analysis in adêle groups to prove a vast 
generalization of the well-known functional equation for the Riemann zeta 
function. An abstract announcing similar results was published by Iwasawa 
(1917—) in the Proceedings of the 1950 International Mathematical Con­
gress. Tate's thesis was not published until 1967, when it appeared in the 
Proceedings of the 1965 Brighton Conference on algebraic number theory. 
However, copies of it were privately circulated long before this and it also 
appeared in rewritten form as a chapter in a book by Lang. The fact that the 
zeta function of an arbitrary algebraic number field has an analytic 
continuation and satisfies a functional equation analogous to that satisfied 
by the Riemann zeta function was first proved by Hecke in a paper publish­
ed in 1917. Various special cases had been treated earlier by other authors. 
In the same year Hecke published a second paper doing the same thing for 
general Dirichlet L functions. A bit later, he introduced a more general kind 
of L function determined by an algebraic number field and a so-called 
Grössencharakter for the field. He studied these L functions in papers 
published in 1918 and 1920, and proved that they too satisfy (rather com­
plicated) Riemann-type functional equations. The method of Tate and 
Iwasawa made it possible to obtain all of these results of Hecke at one 
stroke by applying a generalization of the Poisson summation formula. The 
classical Poisson summation formula asserts that, for reasonably general 

00 00 A 

complex-valued functions on the line, E f(n) = E f(n\ where 
n= - oo H = - o o 

ƒ(*) = J* f(y)e2*ixydy. More generally, if G is any separable locally-compact 
commutative group and T is any countable closed subgroup such that G/T 
is compact, then T x , the subgroup of the character group G consisting of 
all characters x with X(T) = 1 for all 7 e T, is also closed and countable, and 
when the Haar measure fi in G is suitably normalized, one has 

L f(y) = E Ax) 

for all suitably restricted functions ƒ on G. Here/(x) = \c f(x)x(x)dfi(x). 
Tate and Iwasawa take the adèle group of the number field for G and the 
subgroup of principal adèles for I \ Hecke's Grössencharaktere, whose 
original definition was rather complicated, can be defined much more sim­
ply using idèles. They are just the characters of the idèle class group I/I0 

that are not of finite order. Hecke's proof also hinged on the Poisson sum-



HARMONIC ANALYSIS AS EXPLOITATION OF SYMMETRY 653 

mation formula, which he used to prove a generalized form of Jacobi's in­
version formula. The difference between Hecke and Tate is that Hecke does 
his computations "at infinity," i.e., over the Archimedean primes, whereas 
Tate works over all primes simultaneously. 

There is another way of defining the adèle group of a number field which 
is based directly on group duality and makes no use of /?-adic metrics. Let R 
be the ring of all algebraic integers in the algebraic number field #and let R* 
be the additive group of R. R* is countable, and we make it into a locally-
compact commutative group by giving it the discrete topology. The dual R* 
is then compact and in fact is isomorphic to the direct product of n replicas 
of the circle group T where n is the degree of #over the rationals. Let R*f de­
note the subgroup of R* consisting of all elements of finite order. Then &f 

is a dense countable subgroup of R* and we may regard its natural imbed­
ding as an injective homomorphism 0 of the discrete group Z?^into R+. Its 
dual 0* (see section 19) is then an injective homomorphism ofjr = R* onto 
a dense subgroup of the compact totally disconnected dual ƒ£* of &f. One 
of the easy general theorems about group duality asserts that a compact 
group is infinitely divisible if and only if its dual has no elements of finite 
order, and that it has no elements of finite order if and only if its dual is in­
finitely divisible. Since R*f is infinitely divisible, it follows at once that R^ 
has no elements of finite order. Since it has no elements of finite order, it 
has a uniqueminimal completely divisible extension in which it has count­
able index (if^)\ This extension may be made into a locally-compact group 
by giving each R+f coset the topology of ]P* and declaring a subset of the di­
visible extension to be open if its intersection with each coset is open. This 
locally-compact group has the additive groupe* of ^densely imbedded, 
and is the so-called non-Archimedean component of the adèle group of if. 
The actual adèle group is the direct product of this locally-compact group 
with an /^-dimensional vector space over the real numbers called the Archi­
medean component of the adèle group. The latter can be defined in a man­
ner vaguely analogous to that used in defining the non-Archimedean com­
ponent. Let R* denote the vector space of all homomorphisms of R* into the 
multiplicative group of all positive real numbers. Then the Archimedean 
component of the adèle group is the vector space dual of 5*. It is an 
^-dimensional real vector space containing R+ as a lattice subgrouo and#+ 

as a dense subgroup. The dense <pt and <p2 imbeddings of #* into (K^)~ and 
W may be combined to give an imbedding ƒ — <pi(J), <p2(J) of # + into the 
product group, i.e., into the adele group of if. The range of this imbedding 
can be shown to be closed and is the group of all principal adeles. 

It is interesting to examine the results of Hardy and Littlewood on War­
ing's problem (see section 14) in the light of the theory of almost-periodic 
functions (see section 19) and its connection with group duality. Choose 
fixed positive integers k and r. For each positive integer n9 let ƒ(/?) denote the 
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number of integer solutions of xi + • • • + * ? = / ! . Then/(1) -f /(2) + • • • 
+ f(ri) is the number of points with integer coordinates inside and on the 
hypersurface xi + A + * # * ** = n. Elementary arguments show accord­
ingly that (f(l) + /(2) + • • • + f(n)) is asymptotic to a constant multiple of 

nrfk. It follows easily from this that if/0(w) = -^rrr* then/0(1) + /0(2) + 

* ' * fo(n) is asymptotic to a constant multiple of n; that is, that 
/ o ( l ) + - " + / o ( / Q 

/? 

has a limit as w tends to oo. In other words, the function n — /o(/0 behaves 
like an almost-periodic function on the integers to the extent that it has a 
mean value. Of course, the properties of sample functions of stationary 
stochastic processes (see section 18) warn us that having a mean value is far 
from implying almost periodicity. On the other hand, one does not expect f0 

to be like a random function, and even if it were, one could still compute its 
hidden periods (if any). All of this suggests investigating the existence of the 
mean of /i—f(n)e'ihK for the various real values of X, and in these terms the 
main results of Hardy and Littlewood on Waring's problem may be sum­
med up as follows: Suppose that r > 2k(2k + 1). Then 

(1) Cx = lim -i" (f(l)e'ix + f(2)e'2ix + • • • + f(n)e'nix) exists for all real X, 

and cx = 0 whenever X/x is irrational. 

(2) If ax = c2*x, then the series E axe
2xinX (where the sum is over 

all rational numbers X) converges for all n to a function S(n) and the 
convergence is uniform. 

(3) Limit S(/0-ƒ<,(/!) = 0. 
W — 00 

(4) If M{fo) = lim /o(l) + ' ' ' + Mn) a n d x = p/q w h e r e p a n d g a r e 

w-oo n 
1 l/q~ \ 

relatively prime, then ax = ap/q ^TTÏTÏM S e2*'^ip/q)r). 
M[jo)q \ m = o / 

One sees in particular that f(n) is asymptotic to h/f,,. S0(n) where S0(n) = 
S(ri)M(fo), and is an almost-periodic function of n with explicitly known 
Bohr-Fourier coefficients. The function S0(n), or rather the Bohr-Fourier 
expansion of it, is what Hardy and Littlewood call the "singular series." 

Every almost-periodic function on the integers Z (see section 17) may be 
extended to be continuous on a certain compactification of Z. This compac-
tification is obtained by starting with a countable discrete subgroup T of 2 
and taking the dual 0* of the isomorphic imbedding 6 of T in Z. 6* imbeds Z 
as a dense subgroup of the compact dual f of T. In the case at hand, the 
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fact that cx = 0 except when X/7r is rational implies that the subgroup T of Z 
is precisely the subgroup of all elements of finite order. Thus f is an open 
compact subgroup in the non-Archimedean component of the adèle group 
of the rational field. The discrete group T has a natural direct product de­
composition over the primes. Indeed, for each prime p , the subset Fp of all 
elements y in T with 7** = e for some A: is a subgroup and every element is 
uniquely a product of members of a finite number of the Tp. Correspond­
ingly, the compact dual f is the full direct product of the compact groups 
rp , and it turns out to be easy to verify that S0(n) regarded as a function on 
f factors as a product of functions on the various f p. As mentioned earlier, 
£p is isomorphic to the group of allp-adic integers. Moreover, it is not hard 
to interpret these p-adic components of S0 in terms of /7-adic solutions of the 

nirtk- 1) 

equation *} + • • • + * { = /!. Similarly, Ajrtr^ has an interpretation in 

terms of real solutions. Quite apart from these interpretations, the product 
• j < r / * - 1) 

Mjr/jrx S0(n) may be looked upon as a function defined on the whole adèle 
M(fo) 

group which factors according to the natural factorization of the adèle 
group. 

The fact that there is a connection between almost-periodic functions and 
the Hardy-Littlewood results was pointed out (in the special case k = 2) by 
Kac (1914—) in 1940. 

2 1 . THE DEVELOPMENT OF THE THEORY OF UNITARY GROUP 
REPRESENTATIONS AFTER 1945 — A BRIEF SKETCH 

WITH EMPHASIS ON THE FIRST DECADE 

With the exceptions mentioned at the end of section 19, the theory of uni­
tary group representations was until 1946 exclusively concerned with groups 
that were either compact or both locally-compact and commutative. A more 
general theory encompassing all locally-compact groups began rather sud­
denly with the publication in 1947 of four long papers and half a dozen or 
so short notes and announcements. (Two of the long papers were preceded 
by short announcements published in 1946.) Since then, there has been an 
enormous development, which cannot begin to be summarized within the 
compass of this article. I shall content myself instead with some brief indi­
cations and refer the reader at the appropriate time to some lengthy survey 
articles for a more adequate account. 

In attempting to generalize from compact groups to locally-compact 
groups, one is confronted with two major problems. In the first place, one 
can no longer decompose representations as discrete direct sums except in 
very special cases; and in the second place, one has to deal with irreducible 
unitary representations which are infinite-dimensional. The latter circum­
stance brings with it a further difficulty in that the trace of an infinite-di-
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mensional unitary operator is undefined. This means that the character of 
an infinite-dimensional irreducible representation must be defined in a 
roundabout way when it can be defined at all. When the group is commuta­
tive, the lack of compactness is partially compensated for by the fact that 
the irreducible unitary representations are not only finite-dimensional but 
Orte-dimensional. In this case, one can combine Pontrjagin-van Kampen du­
ality with the ideas of spectral theory to obtain an entirely adequate substi­
tute for the Peter-Weyl theorem. Just how this works has already been ex­
plained in section 17. 

Thus far I have said relatively little about the problem of actually finding 
the possible irreducible representations of our groups. This is because the 
problem is relatively easy in the commutative case, was solved more or less 
completely for the important compact Lie groups by Weyl in the 1920s, and 
for finite groups is more a problem in algebra than analysis. However, for 
groups which are neither compact nor commutative, the problem of finding 
the possible (usually infinite-dimensional) unitary irreducible representa­
tions is one of the main problems of the theory. It involves a heavy use of 
analysis and is by no means readily solved. All four of the long papers pub­
lished in 1947 dealt with important special cases of it and so did the majority 
of the short notes. Another case was the subject of Wigner's 1939 paper 
mentioned at the end of section 17. Before the results of any of these papers 
are described, it will be convenient to discuss a method used in most of them 
which was first discussed in an abstract setting in a paper that I published in 
1949. This is a method for constructing unitary representations of locally-
compact groups out of unitary representations of closed subgroups which 
generalizes the Frobenius construction x -* X* mapping characters of sub­
groups of finite groups into characters of the whole group (see section 15). 
Frobenius found his construction to be a very useful tool in producing irre­
ducible representations and characters, and its generalization has turned out 
to be equally useful. 

Let G be an arbitrary separable locally-compact group. (We may restrict 
ourselves to the separable case because most if not all of the important ex­
amples are separable, and because in so doing we avoid various distracting 
technical complications.) Let H be a closed subgroup of G and suppose for 
the time being that the right coset space G/H admits a measure fi which is 
invariant under the natural action (Hx)y = Hxy of G on G/H. It is not dif­
ficult to see that p, if it exists, is uniquely determined up to a multiplicative 
constant. Now let L9 x -+ Lx be any unitary representation of H in a 
separable Hilbert space 3f(L). (We always suppose that (Lx(<p) • \p) is con­
tinuous for all <p and ̂  in 3?(L); this implies that x — Lx((p) is continuous for 
all <p in tf(L).) Consider the set 9>L of all Borel functions x — f{x) from G to 
the Hilbert space 3f(L) which satisfy the identity f(hx) = Lh(f{x)) for all h in 
H and all x in G. Now for each ƒ in «%, the function x — (f(x) • ƒ(*)) is a 
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non-negative Borel function on G. Moreover, since (f(hx) • f(hx)) = (£/ƒ(*) 
• Lff(x)) = (f(x) • ƒ(*)), it follows that x — (f(x) • ƒ(*)) is a constant on the 
right H cosets and so may be regarded as a function on G/H. Let#° denote 
the subset of#k consisting of all ƒ in &L for which JG/Z/C/I*) • f(x))dfi(x) < oo 
where X is the image of x on G/// and (f(x) • f(x)) is thought of as a function 
on G/H. It is not hard to show that ;>2 becomes a Hilbert space if we define 
11/11 = V JG/JX/I*) • Ax))di*@Q and identify two members when they are 
almost everywhere equal. Moreover, for each x, the mapping ƒ — ƒ», where 
fxiy) = Ay*)» is easily seen to be a unitary operator in the Hilbert spaced*. 
If we denote this unitary operator by Ui, we verify that x — LÇis a unitary 
representation of G. It is called the representation of G induced by the 
representation L of H. When G is finite and x is the character of L, one 
verifies without difficulty that the character of U1 is precisely the induced 
character x* of G defined by Frobenius. For the case in which G is compact, 
the definition given here is essentially to be found in Weil's book, cited in 
section 17. When G/H fails to have an invariant measure, a slightly more 
complicated definition involving quasi-invariant measures has to be given. I 
shall not repeat it here, but I assure the reader that U1 is a well-defined 
unitary representation of G for all unitary representations L of all closed 
subgroups H of G. 

In terms of this definition, it is possible to state a general theorem of 
which the results of Wigner's 1939 paper as well as those of one of the 1947 
notes are both special cases. Let the separable locally-compact group G ad­
mit a closed commutative normal subgroup N, and suppose that there exists 
a second closed subgroup //such that N D //contains only the identity and 
NH = G. Then every element of G can be written in one and only one way, 
as a product nh where n is in N and h is in //. One says that G is a semi-
direct product of AT and //. Each h in //defines an automorphism n — hnh'1 

= ah of N, and the mapping h —> cth is a homomorphism of H into the 
group of automorphisms of N. Evidently one can reconstruct G knowing 
only N9 // , and the mapping h — oth. The general theorem I propose to state 
reduces the problem of finding the irreducible unitary representations of G 
to that of finding the irreducible unitary representations of certain 
subgroups of H— at least when the "adjoint" action of Hon the dual of N 
has a certain regularity property. To explain this property, notice that for 
each automorphism ah of N, there is a well-defined adjoint automorphism 
at of # . Indeed, if x e iVand h e //, then n — x(<*h(n)) is also a member of N 
which may be denoted by [x]a*. It is obvious that x —* [x]«* is an automor­
phism and h — a? is a homomorphism. Let us say that the semi-direct pro­
duct is regular if there exists a Borel set C in N which meets each H orbit in 
Nin one and only one point; that is, if for each x in Nthere is one and only 
one x1 in C such that [xla* = X1 for some h in //. 

Now let G be a regular semi-direct product and let C be a Borel set which 
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meets each H orbit in C in one point. The general theorem alluded to above 
states that the equivalence classes of irreducible unitary representations of 
G may all be obtained as follows: Choose xeC. Let Hx denote the closed 
subgroup of //consisting of all h in H for which [xlctf = X- Choose an ir­
reducible unitary representation L of Hx. Then n, h — x(ri)Lh is an irreduc­
ible unitary representation xL of NHX. Form UxL, the unitary representation 
of G induced by x̂ « It can be shown that UxL is irreducible, that £/*»£l and 
UX*L2 are equivalent if and only if Xi = X2 and L1 = L2 are equivalent 
representations of Hx and that every irreducible unitary representation of G 
is equivalent to some UxL. When the semi-direct product is not regular, one 
can use the axiom of choice to find a subset C which meets each orbit just 
once, but C will not be a Borel set. In this case, the U*L can still be formed 
and proved to be irreducible and inequivalent as indicated. However, it is 
no longer true that every irreducible unitary representation of G is 
equivalent to one of the U*L. 

The inhomogeneous Lorentz group considered by Wigner in 1939 is a reg­
ular semi-direct product of a four-dimensional real vector group and the 
Lorentz group, the latter being isomorphic to the quotient of SL(2, Q by its 
two-element center. Actually, Wigner studied the irreducible unitary repre­
sentations of the two-fold covering group one gets by using the whole of 
SL(2, C). His results are a restatement of what one finds by applying the 
theorem above. It turns out that, depending on the position of the character 
X with respect to the "light cone," there are four possibilities for the sub­
group Hx. It is conjugate either to a) the compact subgroup of all unitary 
matrices, b) a non-compact subgroup isomorphic to the group generated by 
the translations and rotations in the plane, c) the subgroup SL(2, R) of all 
matrices in SL(2, C) with real coefficients, or d) the whole of SL(2, C). In 
case a, the irreducible representations of Hx are known from the work of 
Schur and Weyl. In case b, Hx is a semi-direct product of two commutative 
groups, and the general theorem just cited can be applied. In cases c and d, 
Hx is a non-compact semi-simple Lie group. At the time Wigner's paper was 
written, nothing was known about their irreducible representations. Wig­
ner, in fact, determined only those irreducible unitary representations of the 
inhomogeneous Lorentz group falling under cases a and b. However, he 
gave cogent arguments suggesting that the others were not relevant to the 
physical applications he had in mind. 

A much simpler example of a regular semi-direct product was dealt with 
in one of the short notes published in 1947. In this note, Gelfand (1913—) 
and Naimark (1909—) determined all irreducible unitary representations of 
the group of all one-to-one transformations of the real line into itself of the 
form x — ax + b where a > 0. This group, often referred to as the "ax + b 
group," is a semi-direct product of the additive group of all real numbers 
with the multiplicative group of all positive real numbers. Here Nis the ad-
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ditive group of the real line and there are just three orbits. These are {0} and 
the positive and negative real axes. His the multiplicative group of all posi­
tive real numbers and Hx is respectively //, {1}, and {1}. It follows that the 
"a* + b group" has (to within equivalence) just two irreducible unitary 
representations in addition to the obvious one-dimensional representations 
defined by the characters of H. They are the representations induced by the 
characters b — eib and b — e~ib of AT. Both are infinite-dimensional. 

Three of the four long papers published in 1947 were written respectively 
by Gelfand and Naimark, Bargmann (1908—), and Harish-Chandra 
(1923—). All of them were concerned with the determination of the unitary 
representations of SL(2, C) and hence of the Lorentz group. Bargmann and 
Gelfand and Naimark also treated SL(2, R), but only Bargmann gave a de­
tailed analysis in that case. As a matter of fact, the papers of Bargmann and 
Gelfand and Naimark are complementary, in that Bargmann gave details 
only for SL(2, R) and Gelfand and Naimark only for SL(2, Q. Harish-
Chandra contented himself with determining the representations of the Lie 
algebra of SL(2, C), while Bargmann and Gelfand and Naimark found the 
integrated form of the representations and also discussed the decomposition 
of the regular representation. The facts about the irreducible unitary repre­
sentations of SL(2, C) are easily stated in terms of the general concept of an 
induced representation. Let Tbe the subgroup of SL(2, C) consisting of all 

matrices of the formf y^J. Notice thatf ^ ) —( Q I / \ )*s a homomor-
phism of T onto the subgroup D of all diagonal matrices. Thus each (one-
dimensional) character x of the commutative group D may be lifted to de­
fine a one-dimensional representation x1 of T. Gelfand and Naimark 
showed that the induced representations I/*1 are all irreducible and that £/x» 
and Ux* are equivalent if and only if xi = Xi or Xi = Xïl- They showed also 
that the representations t/*1 constitute "almost all" irreducible unitary rep­
resentations in the sense that they suffice for the decomposition of the regu­
lar representation (see below). They constitute what is known as the prin­
cipal series of representations of SL(2, C). In addition to the principal ser­
ies, they described a second infinite series of irreducible unitary representa­
tions called the supplementary series. It turns out that one can modify the 
inducing process7 in such a manner that some non-unitary representations 
induce unitary representations of the whole group. This is true of certain 
non-unitary one-dimensional representations of T9 and the members of the 
supplementary series can all be so described. Gelfand and Naimark were 
able to prove that every irreducible unitary representation (except of course 
the trivial representation) is equivalent either to a member of the principal 
series or to a member of the supplementary series. 

In the study of SL(2, R), an interesting new phenomenon arises. One has 
an obvious analogue of the subgroup T of the principal series and of the 
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supplementary series, but the irreducible unitary representations of 
SL(2, R) so defined do not exhaust all equivalence classes and do not even 
suffice to decompose the regular representation. They have to be supple­
mented by the members of a third series. It is called the discrete series be­
cause the representations which belong to it occur discretely in the decom­
position of the regular representation. Let K be the compact commutative 
subgroup of SL(2, R) consisting of all matrices of the form ( £.°s ƒ *™ e

0 J, 

and for each integer k let x* denote the character (_sj^S0cos 0/ ~* *'**" 
Then the induced representations UXk are reducible but contain \k\ inequiva­
lent discrete irreducible subrepresentations. Moreover, if k > 0, t/x* con­
tains exactly one discrete component which is not contained in {/**-« and if k 
< 0, UXk contains exactly one discrete component which is not contained in 
UXk+*. In either case, let us denote this irreducible representation by W\ 
Then the W* are mutually inequivalent and constitute the discrete series of 
irreducible unitary representations of SL(2, R). Notice that there is a nat­
ural one-to-one correspondence between the members of the discrete series 
and the non-trivial characters of K> and also a natural one-to-one corres­
pondence between the members of the principal series and pairs x» X'1 of 
characters of the diagonal subgroup D (excluding the two cases in which x 
= x"1)- This, combined with the fact that D and K are both maximal 
Abelian subgroups, turns out to be highly significant. I shall say more about 
this significance below. 

There is an alternative description of the discrete series more closely re­
lated to that originally given by Bargmann and important for applications 
to the theory of modular forms. Consider the action of SL(2, R) on the 
upper half H* of the complex plane defined by [z](?d) = S-H, and let 
(Jgj) f) (z) = f&H)(cz + d)~k where k = ± 1, ±2, • • \ Then there is a 
measure /i on the upper half-plane —- unique up to multiplication by a 
positive constant such that the Vfat\ are unitary in #*(ƒƒ% /*). The unitary 
representation of 5L(2, R) in ̂ ( / T , fi) so defined is easily seen to be 
equivalent to the induced representation Ux\ The subspace of SP2(H*, fi) on 
which UXk restricts to W* is the subspace of all analytic functions or the 
subspace of all conjugate analytic functions, according as k > 0 or k < 0. 

The determination of the irreducible unitary representations of SL(2, C) 
and SL(2, R) completed Wigner's 1939 paper very nicely. However, it was 
only Bargmann whose work was inspired by that of Wigner. Neither Har-
ish-Chandra nor Gelfand and Naimark cite Wigner and presumably were 
unaware of the relevance of his work to theirs. Instead they cite a paper of 
Dirac, published in 1945. In this paper, Dirac had pointed out that the Lor-
entz group (and hence SL(2, Q) had infinite-dimensional unitary represen­
tations and had suggested that they might have physical relevance. Harish-
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Chandra was a student of Dirac and made his investigations at Dirac's sug­
gestion. 

In view of the role played by physics in inspiring this work on the unitary 
irreducible representations of SL(2, R) and SL(2, C), it is interesting to note 
that I proved the theorem on the unitary irreducible representations of 
regular semi-direct products as a corollary to a much more general theorem 
obtained as the end product of a three-stage generalization of the Stone-von 
Neumann theorem on the uniqueness of the solutions of the Heisenberg 
commutation relations (see section 16). Let G be a separable locally-
compact commutative group and let G denote its dual. Let \L be Haar 
measure in G and let A be the regular representation of G : Ax(f)(y) = f(yx) 
for all ƒ e cf\Gy fi). For each \ m G let Bx denote the unitary operator ƒ — 
\f. Then x "* Bx is a unitary representation of G (equivalent in fact to the 

regular representation of G). Moreover, an obvious calculation shows that 
A and B satisfy the simple commutation relation AXBX = x(x)B>Ax. But 
when G is the additive group of an w-dimensional real vector space, then so 
is G, and these commutation relations reduce precisely to the Heisenberg 
commutation relations in the "integrated" or Weyl form as described in 
section 16. It is natural to ask whether there is an analogous uniqueness 
theorem in the general case and to approach the question by applying the 
spectral theorem to the unitary representation B. The spectral theorem says 
that B is uniquely determined by a projection-valued measure P on G = G. 
A simple calculation shows that A and B satisfy the generalized Heisenberg 
commutation relations written down above if and only if P and A satisfy the 
commutation relations AXPE = P[E]x-iAx for all x in G and all Borel subsets E 
of G. These transformed commutation relations have the interesting 
property that they refer only to G and not to G. Moreover, they make sense 
whether or not G is commutative. Indeed, if G is any separable locally-
compact group and \K is a right invariant Haar measure, one obtains a 
system satisfying the transformed commutation relations by defining Ax 

and P% in <£\G, \£) by the equations AQ
x(f)(y) = f(yx) and P°E(f){y) = 

^OO/OO- Here (pE(y) = I if y e E and <pE(y) = 0 if y ( E. The question then 
arises, whether every irreducible pair A, P consisting of a unitary repre­
sentation A of G and a projection-valued measure P on G and which 
satisfies AXPE = P[B}M-iAx is necessarily equivalent to the pair A0, P° defined 
above. It is, and I published a proof of this generalization of the Stone-von 
Neumann uniqueness theorem in 1949. Still a further generalization is possi­
ble, however. The commutation relation AXPE = PlE]x-iAx makes sense even 
when P is not defined on G. It is only necessary that P be defined on some 
Borel space on which G acts as a group of one-to-one Borel set-preserving 
transformations. In this generality, while uniqueness fails, one has a com­
plete analysis of all possibilities — at least in the case in which S is a coset 
space G/H. The irreducible solutions of the commutation relations AXPE = 
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PlE]x-iAx (more precisely their equivalence classes) correspond one-to-one in 
a natural way to the equivalence classes of irreducible unitary representa­
tions of //. Of course when H = {e} so that S = G, H has only one 
equivalence class of irreducible unitary representations and the solutions of 
the commutation relations are unique. The correspondence between solu­
tions of the commutation relations and unitary representations of H is set 
up by the inducing construction and does not involve irreducibility. Given 
any unitary representation L of//, the Hubert space^f(t/L) consists of func­
tions/in G which satisfy the identity f(hx) = L*f(x) for all h in //and all x 
in G. If E is any Borel subset of G/H, the function PE(f), which one obtains 
by reducing ƒ to zero on all right cosets in E and leaving it unchanged out­
side of these cosets, is also clearly in #f(UL) and the operator ƒ — PE{J) is a 
projection operator. It is easy to check that E — Pi is a projection-valued 
measure on G/H and that UL and PL satisfy the commutation relations 
1%PE = /^,- iW for all x in G and all Borel sets E C G/H. In a short note 
published in 1949, I sketched a proof of the converse theorem. Given any 
pair Ay P satisfying the commutation relations in question, there exists a 
unitary representation Lof H (uniquely determined up to equivalence) such 
that the pair A, P is equivalent to the pair UL

y P
L. Moreover, the algebra of 

all bounded operators which commute with all Lh is isomorphic to the 
algebra of all bounded operators which commute with all Ui and all JR£. 

To gain some insight into why such a theorem might be true and also to 
understand why it is called "the imprimitivity theorem" it is useful to con­
sider the special case in which His an open subgroup of G. In that case, the 
projection-valued measure P defines a discrete direct sum decomposition of 
jf(A) whose summands are parameterized by the points of G/H = S. These 
summands are not invariant under the Ax. This would be true if and only if 
AXPE = PEAX for all x and E. On the other hand, the condition AXPE = 
PlE]x-iAX9 which does hold, is precisely equivalent to the assertion that the/I* 
permute the summands among themselves and in particular that Ax carries 
the summand whose parameter is s onto that whose parameter is [s]x. A di­
rect sum decomposition of a Hubert space having this property with respect 
to a unitary representation A taking place therein is called a system of im­
primitivity for the representation. When the group acts transitively on the 
subspaces and H is the subgroup leaving a subspacef//0 fixed, the original 
representation defines a representation L of //in,*///<> which evidently deter­
mines A. The discrete case of the imprimitivity theorem thus has a trivial 
proof. For finite groups it was known to Frobenius. 

To see how the semi-direct product theorem might be a consequence of 
the imprimitivity theorem one has only to note a) that a unitary representa­
tion Kof a semi-direct product NHis uniquely determined by its restrictions 
Band A to Nand //respectively, and b) that the condition that n, h —> B„Ah 
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be a representation of G, given that B and A are representations of N and H 
respectively, is easily computed to be the commutation relation B„A h = 
AhBah(n). When B is replaced by the projection-valued measure P on N 
which determines it, this commutation relation reduces to the statement that 
P is a system of imprimitivity for A. When Kis irreducible and the semi-di­
rect product is regular, one shows that P is supported by an H orbit in N. 
The rest is calculation. 

The work of Harish-Chandra, Gelfand and Naimark, and Bargmann on 
the irreducible unitary representations of SL(2, C) and S£(2, R) has impli­
cations beyond its possible relevance to physics and to completing the work 
of Wigner on the inhomogeneous Lorentz group. The group SL(2, R) is the 
non-compact semi-simple Lie group of lowest possible dimension, and the 
group SL(2, C) is the non-compact semi-simple Lie group of lowest possible 
dimension which also has the structure of a complex manifold. Moreover, 
while the semi-direct product theorem described above can be generalized to 
a theorem dealing with groups having non-commutative normal subgroups, 
this method of analysis fails completely in dealing with simple groups, that 
is, with groups having no closed normal subgroups. A different approach 
must be used and SL(2, R) and SL(2, C) are in different ways the most ele­
mentary examples. Modulo its two element center, each of these groups is 
simple. 

With these two groups under control, it was natural to go on to more 
complicated cases, and Gelfand and Naimark began a study of 5L(/i, C) al­
most immediately. In fact, the fourth long paper of 1947 and several of the 
short notes published in 1946 and 1947 are papers by them concerned with 
the irreducible unitary representations of SL(n> C). The results are analo­
gous to those for SL(2, C) but are less complete. Let 7 be the subgroup of 
all matrices that are zero above the main diagonal, and let D be the sub­
group of all diagonal matrices. Then D Q T, and just as in the case of 
SL(n, C) there is a natural homomorphism of T onto D so that every x e D 
can be lifted to be a one-dimensional unitary representation x1 of T. The in­
duced representations U*1 are all irreducible and constitute what Gelfand 
and Naimark call the principal series. As in the case of SL(2, Q, the mem­
bers of the principal series suffice to decompose the regular representation. 
The theory of SL(n, Q differs from that of SL(2, Q chiefly in that finding 
the remaining irreducible unitary representations is much more difficult. In 
fact, except when n < 3, the problem of determining all equivalence classes 
of irreducible unitary representations of SL(n, Q is still an open one in 
which there is considerable current interest. When n > 2 there exist proper 
closed subgroups of SL(n, Q which properly contain T. For example, when 

( aual20 \ 
#2i Ö22 #23 J, a n d 
a 3i a 32 a 33/ 
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when n = 4, the subgroup of all matrices of the form fÜ22 Ü23 I . 
6 K 1 0 3 1 0 3 2 033 0 3 4 / 

\Ö41 Ö42 Û43 Ö44/ 

The subgroups admit non-trivial one-dimensional characters which can be 
induced up to SL(n, Q to define new infinite-dimensional irreducible 
unitary representations — the members of the so-called degenerate series. 
As with T in SL(2, Q , certain non-unitary characters of both T and the 
proper closed subgroups containing it can be "induced" to form irreducible 
unitary representations of SL(n, Q . The chief difficulty in determining all 
irreducible unitary representations of SL(n, C) lies in deciding just which 
non-unitary characters lead to unitary representations. 

Gelfand and Naimark found little difficulty in extending their analysis to 
the other classical complex groups — the complex orthogonal groups and 
the complex symplectic groups of all dimensions. All of these groups admit 
analogues of the groups T and D, and one defines the principal and other 
series in a strictly analogous manner. While it has only recently been proved 
that all members of the principal series for the complex groups are irreduci­
ble, Gelfand and Naimark could prove that almost all of them are, and 
these suffice to decompose the regular representation. Gelfand and Nai­
mark published a book in 1950 giving a systematic account of their work on 
all the complex classical semi-simple Lie groups including SL(n, Q . 

Once one has found the irreducible unitary representations of a group G, 
the problem arises whether or not they are adequate for harmonic analysis 
on the measure spaces on which G acts. Given a space S, with a measure fi 
invariant under the G action, one can form a unitary representation f/of G 
whose space is ^2(S, 11) by setting Ux(J)(s) = f([s])x). One can then ask 
whether there is a sense in which this representation can be decomposed as a 
discrete or continuous direct sum of irreducibles and whether this decompo­
sition is unique in any useful sense. When G is commutative as well as sepa­
rable and locally compact, these questions are taken care of very nicely by 
the spectral theorem of Stone, Ambrose, Godement, and Naimark and the 
spectral multiplicity theory of Hahn, Hellinger, and Stone (see section 17). 
To go further, one needed a theory of direct integrals or continous direct 
sums of Hubert spaces. Such a theory had been worked out by von 
Neumann in the 1930s for use in his work with Murray on algebras of 
operators (see the end of section 17), and a more or less complete typed 
paper on the subject was in von Neumann's possession in 1938. However, 
this paper did not get published until 1949 and apparently no one interested 
in the theory of unitary group representations knew its contents until 1947. 
In that year von Neumann made the typescript available to Mautner 
(1921—), who based his 1948 Ph.D. thesis on applying direct integral 
decompositions to unitary group representations. I used some of the ideas 
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in von Neumann's typescript in my proof of the generalized Stone-von 
Neumann uniqueness theorem. Mautner's first main result (announced in a 
short note published in 1948) was in essence as follows: Let U be a (con­
tinuous) unitary representation of a separable locally-compact group G in a 
separable Hubert space Jf(U). Let R(U, U) denote the commuting algebra 
of U; that is, the algebra of all bounded linear operators \nyf(U) that com­
mute with all Ux. Then corresponding to every maximal commutative 
subalgebra of R(U, U) there exists an essentially unique decomposition of U 
as a direct integral of irreducible unitary representations of G. The meaning 
of direct integral decomposition can be most quickly explained in the case in 
which all of the component representations are infinite-dimensional and so 
have isomorphic Hubert spaces. Let there be given a (suitably restricted) 
measure space S, fi, and for each s e S a unitary irreducible representation Ls 

of G in a fixed Hilbert space jf. Suppose that Ls
x((p) • \Hs measurable in 

S x G for each ip and \fr in j ^ . Form the Hilbert space^2(S, fjL,3f) of all 
square integrable measurable functions from S to 3f. For each A: in G let Mx 

denote the operator in Sf^S, (i9Jf) which takes s — f(s) into s — Ls
x(f(s)). 

Then each Mx is unitary and x — Mx is a (continuous) unitary representation 
of G. It is called the direct integral or continuous direct sum of the represen­
tations L' with respect to the measure /*. For each measurable subset E of S, 
one can associate the operator ƒ — VEJ where <pE(s) = 1 if s e E and is zero 
otherwise. Denoting this operator by PE9 one verifies that E — PE is a 
projection-valued measure. When all (or almost all) the V are irreducible, it 
turns out that the PE constitute all the projection operators in a maximal 
commuting subalgebra of R(M, M). Conversely, according to Mautner's 
theorem, every maximal commuting subalgebra of every R(U, U) arises in 
this way from some direct integral of irreducibles that is equivalent to I/. 
Since maximal commutative subalgebras always exist (by Zorn's lemma), so 
do direct integral decompositions into irreducibles. Mautner's theorem says 
nothing about the uniqueness of the decomposition, and in fact different 
choices of the maximal commuting subalgebra of /?((/, U) can lead in some 
cases to radically different decompositions into irreducibles. The situation 
was clarified in the early 1950s using ideas derived from the von Neumann-
Murray theory of "factors." Further details will be given below. 

As far as harmonic analysis on certain groups and homogeneous spaces is 
concerned, the results may be expressed without considering direct integral 
decompositions as such. This was done by Gelfand and Naimark for SL(2, 
C) (and later for the classical groups) before they knew the results of von 
Neumann and Mautner. Bargmann also had results in this direction for 
SL(2, /?). Consider what the Peter-Weyl theorem tells us about expansions 
of square integrable functions on a separable compact group G. For each ir­
reducible unitary representation L of G, the functions x — Lx(<p) • \j/ gener­
ate a finite-dimensional two-sided invariant vector space^* of continuous 
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functions on G which depends only on the equivalence class of L and is 
called the space of matrix coefficients for L. These spaces for the various 
possible L's are mutually orthogonal, and every square integrable ƒ on G 
may be written as a sum ƒ = £ fL where fL e^fL. Moreover, fL may be com­
puted from ƒ and the character \L of L by the simple formula fL(x) = xL(e) 
\c f(xy'1)xL(y)dti(y), which reduces in the commutative case to the formula 
for computing Fourier coefficients. There is an obvious possible generaliza­
tion of this formula to any separable unimodular locally-compact group 
having only finite-dimensional unitary irreducible representations — for ex­
ample, a semi-direct product of a commutative group and a finite group. 
One could define fl(x) as Jc f(xy~l)xL(y)dii(y) for all ƒ iniP(G, fi) and hope 
to find a measure # in the space of all irreducible characters (depending of 
course on the choice of fi) such that f(x) = J j\{x)diL(L) for all ƒ in some 
dense subspace of !£\G> y). To do the same for groups with infinite-dimen­
sional irreducible unitary representations seems impossible at first because 
of the fact that Trace Lx never exists when L is infinite-dimensional. But 
there is a way out. For each ƒ in ^(G, fi) there exists a unique operator Lf 

such that (L^p) • \fr) = \f(x)Lx(<p) • \l/)dfi(x) for all <p and ^ in^(L), and it 
often turns out that L/does have a trace, ƒ — Trace (Lf) is then a linear func­
tional, which may often be shown to be of the form ƒ —« { x(x)f(x)dfi(x) 
where \(x) is a measurable complex-valued function and is uniquely deter­
mined by L (up to changes on sets of measure zero). When L is finite-dimen­
sional, x always exists and is just xL- Thus whenever the above conditions 
are satisfied it is natural to extend the definition and say that L has a charac­
ter equal to x- First for SL(2, C) and later for SL(n, C) and the classical 
complex groups, Gelfand and Naimark showed a) that characters in this 
generalized sense exist for all principal series members and b) that there is 
an expansion formula as indicated. They also found explicit formulae for 
the characters and the measure /t. It is important to notice that the expan­
sion formula does not involve all irreducible unitary representations of G. 
Members outside of the principal series do not occur. On the other hand, 
one can put them in and simply assign measure zero to the set consisting of 
all of them. In order to have an expansion formula it suffices to know "al­
most all" irreducible unitary representations. 

More generally, let G be an arbitrary separable locally-compact group 
whose left and right Haar measures are the same. One might hope to prove 
the existence of a family & of irreducible unitary representations L of G 
having characters xL in the above sense together with a measure p, defined on 
suitable subsets of #such that f(x) = Ĵ [ \cf{xy'l)xL(y)dii{y)\dp.(L) for all ƒ 
in a dense subspace of L\G). While such a theorem can indeed be proved 
for a large and important class of groups, it is true only in a modified form 
for another large class. Its failure to hold as stated in general is intimately 
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related to the failure of uniqueness in direct integral decompositions — both 
failures are due to the existence of the new infinite-dimensional generaliza­
tions of full matrix algebras discovered in 1936 by Murray and von Neu­
mann (see the end of section 17). 

Let U be a unitary representation of G and suppose that U is discretely 
decomposable so that U « Ll e L2 e • • • where the Vare irreducible. Let 
Z/\ L'2, Z/3, • • • be a subset of the V including one and only one member of 
each equivalence class that occurs. Let Mj be the direct sum of all L \ with 
Lk equivalent to Lij. Then U « M1 e M2 e • • • and each Mj is a direct sum 
of mutually equivalent irreducible representations. The two decomposi­
tions, first into the MJ and then into irreducibles, are unique in different 
senses. The first decomposition is absolutely unique in that for each y', the 
invariant subspace on which U reduces to MJ is uniquely determined. The 
further reduction of MJ into irreducibles is unique only up to equivalence. 
There are very many quite different direct sum decompositions of JfiM1) in­
to invariant irreducible subspaces. The non-uniqueness in the general case 
occurs only at the second stage and only in certain instances. Specifically, 
let G be an arbitrary separable locally-compact group and let U be an arbi­
trary unitary representation of G in a separable Hubert space Jf(U). Let 
CR(U, U) be the center of the commuting algebra of U. Then Mautner's ar­
gument associating a direct integral decomposition of U to every maximal 
commutative subalgebra of R(U, U) associates a direct integral decomposi­
tion to CR(U, U) whose components IP" are not necessarily irreducible but 
are so-called factor representations. A factor representation is by definition 
a representation whose commuting algebra has a one-dimensional center, 
i.e., is a factor in the sense of Murray and von Neumann. In the discrete 
case considered above, this decomposition is the decomposition into the MJ. 
Now whenever a factor representation is discretely decomposable, it is easy 
to show that all components are equivalent and that the commuting algebra 
is isomorphic to the algebra of all bounded operators on a finite- or infinite-
dimensional separable Hubert space. Conversely, if M is a factor represen­
tation whose commuting algebra is isomorphic to the algebra of all bounded 
operators on a finite- or infinite-dimensional separable Hubert space, then 
M is a direct sum of equivalent irreducibles whose number and equivalence 
class is uniquely determined. In this case, one speaks of factors and factor 
representations of type I. When all (or almost all) the factor representations 
IP of U are of type I, one says that U is of type I, and then the decomposi­
tion of t/into irreducible representations is as unique as in the classical case. 
As shown by Murray and von Neumann in 1936, however, there exist fac­
tors that are not of type I. When these occur among the commuting algebras 
of the LP" (on a set of X of positive measure), the situation is quite different 
and a further analysis is required. 

Murray and von Neumann classified factors according to the behavior of 
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the lattice of projection operators. The projection operators in R(U, U) cor­
respond one-to-one to the subrepresentations of [/, and in the present con­
text it is perhaps more illuminating to present the results of Murray and von 
Neumann in the language of group representations. Let us define two 
representations U and V to be disjoint if no subrepresentation of U is 
equivalent to any subrepresentation of K. It is then easy to see that a projec­
tion operator P in /?([/, U) is such that the subrepresentations IF and Ul"p 

are disjoint if and only if P is in the center CR(U> U) of /?([/, U). Hence 
R(U, LO is a factor if and only if it is impossible to write f/as a direct sum of 
two disjoint subrepresentations. Let U and V both be factor representa­
tions. If they are both of type I, then it is trivial to prove that they fail to be 
disjoint if and only if each is equivalent to a multiple of the same irreducible 
representation, and then one is clearly equivalent to a subrepresentation of 
the other. Even if they are not of type I, it is possible to prove that whenever 
[/and Fare not disjoint, then either [/is equivalent to a subrepresentation 
of Kor Kis equivalent to a subrepresentation of [/. Let us define [/and Kto 
be quasi-equivalent if they are not disjoint. One can then prove that quasi-
equivalence is an equivalence relation, that the direct sum of any finite or 
countably infinite family of quasi-equivalent factor representations is a fac­
tor representation in the same quasi-equivalence class and that every 
subrepresentation of a factor representation is a factor representation in the 
same quasi-equivalence class. The equivalence classes of factor representa­
tions in a fixed quasi-equivalence class thus form an ordered semi-group. 
When the factor representations in the quasi-equivalence class are of type I, 
this ordered semi-group is clearly isomorphic to that formed by the positive 
integers and oo. One of the main results of Murray and von Neumann is 
equivalent to the assertion that there are just two other possibilities: either 
this ordered semi-group is isomorphic to that formed by the positive real 
numbers and oo, or it consists of only one element. In the first case, the fac­
tor representation is said to be of type II, and in the second case to be of 
type III. Every factor is the commuting algebra of some representation of 
some group and has the same type. Let U be a factor representation of type 
II which is finite in the sense that U © [/and [/are not equivalent. It can be 
shown that there exists a subrepresentation K of [/, unique to within 

equivalence such that K e K is equivalent to [/. Let -=U = K. Then — [/is 
defined for all n. Given any positive real number X, let X = n + L \/2nj 

where n and the w, are non-negative integers and nx < n2 < n3 < • * *. One 
may consistently define X[/as U © • • • e U + E \/2nj [/and oo[/as U © 
[ / © [ / © • • • and show that every member of the quasi-equivalence class 
of U is equivalent to \U for one and only one value of X. If we define X to be 
the multiplicity of \U (relative to [/), it is clear that quasi-equivalence 
classes of type II factor representations behave as though some "ideal" or 
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"virtual" irreducible were being repeated with a continuum of (relative) 
multiplicities. While type II factor representations can be decomposed as 
direct integrals of irreducibles, the irreducibles that occur are far from being 
uniquely determined and the decompositions seem to be of little if any use. 
It seems best to stop the decomposition at the first level. When C/is a type II 
factor representation but is not necessarily finite, the different projections 
in /?((/, U) define subrepresentations of [/, and their multiplicities (relative 
to some finite subrepresentation of U) define a so-called relative dimension 
function P — d(P) on the set of all projections P in R(U9 U). If A is any 
bounded self-adjoint operator in R(U, U) and E — Pê is the projection-
valued measure on the line assigned to A by the spectral theorem, then the 
PE are all in R(U, U) and E — d{Pi) is a measure on the real line. When x is 
integrable with respect to this measure (and it always is when (/is finite), the 
integral is called the relative trace of A. In 1937 Murray and von Neumann 
published a second paper whose chief purpose was to prove the surprisingly 
difficult theorem that the relative trace, when it exists, is a linear function of 
the operator. Since every bounded linear operator is uniquely of the form A 
+ iB where A and B are self-adjoint, this linear functional has a well de­
fined extension to all bounded linear operators whenever d(Pf) < oo, and to 
a large subset in any case. 

Using the relative trace concept in conjunction with the theory of direct 
integral decompositions, it is possible to prove an expansion theorem for 
reasonably general functions on any separable locally-compact group whose 
left and right Haar measures coincide. This was done by Segal (1918—-) and 
Mautner in independent papers published in 1950. When U is a factor 
representation, the operator Uf = j f(x)Uxdfi(x) will lie in the commutator 
of R(U, U) and this is always a factor of the same type as R(U> U). If 7^(11/) 
denotes the (suitably normalized) relative trace of Ufy then ƒ — T^iUj) will 
be a linear functional, which one can hope to write in the form ƒ — 
J f(x)x(x)dfi(x). When this is possible, one can think of x as the character of 
U (with respect to the normalization chosen). Now consider the regular 
representation of the group G under consideration and its decomposition 
into factor representations defined by the center of the commuting algebra. 
When almost all of these factor representations are of type I and the ir­
reducibles that generate them have characters as indicated above, the Segal-
Mautner theorem implies the obvious generalization of the expansion 
theorem of Gelfand and Naimark. However, it goes further in two direc­
tions. First of all, it is not necessary that the linear functionals ƒ — Trace Lf 

be of the form ƒ — j f(x)x(x)dii(x). One can think of the linear functions 
themselves as characters and replace the expression j c f(xy'l)xL(y)dii{y) = 
\c Axy)xT(y)dii(y) by Trace Z/x, where fx is the left translate of ƒ and Z is the 
complex conjugate of L. Mautner and Segal do this and also include the 
case in which type II factor representations occur by replacing the trace of 
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the irreducible generator with the Murray-von Neumann relative trace. It 
can be shown that type HI representations do not occur in the decomposi­
tion of the regular representation of a group whose left and right Haar 
measures coincide. The final result is called the Plancherel theorem for the 
group in question, and the measure /t in the appropriate set of irreducible 
and factor representations is called the Plancherel measure. When the group 
is commutative, the Plancherel measure is Haar measure in the dual group. 
It is important to notice that the Plancherel theorem of Mautner and Segal 
is an abstract existence theorem. In specific cases, the problem remains of 
finding the irreducible and factor representations that are needed and of 
specifying the particular measure on this set which serves as the Plancherel 
measure. 

When non-type I factor representations exist for a group G, its represen­
tation theory is considerably more complicated in several ways, and it no 
longer suffices to know the irreducible unitary representations in order to 
know all unitary representations. One must also know the factor representa­
tions of type II and type III. Since the latter are always difficult (if not im­
possible) to find in their totality, it is helpful that many of the most in­
teresting groups can be shown to have no non-type I factor representations 
at all. Such groups are called type I groups and obviously include the com­
pact groups and the locally-compact commutative groups. Mautner, who 
was the first to note the effect on uniqueness in decomposition theory of the 
existence of non-type I factor representations, was also the first to attempt 
to determine which groups were type I groups and which were not. In a 
paper published in 1950, he showed that both SL(2, R) and SL(2, Q are 
type I groups and conjectured that all semi-simple Lie groups are type I. He 
also found a five-dimensional solvable Lie group that is not of type I and 
gave examples showing that discrete groups tend never to be type I groups 
unless they are very close to being finite or commutative. Over a decade 
later it was shown by Thoma that a countable discrete group is a type I 
group if and only if it has a commutative normal subgroup with a finite 
quotient. Irregular semi-direct products are a rich source of groups that are 
not of type I. Mautner's non-type I five-dimensional solvable Lie group is 
an example in which the normal subgroup is a four-dimensional vector 
group. 

A Lie algebra version of Mautner's conjecture about the type I-ness of 
semi-simple Lie groups was proved by Harish-Chandra in the course of a 
long paper published in 1951. (The original conjecture was proved in a 
second long paper by the same author published two years later.) Harish-
Chandra combined his attack on the type I-ness question with a powerful 
and original attack on the problem of finding the irreducible Banach space 
representations of general semi-simple Lie groups. A complete classification 
is difficult to derive, and Harish-Chandra soon concentrated his efforts on 
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finding enough irreducible unitary representations to decompose the regular 
representation and on finding an explicit Plancherel formula. In 1952 he 
found the Plancherel formula for SL(2, R), and in 1954 published a long 
paper on the general case, including complete results for the complex semi-
simple Lie groups. His results in the complex case go beyond those found 
earlier by Gelfand and Naimark in that the five exceptional groups are in­
cluded and in that all cases are treated at once in a uniform manner. The 
non-complex case turned out to be much more difficult; in fact, it demand­
ed Harish-Chandra's best efforts for over a quarter of a century. The final 
details have been written down only recently. The fundamental simplifica­
tion that takes place in the case of a complex semi-simple Lie group is that 
there is a single commutative subgroup the conjugates of whose elements 
form a set whose complement has Haar measure zero. 

Already in the case of SL(2, R) no such subgroup exists. Instead there are 
two commutative subgroups, the conjugates of whose elements constitute 
two sets intersecting in a two element set, whose union has a complement of 
Haar measure zero. In more complicated real semi-simple Lie groups, many 
such non-conjugate "Cartan subgroups" exist. By 1952 Harish-Chandra 
had already suggested that to find enough irreducible unitary representa­
tions for a Plancherel formula it would be necessary to associate a different 
family to each conjugacy class of Cartan subgroups. In SL(2, R) the prin­
cipal series and the discrete series correspond respectively to the diagonal 

subgroup and the compact subgroup of all ( c-°sf Sm
s^) > anc* ^e"" 

members are parameterized by finite subsets of characters of these two com­
mutative groups. Work of Gelfand and Graev published a year later showed 
that this was definitely the case for SL(n, R). Here the number of Cartan 

subgroups is—•=— or —y— according to whether n is even or odd. In 1954 

Harish-Chandra described a method8 for assigning a family of irreducible 
(or nearly irreducible) unitary representations to each non-compact Cartan 
subgroup A, its members being parameterized by certain finite subsets of 
the character group Â of A. The method involved using the inducing proc­
ess L — L/1 and forming L out of irreducible unitary representations of 
lower-dimensional semi-simple Lie groups. The method failed when A was 
compact, and Harish-Chandra saw the central problem as that of finding 
some other method for constructing the family that he felt sure existed in 
this case. This is the celebrated problem of the "discrete series." Harish-
Chandra announced a solution in 1963—at least as far as finding the 
characters of the representations was concerned. 

I have already explained how some irreducible unitary representations 
may be said to have "characters" either in the sense of actual functions on 
the group or at least as linear functions ƒ-*?(/) defined for ƒ in some 
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reasonably large vector space of complex-valued functions on G. In the 
early 1950s Godement was particularly active in attempting to construct a 
general theory of characters along such lines. He published a long memoir 
on the subject in 1951 and another (in two installments) in 1954. As far as 
semi-simple Lie groups are concerned, however, the most useful theory is 
due to Harish-Chandra. Let 2> be the space of all infinitely differentiate 
functions with compact support on the semi-simple Lie group G. In 1954 
Harish-Chandra showed that for ƒ in Çt, Trace Lf exists for all irreducible 
unitary L (and some Banach space representations as well) and that ƒ — 
Trace Lf is a distribution in the sense of L. Schwartz (1915—). Two years 
later he showed that this distribution reduced to an analytic function on an 
open set with a complement of measure zero. Finally in 1965 he showed that 
his distribution characters are actually locally summable functions on the 
whole group. 

My aim in this section has been to give some rough idea of the beginnings 
and principal concepts of the huge theory that has emerged from the suc­
cessful attempt to extend harmonic analysis to locally-compact groups 
which are not necessarily compact nor commutative. My account is at most 
three-quarters complete as far as the first decade is concerned, and the find­
ing of the general Plancherel formula for semi-simple Lie groups is only a 
fraction of what has been added to the theory in the past two decades. For 
further details about the period 1946-1961 the reader is referred to my collo­
quium lectures [14], and for a survey of developments between 1955 and 
1975 to the second half of my 1976 book [75]. (The first half of the book is a 
reprint of a set of lecture notes for a course given at the University of 
Chicago in 1955.) 

22. APPLICATIONS OF THE GENERAL THEORY 

In the earlier sections of this article I have indicated three different 
origins of the method of harmonic analysis: in probability theory, in 
mathematical physics, and in number theory. In this section we shall see 
that the general point of view that began to evolve with Frobenius's in­
troduction of group characters in 1896, and which reached a certain level of 
completeness and coherence in the 1950s, has significant applications to all 
three subjects. 

The applications to probability theory are still relatively undeveloped and 
will be dealt with quite briefly. The basic idea is that families of random 
variables occur in many contexts (not just strung out in time) and that the 
parameter space may have symmetry properties. In other words, there is a 
natural generalization of a stationary stochastic process (see section 18) in 
which the ergodic action of the real line or the integers in a probability 
measure space Ö, \L is replaced by an ergodic action of some other group. 
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For example, in considering the statistical mechanics of a gas (considered 
for convenience as occupying all of space), the number of molecules in a 
finite subset V of space is a random variable, and the set of random 
variables obtained by varying V constitutes a generalization of a stochastic 
process. Assuming the gas to have properties invariant under translation 
and rotation considerations analogous to those given in section 18 leads to a 
natural measure-preserving action of the Euclidean group ë on the underly­
ing probability measure space 8, fi. The Koopman construction then yields a 
unitary representation of «?, and the decomposition of this representation 
can be used as in section 18 to contribute to the analysis of the statistical 
mechanical problem. A preliminary study of this kind of application was 
made in a note published in 1960 by A. M. Yaglom. 

The applications of the theory of unitary group representations to quan­
tum physics are by now so extensive that anything like a complete summary 
would require a book-length article. I shall content myself here with a few 
remarks and references. In section 21 it was explained how one could be led 
to the imprimitivity theorem through three successive generalizations of the 
Stone-von Neumann theorem on the uniqueness of the solutions of the 
Heisenberg commutation relations. The final results seem to have nothing 
to do with the original physical problem. It is thus of some interest that it 
turns out a) to be possible to deduce the Schrödinger equation for a single 
free particle from the general principles of quantum mechanics and group 
theoretical invariance postulates, and b) that the imprimitivity theorem is 
the chief tool used in carrying out the derivation. Indeed, using the im­
primitivity theorem one can show that the Heisenberg commutation rules 
are essentially consequences of Euclidean invariance — and that the ex­
istence and properties of spin come along as a bonus. 

The argument proceeds as follows: Let S denote physical space and let ;H' 
be the Hubert space of states for our one-particle system (see section 16). 
Let S denote the group of all isometries of S so that S acts transitively on S 
and preserves the volume measure P. For each Borel subset E of S, let PE be 
the self-adjoint operator in ̂ corresponding to the observable, which is one 
when the particle is observed to be in E and zero otherwise. Then PE must be 
a projection operator, and it is not difficult to accept hypotheses implying 
that E — PE must be a projection-valued measure on S. This projection-
valued measure determines all position observables in the following man­
ner: If g is any real coordinate, i.e., any real-valued (Borel) function on S, 
then E — P-iiE is a projection-valued measure on the line, and the self-ad­
joint operator associated with it by the spectral theorem is the self-adjoint 
operator in J? associated with the coordinate observable g. Let t —- V, 
denote the unitary representation of the additive group of the real line, 
defining the "dynamics" or time evolution of our system. Once P and V 
have been given in some concrete fashion, our system is completely de-
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termined and ail questions about what happens can be reduced to 
mathematical calculation. However, without further assumptions the pair 
P, Vcould be an arbitrary pair consisting of a projection-valued measure on 
S and a unitary representation Kof the additive group of the line. We now 
introduce the assumption that the whole system is invariant under <?. This 
means in the first instance that each a e ê is intrinsically associated with an 
automorphism of our quantum model, i.e., with a unitary (or anti-unitary) 
operator U, and that U^ = UaU0a(a9 j3) where a is some projective multi­
plier for the group ê. It means in addition that PE and PlE]a are transforms 
of one another by the operator t/«; that is, that UllPEUa = PiE)a for all E 
and a. Now when every element in ê is the square of another, all the opera­
tors Ua must be unitary rather than anti-unitary. Moreover, by replacing ë 
by a covering g one can get rid of the factor a. Supposing these things done, 
one recognizes that P is a system of imprimitivity for U based on S. Since S 
= ê/K where K is the closed subgroup of S leaving some origin s0 in S 
fixed, the imprimitivity theorem implies that the pair U9 P is equivalent to 
the pair t/1, P* where L is some unitary representation of K. When K is 
compact, as it is for the usual Euclidean model for space, there is only a 
discrete countable set of possibilities for L and hence for the system P, U. 
The simplest case is that in which L is the one-dimensional identity. In that 
case, we at once reach the conclusion that 3? is isomorphic to SP\Sy fi) in 
such a way that Ul{f)(s) = f(sa) and PE(J)(S) = <pE(s)f(s) where <pE(s) = 
1 or 0 according as s e E or s t E. We shall not pursue the analysis further 
here. Let it suffice to say that in most of the particles occurring in physics 
the representation L is an irreducible unitary representation of SU(2) and 

that ^(dim L - 1) is called the spin of the particle. The representation 

t — Vt is limited by the requirement that VtUi = U%V„ and the possibilities 
under this limitation can be analyzed using the theory of unitary group 
representations. 

The connection between systems of imprimitivity and particle position 
observables seems to have been first noted by Wightman (1922—). Wigner, 
in collaboration with T. D. Newton, published a paper on position observ­
ables for relativistic particles in 1949 — the same year that my statement 
and abbreviated proof of the imprimitivity theorem were published. Not 
long thereafter, Wightman read both papers and noted that the contents of 
one were just what was needed to make the other rigorous. However, he did 
not publish his results until 1962.1 worked out the axiomatics of a particle 
discussed above after hearing a vague account of what Wightman had done. 

Starting with the group representational model for a single particle 
described above, one can discuss systems of interacting particles in a similar 
spirit and finally fit almost the whole of quantum physics into the 
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framework of the theory of unitary group representations. Further details 
will be found on pp. 328-357 of my book [75]. 

In some ways the applications to number theory are the most interesting 
of all, in part perhaps because they differ more from applications of the 
compact and commutative theory, and in part because they are still very in­
completely understood and are at the center of a rapidly developing area of 
mathematics. I shall describe them at somewhat greater length than I did the 
applications to probability theory and physics. 

Let F be a function analytic in the upper half-plane and let TV be a positive 
integer. Let rN denote the subgroup of SL(29 R) consisting of all (?S) in 
which a-1, b> c, and d-1 are integer multiples of N. Let A: be a positive in­
teger. One defines an (unrestricted) modular form of level N and weight k/2 
(or dimension -k) to be a complex-valued function F analytic in the upper 

half of the complex plane such that F\*V) = (c* + d)kF(z) for all z in 

the upper half-plane and all (?S)e IV Setting a = 1, 6 = AT, c = 0, rf = 1, 
one sees in particular that F(z + N) = F(z), so that F has the Fourier expan­
sion F(z) = £ <p(j)e{2wij*)/N. When <p(j) = 0 for j < 0 and (when 

y = - o o 
N > 1) certain other growth conditions are satisfied, one says that Fis a 
modular form of level N and weight k/2. As already indicated in sections 10 
and 19, the theory of modular forms has close connections with number 
theory because of the interesting number-theoretical properties of the func­
tions n — <p(n)9 which occur as coefficient sequences. In particular, for 
every positive definite quadratic form with an even number of variables, let 
<PQ(n) denote the number of integer points on the hypersurface 
Q(xl9 *2, • • s X() = n. Then n — (Pqin) occurs as the coefficient sequence 
for a modular form of weight 1/4 and some level depending on the form. 

As explained in some detail in sections 10 and 11, a fairly complete theory 
of modular forms of level one was given by Hurwitz in his thesis (published 
in 1881). Extending the theory to forms of higher level turned out to be 
quite difficult. Although Fricke and Klein made a certain amount of pro­
gress (see section 11), the situation in 1925 was that complete results were 
available for only a few small values of k and N. Then, beginning with an 
announcement in 1925, Hecke published a series of papers in which several 
important new ideas were used to carry the theory a great deal further. Since 
Hecke's ideas and results are vital in the application of unitary group 
representations to number theory, it will be necessary to devote some space 
to describing them. 

The material announced in 1925 was worked out in detail in a paper 
published in 1926. The main idea was to try to construct previously 
unknown modular forms using coefficient functions from other parts of 
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number theory. Hecke found it possible to get new modular forms of weight 
t/2 and various levels from the coefficients of the Dirichlet series expan­
sions for certain zeta functions associated with real quadratic number 
fields. Let n — (p(n) be a complex-valued function defined on the non-
negative integers which satisfies suitable growth conditions at oo. Then 

oo 

S ip(n)e2irinz will converge in the upper half-plane and define an analytic 
/7 = 0 

function F^ such that F^z + 1) = F^iz). Since (il) and (.?j) generate the 

modular group, and since F^(- ** ~ J= F^- \/z) and ^ > ( Q [ Z , , ) -
F<p(z + 1), it follows that F^ is a modular form of weight k and level f if and 
only if F^i-l/z) = z^F^z). On the other hand, consider the restriction 
y — F<p(iy) of F9 to the positive real axis. Since the positive real axis is a 
commutative group under multiplication, we may form the Fourier trans­
form £ (/>(/» - ip{0))y°-y= \ J (/>(/» - <p(0))ya'ldy and consider its ex­
tension to complex values s = a + ir —> Jo(/^(00 - <p(0))y8~ldy. (When so 
written, the Fourier transform is usually called the Mellin transform.) Writ-

00 
ing FJiy) - <p(0) = £ <p(n)e~2*ny and integrating term by term, one ob-

n = 1 
00 

tains a series expansion £ <p(n) Jo e~2™yys~ldy for this Mellin transform. 
n = l 

Making the change of variable y — -z—, the nth term becomes ^(fl): 

\oe'frldt = ^ >̂(A7), where s — F(s) = ["er^di is the classical gamma 

function. Thus the Mellin transform becomes s —> n^s D^is) where D^s) T(s) 

00 / j 

has the Dirichlet series expansion DJs) = E -—7- . A straightforward 
n = 1 n 

calculation shows that F^ satisfies the identity F^(- \/z) = z^F^z) if and 
only if D^ has an analytic continuation to the whole complex plane and sat­
isfies the functional equation 

(The argument is simplest if <p(0) = 0, for then D^ is entire. Otherwise D^ 
has a pole at 2k and the residue at this pole determines <p(0).) Thus F^ is a 
modular form of weight k if and only if D^ satisfies the functional equation 
in question. In his 1926 paper, Hecke used a more complicated variant of 
the correspondence just described to construct modular forms of weight 1/2 
and higher level from Dirichlet series D satisfying functional equations of 
the form 1-s D(\ - s) = ——̂  D(s). Here a is a positive constant 
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which depends upon the level. Certain two-fold products of Dirichlet L 
functions and products of Dirichlet L functions with the Riemann zeta 
function have functional equations of this form. 

In 1927 and 1928 Hecke published two further and rather different con­
tributions to the problem of determining the modular forms of higher level. 
The 1928 contribution has already been described in the last part of section 
19. In the 1927 paper Hecke showed how to extend the theory of Eisenstein 
series and cusp forms (see section 10) to forms of higher level. The Riemann 
surface whose points are the orbits in the action of TN on the upper half-
plane can be compactified by adding a finite number of points (the cusps). 
For each weight Ar = 1/2, 1, 3/2, 2, • • •, one has a generalized Eisenstein 
series for each cusp which "takes the value" 1 at that cusp and "the value" 
0 at all other cusps. Every modular form of level N and weight k is uniquely 
a sum of a form which vanishes at all the cusps (a cusp form) and a linear 
combination of the Eisenstein series attached to the cusps. The Fourier 
coefficients of the Eisenstein series have simple number-theoretical proper­
ties analogous to those in the level one case. The Fourier coefficients of the 
cusp forms are of a lower order of magnitude than the Fourier coefficients 
of the Eisenstein series. Using the facts just stated, Hecke was able to obtain 
the Hardy-Littlewood asymptotic formula (see section 20) for representa­
tions of integers as sums of squares (but not higher powers) as a corollary of 
his theory. The formulae are exact rather than asymptotic whenever there 
are no cusp forms. 

The connection between modular forms and Dirichlet series satisfying a 
Riemann-type functional equation, which Hecke had exploited in a special 
case in the 1926 paper mentioned above, became the basis of a far-reaching 
theory presented by Hecke in four long papers published in 1936 and 1937. 
Hecke applied his results to the theory of rt-ary quadratic forms in a very 
long paper published in 1940. Detailed summaries of part of this work were 
published in 1935 and 1936. Instead of continuing to find new modular 
forms by transforming known Dirichlet series, Hecke reversed things and 
studied the Dirichlet series obtained by applying the Mellin transform to an 
arbitrary modular form. This study led to two kinds of results. On the one 
hand, by using known facts about the general theory of modular forms and 
by proving precise theorems about the bijectivity of the Mellin transform 
between well-defined spaces of Dirichlet series and modular forms, Hecke 
was able to deduce theorems characterizing various zeta and L functions by 
their functional equation and certain additional properties. In doing so, he 
found an extensive generalization of a characterization of the Riemann zeta 
function given by Hamburger (1889-1956) in 1921 and 1922. On the other 
hand, he found a method for showing that the Dirichlet series one gets by 
taking the Mellin transforms of a modular form are like those occurring in 
algebraic number theory not only in that a) they satisfy a Riemann-type 
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functional equation, but also in that b) they can be written as finite linear 
combinations of Dirichlet series which both satisfy the functional equation 
and have an "Euler product factorization " with one factor for each prime. 

Perhaps a word is in order here about the definition and significance of 
an Euler product factorization. Let n — <p(n) be a complex-valued function 
on the integers of such a character that E ^ ^ converges whenever the real 

part of s is sufficiently large, i.e., in some half-plane a > a0 where s = a + 
/Y. Typically <p(n) will be the unknown solution to some number-theoretical 
problem containing n as a parameter. If <p is multiplicative in the sense that 
ip(nm) = <p(n)<p(m) for n and m relatively prime, then <p is completely known 
when it is known at the prime powers. Moreover, if <p is multiplicative, one 

verifies at once that E £!_> = n Ep(s) whereas) = E ^ ~ . Conversely, if 
/ f = l n p * = 0 P 

oo <fi(n) °° <p(n) 
E ^V^ factors in the indicated way, one says that the Dirichlet series L-1-^ 
n = \n n = \ n 

has an Euler product factorization and one can prove easily that <p is 
multiplicative. In the original case considered by Euler (see section 5), <p(n) 

00 / 1 V* | 

= 1 and Epis) = E i—]=-Ï r. In the Euler products which occur in 
number theory it is usually (if not always) true that Ep(s) is a rational 
function of p'% whose numerator and denominator have degrees that are 
bounded as a function of p. Thus, for each prime p, one need only know 
<p(pk) for a finite number of values of k to know ?(n) for all n. Finally, 
suppose that one has a system <pu <pl9 • • -, <ph of linearly independent 
functions of n which are not multiplicative, but that the vector space they 
span has a basis ^ , ^2, • • •, ^H where the fo are multiplicative. Then, as one 
can easily check, it suffices to know <Pi(pk) for all /, p> and k to know (Pi(n) 
for all i and n. Moreover, if the Euler products which occur in the fac­
torization of the Dirichlet series have rational factors as indicated above, it 
suffices for each/7 and i to know <Pi(pk) for a finite number of values of k. 

Hecke's theory is considerably simpler for modular forms of level 1 than 
for forms of higher level, and I shall attempt to describe only this simple 
case. As already mentioned in section 10, the Eisenstein series of level 1 and 
weight k has a constant multiple whose Fourier coefficients n — <pk(ri) are 
given by the simple formula (pk(n) = E d2*'1. It follows easily that n — <pk(n) 

d\n 

is multiplicative, and that an Euler product factorization for E ^—^ not 
n = l n 

only exists but takes the special form 

? V r ^ V 0 - p2k-lp-T ? VI - (1 + p2k'l)p's + p2k'lp'2s)' 
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Hecke's principal result was that for each k = 1, 2, 3, • • -, there is a basis 
for the space of cusp forms of weight k such that if n — \f#/î) is the sequence 
of Fourier coefficients for the ft h basis element, then the Dirichlet series 

L -̂ —-̂ has an Euler product expansion of the form £ -~-~ = 

n ! _ Kip)p-* + p2k'lp'2s w h e r e t h e c o e f f i c i e n t s x&>) r e m a i n 

unknown. This has exactly the same form as in the case of Eisenstein series 
where XJfcO is known and equal to 1 + p2k~l. The lowest weight k for which 
cusp forms exist is k = 6, and in this case the space of cusp forms is one-
dimensional. Let r{ri) denote the nth Fourier coefficient of the unique cusp 
form of weight 6 whose e2*,z coefficient is 1. Already in 1916 Ramanujan 
had conjectured that E -V-has an Euler product factorization of the form 

/? = i n5 

Tl- _, v ., ,—rr^r» and in 1917 Mordell published a proof of this 
p 1 - T(p)p 5 + pllp 2s * 
conjecture together with a proof of the fact that the Dirichlet series D(s) = 
%*(") ,. ~ 4. , ,. , .. T(s)D(s) r(12-s)D(12-s) E -^-r satisfies the functional equation \' x; ' = -̂  -~--^ '. 

Hecke's theory constituted a far-reaching generalization of these isolated 
results. Ramanujan also conjectured that \r(p)\ <2/?11/2, or equivalently that 
the polynomial 1 - r(p)p~s 4- pllp~2s cannot have unequal real roots. How­
ever, neither he nor Mordell was able to prove this. Hecke's theory suggests 
a natural generalization which was formulated by Petersson (1902—) in 
1939. The Ramanujan-Petersson conjecture states that.|X*f(p) |<2/?(2*~1)/2. 
It was finally proved by Deligne (1944—) in 1974 as a corollary of a much 
more general theorem. 

Hecke's discovery of a basis with multiplicative Fourier coefficients for 
spaces of modular forms was based on the consideration of certain linear 
operators Tn, which had been used by Hurwitz in the classical theory of the 
1880s and 1890s. However, Hecke found new properties of these operators 
and used them in a new way, and as a result they are now called Hecke 
operators. Let F be a modular form of weight k and level 1, and for each n 

let Tn(F)(z) = n2k-lZFrz~{~b)d-2k where d = n/a, a varies over all divisors 
a,b \ d / 

of n and for each a, b = 0, 1, 2, • • •, d-1. Then Tn(F) is also a modular 
form of weight k and level 1, and F — Tn(F) is a linear operator. Hecke's 
basic observation was that these operators not only commute with one 
another but vary with A? in a manner strictly analogous to the way in which 
the Fourier coefficients of Eisenstein series vary. Specifically, TnTm = 
E cP^iT Hmfdi) where d varies over all positive divisors of the highest com-
d 
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mon factor of n and m. This implies that TnTm = Tnm whenever n and m are 

relatively prime, and that I + E zT^ = (r_ T— r 2^ 2̂  where lis the 

identity operator. Whenever the Tn are all diagonalizable, it follows from 
their commutivity that they are simultaneously diagonalizable. One thus ob­
tains the desired basis in the space of modular forms by choosing any 
(suitably normalized) basis which diagonalizçs all of the T„. Hecke was able 
to prove the diagonalizability only for certain values of k. In the 1939 paper 
mentioned above, however, Petersson was able to prove diagonalizability in 
general. He did so by introducing a natural inner product in the space of 
modular cusp forms of a given dimension with respect to which all the T„ 
are self adjoint. This inner product turned out to be useful in the general 
theory of automorphic forms and is now known as the Petersson inner pro­
duct. 

While Hecke and Petersson were developing the theory described above, 
C. L. Siegel (1896—) was applying analytical considerations to a different 
kind of extension of the theory of /2-ary quadratic forms. Siegel generalized 
the problem of finding the number of representations of an integer by a 
quadratic form to that of finding the number of representations of one 
quadratic form by another. Instead of being content with asymptotic results 
as were Hardy and Littlewood, however, or attempting to get at the lower 
order terms via a generalization of Hecke's theory (which was just then be­
ing developed), Siegel replaced the study of individual forms by the study of 
certain averages. (As explained in section 6, the same device was used by 
Gauss to get exact results in the theory of binary quadratic forms.) Siegel's 
main result is a formula for the average solution number which specializes 
to the singular series of Hardy and Littlewood (see section 20) when one of 
the forms is a form in one variable. He showed how this result could be in­
terpreted as a product over the primes (including oo) of/7-adic or real solu­
tion densities, and also that it was equivalent to an identity between two dif­
ferently defined "generalized modular forms." 

Siegel's generalized modular forms are analytic functions of several com­
plex variables which are related to the «-dimensional symplectic group in 
the same way that the classical modular forms are related to the group 
SL(2, R). Let Vln be a 2«-dimensional vector space equipped with a non-
degenerate alternating bilinear form [ , ]. The w-dimensional symplectic 
group Sp(n) is the group of all non-singular linear transformations Tof V2" 
into V2" such that [T(<p)9 T^)] = [<p, \p] for all tp and \p in V2\ If K is a max­
imal compact subgroup of Spin), then Sp(n)/K has the structure of a com­
plex manifold which can be identified with a space of complex matrices. 
When n = 1, Sp(n) is isomorphic to SL(2, R)9 and Sp(n)/K becomes the up­
per half-plane. 
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Siegel's results for the special case of definite forms appeared in a long 
paper published in 1935. Their extensions to the indefinite case and to forms 
with coefficients in an algebraic number field were published in 1936 and 
1937 respectively. Of course, it was now very much in order to extend the 
classical theory of modular forms to include Siegel's new modular forms on 
Sp(n)/K, and the foundations for such a theory were laid down by Siegel 
himself in two papers published in 1939 and 1943 respectively. Many mathe­
maticians became interested and the new theory soon experienced a consid­
erable development. 

One of the more active workers in the development of Siegel's theory as 
well as other generalizations of modular form theory to several complex 
variables was H. Maass (1911—). Returning to the one variable case, Maass 
in 1949 published a long paper extending Hecke's theory in an unexpected 
direction. While Hecke's theory made it possible to give an abstract 
characterization of the zeta function of an imaginary quadratic extension of 
the rational field Q, it failed for real quadratic extensions because of the dif­
ferent form the functional equation takes in that case. Maass showed that it 
was possible to develop a modification of Hecke's theory which applied to 
the zeta functions of real quadratic fields if one replaced the analytic func­
tions of the classical theory of modular forms by group invariant functions 
which are not analytic in the sense of complex analysis. Instead, they are 

operator is (to within a multiplicative constant) the only second order dif­
ferential operator that commutes with the action of SL(2, R). In Maass's 
theory (which parallel's Hecke's in some respects but is quite different in 
others), the role of the weight of a modular form is played by the eigenvalue 

corresponding to an eigenfunction of y2v*r% +TTT)-

That the unitary representation theory of the group SL(2, R) might be 
closely connected with the classical theory of modular forms (and hence to 
number theory) is immediately suggested if one compares the identity 

ƒ( —j)= (cz + d)2kf(z) occurring in the definition of a modular form of 
\cz + a/ 

weight k with one form of the definition of the discrete series of irreducible 
unitary representations of SL(2, R) given in section 21. The member F2* of 
the discrete series had as Hubert space a space of analytic functions on the 
upper half-plane and was defined by the formula ^*(°S)/U) = 
ƒ (—TTdrcz "*" c^2k' Coring growth conditions for the moment, one sees 
at once that being a modular form of weight k and level N is equivalent to 
being a member of the subspace of jfXV2*) on which V2* reduces to the iden-
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tity when restricted to IV If the obvious analogue of the Frobenius 
reciprocity theorem (see section 15) were true in the present context, the 
dimension of this subspace would coincide with the multiplicity of occur­
rence of V2* in the decomposition of the representation lfrN induced by the 
one-dimensional identity representation lrN of T*. While neither of these 
two heuristic arguments can be made correct, the result they suggest is large­
ly true. For k = 2, 3,4, • • •, the dimension of the space of all cusp forms of 
weight k and level N\s precisely equal to the multiplicity with which V2k oc­
curs as a discrete direct summand of the induced representation lfTN. The 
first hint that such a connection between modular forms and the discrete 
series might exist occurs in a paper published by Gelfand and Fomin in 
1952. These authors were concerned not with modular forms or questions in 
number theory, but with using the theory of unitary group representations 
to prove the ergodicity of certain flows on compact homogeneous spaces of 
the form G/T where G = SL(2, R) and T is a discrete subgroup. Because of 
the compactness of G/T, the groups TN are excluded, but one has obvious 
analogues of modular forms in which T replaces FN. These are the automor-
phic forms of Poincaré, and when G/T is compact all automorphic forms 
are cusp forms. For use in their study of ergodicity Gelfand and Fomin 
proved that Wr contains F2* a number of times equal to the dimension of 
the space of T automorphic forms of weight k. The connection of the 
Gelfand-Fomin observation with modular forms and number theory seems 
not to have been noticed until after Selberg (1917—) published an extremely 
interesting and influential paper in 1956. 

While Selberg made no mention of either the Maass non-analytic 
automorphic forms or of the unitary representations of semi-simple Lie 
groups, his paper can be most easily understood as a contribution to a 
generalization of the Maass theory in which a group representational inter­
pretation of Maass's automorphic forms plays a key role. Let T be a 
discrete subgroup of G = SL(2, R) such that G/T is compact, and consider 
the unitary representation U*r of G induced by the identity representation of 
T. It follows easily from the compactness of G/T that LPr decomposes as a 
discrete direct sum of irreducible unitary representations of G, each occur­
ring with finite multiplicity. The cited theorem of Gelfand and Fomin states 
that the multiplicities with which half the members of the discrete series 
occur are equal to the dimensions of certain spaces of classical automor­
phic forms. What about the other irreducible unitary representations of 
G, especially the principal series? Maass's introduction of non-analytic 
automorphic forms received an extra vindication when it was pointed out by 
Gelfand and Pjateskii-Shapiro (1929—) in 1959 that for each principal 
series member L there is a real number X with the following property: The 
multiplicity with which L occurs in the decomposition of LFr is equal to the 
dimension of the space of all Maass automorphic forms for the group T 
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CUJVA H I V I r l g V J and the eigenvalue X. Moreover, X may be computed from the character 

which induces the principal series member L by means of the 

formula X = 1/4 - a2. To understand this correspondence between eigen­
values and principal series members on a conceptual level, identify 7/\ the 
upper-half plane, with the coset space G/K and consider the induced 
representation (A. (Here K is of course the maximal compact subgroup of 

all ( C? fleece)-) ° n e s h o w s t h a t W* has a commutative commuting 
algebra and hence is uniquely a direct integral of irreducibles, each of which 

( fil fil \ 

r-2+TrJ commutes with all Ws and 
since there are no multiplicities, the decomposition of fA decomposes 

/ ft2 ft2\ 
y2 ( J T + T~T) as a direct integral of constant operators. The irreducibles that 
occur in the decomposition of If* are (modulo sets of measure zero) precise­
ly the members of the principal series, and we have accordingly an assign-

( d2 d2\ 
•jTi+Y1) t 0 e a c h Pr*nc*Pal ser*es member. It is 

/ ft2 ft2 \ 
this correspondence between eigenvalues of y2 (j-î+-jrV a n d PrinciPal 

series members which makes it possible for Selberg to avoid talking about 
irreducible unitary representations of SL(2, R). (An analogous cor­
respondence involving a family of invariant differential operators permits 
Selberg to do likewise in his generalization to homogeneous spaces other 
than SL(2,/?)/#.) 

Selberg's paper centers about the existence and consequences of a for­
mula (now known as the "Selberg trace formula") which he asserts can be 
considered as a generalization of the classical Poisson summation formula. 

00 00 A 

In its most elementary form the latter asserts that S f(n) = E /(linn) where 
n— —00 /fi as — 00 

Ay) = !"• Ax) e^dx and ƒ is a mildly restricted complex-valued function 
on the real line. Noting that einy = 1 for all integers n if and only if y = 2irm 
for some integer m, one can rewrite this formula as E Ay) = £ , Ax)> 

where T is the subgroup of the additive group R of the real line consisting of 
the integers, T x is the subgroup of the character group R consisting of all x 
with X(T) = 1 for all y in T, and Ax) = J-» Ax)x(x)dx. Once it is so writ­
ten, there is an obvious generalization in which R is replaced by an arbitrary 
separable locally-compact commutative group G, and T is any discrete 
closed subgroup such that G/T is compact. (More generally still, T can be 
an arbitrary closed subgroup, and then the formula becomes j r Ai)d(y) = 
Jrx/(x)^X for suitably chosen Haar measures in Y and r x . ) In order to be 
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led naturally to a further generalization in which G can be non-com­
mutative, one has only to look at the formula in the commutative case from 
the point of view of induced representations and their characters. Consider 
LPr, the representation of G induced by the trivial representation Ir of I\ 
When T is discrete and G/T is compact, T x is also discrete, and it is easy to 
check that (A is just the direct sum of the one-dimensional representations 
defined by the members of r x . While Trace (Uir) does not exist, one can 
define the character of U*r as a linear functional by the device already 
discussed in section 20. One forms Up and defines the character to be 
ƒ — Trace (Up). Now an easy computation shows that Trace (Iff) = 

E f (y). Moreover, for each x c T-1, the linear functional defining the 
7er 
character of the one-dimensional representation defined by x is just 
\x(x)f(x)dii(x) = /(x). In other words, the Poisson summation formula 
simply asserts the equality of the character of U*T (as a linear functional) to 
the sum of the characters of its irreducible constituents. 

Now let G be any separable locally-compact group and let T be any closed 
discrete subgroup of G such that G/T is compact. Then UT = E nyL

J where 
the V are distinct irreducible unitary representations of G. In this case one 
can hope to find a reasonably large family of functions ƒ for which the two 
sides of the equation Trace U1? = E ns Trace Lj make sense and are equal. 
To the extent that one can do this, one will have a formula which is evident­
ly a non-commutative generalization of the Poisson summation formula. 
For compact G/I\ this formula is in essence Selberg's trace formula. 
However, Selberg introduced certain restrictions on G and ƒ that made it 
possible to avoid various difficulties associated with not knowing all the V 
which might occur and with the (possible) non-existence of Trace (Lj). For 
Selberg, G was always a Lie group with a distinguished compact subgroup K 
such that G/K is a Riemannian manifold and UK has a commutative com­
muting algebra. Moreover, Selberg only applied his trace formula to func­
tions ƒ which were constant on the K : K double cosets. Under these cir­
cumstances, only those irreducible unitary representations L which contain 
the identity when restricted to K make a contribution to the right side of the 
trace formula. Moreover, each such L contains the identity of K just one 
time. Let <p be a unit vector such that Lk(<p) = <p for all k in K. Then the 
function x —> (Lx(<p) • <p) is independent of the choice of <p and is called the 
spherical function associated with L. For an ƒ which is constant on the 
K : K double cosets, Trace Lf is equal to J f(x)(Lx(<p) • <p) whenever the 
former exists, and the latter may be substituted for the former in general. 

For the Maass case (G = SL(2, R)9 K = all f c.os j?sin 2) ), the irreducible 

unitary representations which contain the identity when restricted to K are 
just the trivial representation and the members of the principal series which 
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are trivial on the center. For Selberg, the problem of finding which principal 
series members occur in the decomposition of IPT appeared as the problem 

T-j- + ̂ Tjin the space of T or­

bits in the upper half-plane. 
Given the importance of the classical Poisson summation formula in 

number theory (Dirichlet's method of evaluating Gauss sums and deducing 
quadratic reciprocity, the proof of the Jacobi inversion formula, functional 
equations for zeta and L functions, etc.), one can hope that a non-
commutative generalization will have a host of interesting new number-
theoretical consequences. Indeed, Selberg's paper was first found in­
teresting not because it helped establish a connection between number 
theory and unitary group representations, but because of the immediate and 
prospective consequences of the trace formula for classical questions in 
number theory and the theory of modular forms. Among other things, 
Selberg found new relations among class numbers for binary quadratic 
forms, a new way of determining the dimensions of spaces of automorphic 
and modular forms, and perhaps most interesting of all, a way of com­
puting the traces of the Hecke operators Tn which are so important in 
Hecke's theory of Dirichlet series with Euler products. 

Actually, from the outset Selberg dealt with the generalizations of the 
trace formula described above, which one obtains by replacing the identity 
representation Ir with an arbitrary finite-dimensional unitary representation 
M of T. Moreover, in order to obtain his results on traces of Hecke 
operators, he generalized in another direction by replacing Trace Uf on the 
left-hand side by Trace A Vf where A is a rather special member of the com­
muting algebra /?(£/", C/™). When M = / r , there is a possible A associated 
with each T : T double coset containing only finitely many right and left T 
cosets. It would take us too far afield to give further details here. 

For applications to number theory, Selberg had to modify his theory to 
allow for the possible non-compactness of G/T. Already when G = 
SL(2, R), the most interesting T's for number theoretical purposes are the 
so-called principal congruence subgroups FN, and for these G/TN is never 
compact. Accordingly, the induced unitary representation U*r (more 
generally U™) is in part a discrete direct sum and in part a direct integral. In 
the special case in which G = SL(2, R) and T is a subgroup of I \ of finite 
index so that there are only finitely many "cusps," it turns out that U*T is 
the direct sum of two parts. One summand is a discrete direct sum of ir-
reducibles, as in the case in which G/T is compact. The other part has one 
contribution from each cusp, each of which is a simple known direct in­
tegral of members of the principal series. Selberg showed how to take these 
contributions into account in his non-compact trace formula by making use 
of Maass's analogue of Eisenstein series. In defining his Eisenstein series for 
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non-analytic automorphic forms, Maass had found that these series con­
verged only for inappropriate values of the eigenvalue parameter. But he 
could obtain what he needed by analytic continuation. This "analytic con­
tinuation of Eisenstein series" was important in Selberg's considerations as 
well. When one tries to deal with higher-dimensional groups G and spaces 
G/K for noncompact G/T, one can no longer compactify by adding a finite 
number of points. One has to add higher-dimensional spaces and the whole 
theory becomes much more complicated. Selberg gave important indica­
tions as to how to proceed but left many open problems. 

It may appear at first sight that Selberg's trace formula can only give in­
formation about the non-analytic automorphic forms of Maass — at least 
in the special cases considered by Selberg. But let G = 5L(2, R) x Kl where 
Kl is the subgroup of SL(2, R) consisting of all ( ^ ƒ ™ jjj. Let K be the 

subgroup of Kl x K1 C SL(2, R) x Kl consisting of all k, k. Then if 

Xn(_c.os nSm a ) = ein\ the irreducible unitary representation L x x« con-y sin u cos u i 
tains the identity when restricted to K if and only if L restricted to K1 con­
tains Yn- Thus every discrete series member W occurs in the decomposition 
of U1* as W x \n for some x», and only occurs once with any particular xl. 
This choice of G and K satisfies Selberg's axioms and he obtained his results 
on classical automorphic forms by applying his theory to this case. 

Selberg's work was translated into the language of the theory of unitary 
group representations and integrated with the earlier work of Gelfand, 
Fomin, and Maass in seminar reports by Godement and in the 1959 paper of 
Gelfand and Pjateskii-Shapiro cited above. In describing the picture which 
emerges, it is convenient to make use of the concept of an intertwining 
operator. Given unitary representations F and W of the same group G, an 
intertwining operator for V and W is by definition a bounded linear 
operator T from Jf (K) to 3f(W) such that TVX = WXT for all x in G. 
Evidently the set I(V, W) of all intertwining operators for Kand Wis a vec­
tor space. Its dimension is defined to be the intertwining number i(V9 W) of 
Kand W. Of course, 7(F, V) coincides with R(V9 V), the commuting algebra 
of V. If Te I(V, W), let NT denote the zero space of rand let £7denote the 
closure of the range of T. It is obvious that NT and RT are closed invariant 
subspaces and easy to show that the subrepresentation of V defined by NT

 x 

is equivalent to the subrepresentation of W defined by £7. Indeed, the most 
general intertwining operator for V and W is obtained by composing an 
equivalence between subrepresentations with members of R(V9 V) and 
R(W, W) respectively. When Kis irreducible, /(K, K) is one-dimensional 
and it follows easily that for any W, /(K, W) is the multiplicity with which K 
occurs as a discrete irreducible constituent of W. More generally, one can 
deduce information about the decomposition of unitary representations W 
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of unknown structure from information about the members of 7(K, W) 
where Khas known structure. 

In the special case of automorphic and modular forms defined in the up­
per half-plane, the principal facts connecting their theory with the theory of 
unitary group representations revolve around the structure of the induced 
representations U1* where T is a discrete subgroup of G = SL(29 R). When 
G/T is compact or T has finite index in SL(2, Z), then the multiplicity with 
which a member of the principal series of irreducible unitary representa­
tions of G is contained discretely in IP? is equal to the dimension of the 
space of all Maass cusp forms for the group T and a fixed eigenvalue X. Sim­
ilarly, the multiplicity with respect to which the discrete series member V2* 
for k = ± 2, ± 3, • • • is contained discretely in Wr is equal to the dimension 
of the space of all ordinary cusp forms of weight k for the group T. 
Equivalently, one can say (in either case) that the dimension of a space of 
cusp forms is equal to the dimension of a space of intertwining operators. 
Moreover, it turns out that this statement can be strengthened to the state­
ment that there is a canonical isomorphism of one space on another. Using 
this canonical isomorphism to identify cusp forms with intertwining 
operators, one can give group-theoretical definitions of the Petersson inner 
product and the Hecke operators. Let L be an irreducible unitary represen­
tation of G = SL(2, R), and let Tx and T2 be members of /(t/r, L). Then 
TiTi is a self-intertwining operator for L, and since L is irreducible this self-
intertwining operator is a complex multiple B(TU T2) of the identity. The 
function Tu T2 — B(TU T2) is the Petersson inner product. If A is any mem­
ber of W * \ c/*r), then for each Tin /(tA, £), AT is in KJJ1*, L). Thus there 
is a natural ring homomorphism of I{lfT

9 UT) into the space of linear 
operators in I(UIr, L). As will be explained below, each T : T double coset 
with suitable finiteness properties defines a member of 7(l/r, IPr). The cor­
responding linear operators in I(lfT

9 L) are the Hecke operators. 

When G/T is not compact, there may be non-discrete components in LP*. 
However, at least when F is a subgroup of finite index of SL(2, Z), these are 
all direct integrals with respect to Lebesgue measure of members of the prin­
cipal series. They may be discovered by considering the intertwining 
operators of UIfi with U1** where N is the nilpotent (actually commuta­
tive) subgroup of SL(2, R) consisting of all (J?). The structure of U*N is easily 
determined from two general theorems in the theory of induced represen­
tations. Let T denote the intermediate subgroup consisting of all 

\a l /X/a n d l e t ^ b e t h e r e P r e s e n t a t i o n o f 71 induced by IN. By the theorem 
on inducing in stages, U*N is equivalent to U". On the other hand, since Nis 
normal in T, Wis the regular representation of T/N lifted to T. Since T/N 
is commutative, the regular representation of T/N is the direct integral of 
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all characters with respect to Haar measure. That LPN is a corresponding 
direct integral of members of the principal series (each repeated twice) 
follows at once. To find intertwining operators between LPN and UIr

9 one ex­
ploits the fact that for finite groups one has a complete overview of all in­
tertwining operators for two induced representations. When both inducing 
representations are the identity, these intertwining operators correspond 
one-to-one to the complex-valued functions on G which are constant on 
the double cosets for the two subgroups involved. Thus there is a basis for 
the space of intertwining operators consisting of those whose corresponding 
function is identically one on some double coset and zero on all others. An 
explicit formula can be written down for each of these "double coset inter­
twining operators" which makes formal sense even when the group is in­
finite. Thus one can seek intertwining operators for LPr and UN by in­
vestigating the convergence properties of the formal double coset intertwin­
ing operators associated with the N : F double cosets. The double coset in­
tertwining operator for FxN involves an integration over the coset space 
N/x~lTx n N, and the double cosets divide sharply into two categories ac­
cording to whether or not this coset space has a finite invariant measure. 
Those for which a finite invariant measure exists are of course those for 
which the formal double coset intertwining operators exist as actual 
operators, and are also just those for which x'lFx O N & {e}. At least one 
such intertwining operator will exist precisely when F contains elements 
conjugate to members of N - {e}9 i.e., when F contains "parabolic" 
elements. In considering the N : F double cosets, it is possible to lump 
together those which are in the same T : F double coset. Since r normalizes 
N, the different double coset intertwining operators for a given T : F dou­
ble coset are obtainable from one another in a trivial way. Now the 
homogeneous space G/T is identifiable with the one point compactification 
of the real line, i.e., with the boundary of the upper half plane ƒ/*. Cor­
respondingly, since T : F double cosets may be identified with "boundary 
points" of the space of F orbits in 7/+, those T : F double cosets whose 
N : r double cosets lead to well-defined intertwining operators, as indicated 
above, may be identified in this way with the "cusps" of the space of F or­
bits. Thus one has one intertwining operator for each cusp, and (at least 
when T is a subgroup of finite index of SL(2, Z)) these collectively account 
for the entire continuous part of UIr. 

These considerations show how intimately the theory of automorphic 
forms is related to the decomposition theory of unitary representations of 
the form LPr. The Selberg trace formula may be regarded as the tool that 
makes it possible to exploit this relationship to obtain information about 
automorphic forms from knowledge of the irreducible unitary representa­
tions of SL(2,R). 
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In the spirit of Hecke's 1928 paper, described in section 19, it is useful 
(and possible) to extend the theory just described by replacing /r by a more 
general finite-dimensional irreducible unitary representation of F. In partic­
ular, when r is a subgroup of finite index of Ti = SL(2, Z), then U1? is a fi­
nite direct sum of induced representations of the form IP* where M is an 
irreducible constituent of the (finite-dimensional) representation of T, = 
SL(2, Z) induced by 7r. Moreover, the work of Siegel and others on modu­
lar forms in several complex variables makes it desirable to develop a corre­
sponding theory in which SL(2, R) is replaced by Sp(n). Finally, once things 
have been properly formulated in conceptual terms, there is no reason why 
one should not go on from Sp(n) to general semi-simple Lie groups. Indeed, 
one might even hope for interesting new number theoretical applications of 
such an extended theory. This is an immense program on which much prog­
ress has been made, but which cannot be described in further detail here. 
Instead I shall confine myself to a few remarks. In a short note published in 
1959, Harish-Chandra formulated a definition of automorphic forms which 
applied to quite general systems consisting of a semi-simple Lie group G and 
a discrete subgroup T. He also indicated a proof of the finite dimensionality 
of the space of all generalized automorphic forms of given "type." As a 
corollary he was able to show under rather general conditions that IPT con­
tains each discretely contained component with finite multiplicity. In the 
same year, Gelfand and Graev published a long paper describing what they 
called the "horospherical method" or "the method of integral geometry" 
for decomposing unitary representations of semi-simple Lie groups of the 
form IP* where K is a maximal compact subgroup of a semi-simple Lie 
group G. It is not difficult to see that this method is essentially that of ex­
amining double coset intertwining operators as indicated above for IP* and 
IP» where N is a maximal nilpotent subgroup of G. Soon thereafter, Gel­
fand and Graev applied their method to lPr where T is a discrete subgroup 
of a semi-simple Lie group G. In 1962 they announced the following result: Let 
,///be the orthogonal complement of the linear span of all double coset in­
tertwining operators in I(IPN, lPr) for all maximal nilpotent subgroups N of 
G. Then lPr restricted to,//is a discrete direct sum of irreducibles. 

The connection between unitary representations and automorphic forms 
as described so far is unsatisfactory in one important respect. Although it 
"explains" the Hecke operators in group-representational terms, it does lit­
tle to throw light on the Euler product decompositions which exist for the 
eigenfunctions of these Hecke operators. This gap was filled in in the 1960s 
with the aid of an extension of the idèle-adèle notion to non-commutative 
groups, inaugurated by Ono (1928—) and Tamagawa (1925—) in the late 
1950s simultaneously with the translation of Selberg's ideas into the 
language of unitary group representations. For each prime p let Gp be the 
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group SL(2, Qp) of all 2 x 2 matrices with determinant one and coefficients 
in the field Qp of all p-adic numbers (see section 20), and let Gœ = 
SL(2, R). Let Kp be the subgroup of Gp consisting of all members of 
SL(2, Qp) whose coefficients are in the ring of all p-adic integers. 
Equivalently, Kp may be defined as the closure in S£(2, Qp) of the subgroup 
SL(2, Z). Then Kp is a compact open subgroup of SL(2, Qp), and one can 
consider the subgroup of the direct product II SL(2, Qp) consisting of all 

p 
{xp} with xp e Kp for all but finitely many Kp. We denote this subgroup by 
h ' SL(2, Qp). It will be a separable locally-compact topological group if the 
p 
subgroup K = UKp has the usual product topology and if II' SL(2, Qp) has 

p P 

the unique topology such that K = YLKP is an open subgroup. The adêle 
p 

group Ĝ  for SL(2, Q) is then defined to be the product group II' SL(29 Qp) 
p 

x SL(2, R). Let 0„ be the canonical imbedding of SL(29 Q) as a dense 
subgroup of SL(2, Qp) and let 0^ be the canonical dense imbedding of 
SL(2, Q) in SL(2, /?). Then 7 — {0P(T)}, 0^(7) is an injective homomor-
phism of SL(2, Q) in the adèle group GA9 and the range of this homomor-
phism can be shown to be closed. Thus SL(2, Q) appears in a natural way as 
a discrete subgroup of GA. It is called the group of principal adèles. More 
generally, one can define such locally compact subinfinite product groups 
for every so-called "algebraic" subgroup of GL(n> Q which is "defined 
over" an algebraic extension k of the rationals. This means that the group 
consists of all invertible n x n matrices which satisfy a certain finite set of 
polynomial equations with coefficients in k. 

The theory of such algebraic groups was begun by Maurer (1859-1927) in 
1894 and then apparently forgotten for a half-century. Chevalley and Tuan 
(1914—) returned to the subject in 1945, and in 1951 Chevalley published an 
extensive account as volume II of his treatise on Lie groups. Chevalley's 
treatment made heavy use of Lie algebra techniques, but in 1956 A. Borel 
(1923—) transformed the subject with a long paper showing how (with the 
help of certain ideas of Kolchin [1916—]) to analyze the structure of alge­
braic groups by means of global arguments involving algebraic geometry. 

When Ono introduced non-commutative adèle groups in 1957, he was in­
fluenced not only by the revival of the theory of algebraic groups and 
Borel's paper in particular, but also by some ideas advanced by Eichler 
(1912—) a few years earlier concerning a possible unification of algebraic 
number theory with the theory of w-ary quadratic forms (see the introduc­
tion to a paper of Ono published in 1959). Ono found that certain finiteness 
theorems in algebraic number theory (such as the finiteness of the number 
of ideal classes) can be translated into statements about the idèle group of 
the field. These statements not only make sense for the adèle groups of alge-
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braic groups, but when specialized to the adèle groups of the orthogonal 
groups they reduce to known finiteness theorems for quadratic forms. Ono 
suggested that one try to find unified proofs for the theorems about quad­
ratic forms and algebraic number fields, respectively, by finding proofs of 
the general statements for the adèle groups of sufficiently comprehensive 
classes of algebraic groups. In his 1957 paper he defined adèle groups in 
general, but proved finiteness theorems only for commutative algebraic 
groups. In a second paper published in 1959 (and mentioned above) he was 
able to take care of certain solvable groups as well. More generally (as sug­
gested by Ono) one could now attempt to encompass much of classical 
number theory in a much more general theory centering around the proper­
ties of the adèle groups of algebraic groups. This program turned out to be 
attractive and fruitful and was soon in a rapid state of development. One of 
its earliest successes was the discovery by Tamagawa and M. Kneser 
(1928—) that some of the main results of Siegel on quadratic forms (dis­
cussed earlier in this section) are essentially equivalent to the assertion that 
GA/GQ has measure 2 with respect to a canonically defined Haar measure in 
GA. Here GA is the adèle group associated with the orthogonal group of a 
non-degenerate rational quadratic form in at least three variables, and GQ is 
the subgroup of principal adêles. This raised the question of generalizing 
Siegel's results by computing this measure (now called the Tamagawa 
number) for the adèle groups attached to other semi-simple algebraic 
groups. A detailed discussion, together with several Tamagawa number 
computations, appears in some 1961 lecture notes of Weil. Other aspects of 
Ono's program were worked out by Borel (with the assistance of some joint 
work with Harish-Chandra). For further details, the reader may consult the 
published version of Borel's 1962 address to the International Mathematical 
Congress in Stockholm. In the Proceedings of this same Congress, the 
reader will also find the texts of addresses by Gelfand and Selberg respec­
tively. These describe the state of development of the theory of automor-
phic forms in general semi-simple Lie groups as seen in 1962 from two quite 
different perspectives. 

Two years after the Stockholm Congress, the ideas described in Borel's 
address were combined with those described in the addresses of Gelfand and 
Selberg by considering extensions of automorphic forms from semi-simple 
Lie groups to the corresponding adèle groups and by replacing the study of 
unitary representations induced from discrete subgroups of semi-simple Lie 
groups to the study of unitary representations of adèle groups induced by 
the identity representation of the subgroup of principal adêles. The basic 
early publications include a short note published in 1964 by Gelfand, Graev, 
and Pjateskii-Shapiro and detailed papers published in 1964 by Weil and in 
1965 by C. Moore (1937—). Moore on the one hand, and Gelfand, Graev, 
and Pjateskii-Shapiro on the other independently laid the foundations for 
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studying the unitary representation theory of infinite product groups of the 
adèle type but applied their results in different ways. Moore was concerned 
with nilpotent Lie groups and the structure of LPr where T is a discrete sub­
group with a compact quotient. The other three authors were concerned 
with automorphic forms (although they did not say so in 1964) and their 
principal example was the adèle group associated with SL(29 R). They made 
their intentions clear in 1966 when they published a book (vol. 6 of Gel-
fand's series Generalized Functions) entitled (in English translation) Theory 
of Representations and Automorphic Forms. 

On the surface, Weil's paper seems almost unrelated to the considerations 
in the book of Gelfand et al., and it has yet to be integrated with those as­
pects of the unitary representation theory of adêle groups that tie in with the 
Hecke theory, which are described below. On the other hand, it relates uni­
tary representations and adêle groups to number-theoretical problems in a 
most interesting way. Unfortunately, the results in it do not lend themselves 
to brief description; the reader is referred instead to my rather lengthy 
review of the paper in volume 29 of Mathematical Reviews. Let it suffice to 
state here that a key role in it is played by a certain natural projective 
representation of a generalization of the symplectic group, that the ex­
istence of this representation is implied by the generalization to locally-com­
pact commutative groups of the Stone-von Neumann uniqueness theorem 
(see section 20), and that one of the main results may be looked upon as 
another generalization of the Poisson summation formula. The paper was 
written to prepare the way for a second paper, published in 1965, which 
contains a group-representational proof of Siegel's main results on quad­
ratic forms imbedded in the generalization which specifies the Tamagawa 
number of most semi-simple algebraic groups. Roughly speaking, one may 
describe Weil's proof of Siegel's theorems as the result of using the connec­
tion between group representations and automorphic forms to replace 
automorphic forms by group representations in Siegel's proof. 

To return to the adèle group GA associated with SL(2, R), let GQ denote 
the group of principal addles and consider the representation l/co of GA in­
duced by the one-dimensional identity representation of GQ. A good way to 
understand the relevance of the study of U*CQ to the theory of modular 
forms in the upper half-plane is to consider the restriction of U*CQ to the fac­
tor group e x SL(2, R), where e is the identity of IT ' SL(2, Qp). If one first 

p 

restricts 1/CQ to the intermediate subgroup II Kp x 5L(2, R), where Kp is the 
p 

compact open closure in SL(2, Qp) of SL(2, Z), and uses certain general 
theorems about induced representations (cf. pages 305-308 of [75] for fur­
ther details), one finds that this restriction is a discrete direct sum 
£ dim(L)LP. In this sum, L varies over a certain set of finite-dimensional ir-
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reducible unitary representations of T = 5L(2, Z). The representations L 
which occur are precisely those which are continuous in the SL(2, Qp) 
topology for all p and include all those which reduce to the identity on the 
principal congruence subgroups YN. Thus in analyzing C/CQ, one is 
simultaneously analyzing a great many induced unitary representations of 
SL(2, R) including all those of the form lfr

N. 
To see the connection with Hecke's theory of Euler products, one has to 

bring together the following three components: 

(a) The connection described above between modular forms and the 
decomposition of the representations IF; 

(b) the easily established fact that any decomposition of 1/CQ as a direct 
sum or direct integral restricts down to a decomposition of each LF and 
indeed to a decomposition of each factor component of each IF; and 

(c) the fact established by Gelfand et al. and Moore that each irreducible 
unitary representation of GA defines and is defined by a sequence {Mp}9 

A/00 where Mp is an irreducible unitary representation of SL(2, Qp) and 
M00 is an irreducible unitary representation of SL(2, R). 

The details are too complicated to give here, but the decompositions of 
the factor components of the LF brought about by (b) are by (a) reflected in 
corresponding decompositions of spaces of modular forms with values in 
Jt\L). These decompositions are those defined by the Hecke operators, and 
the Euler product decomposition of an irreducible component is a reflection 
of the factorization of the corresponding irreducible representation of GA as 
II Mp x M00. In particular, the coefficients in the Euler factors are deter­
mined by the particular Mp,s that occur. 

Once the relationship between Euler products and the adèle group 
representation \JCQ is understood, one sees how to approach the question of 
extending the Hecke-Euler product theory to modular forms associated 
with more general semi-simple Lie groups. A strong motivation for under­
taking such a program was provided in 1967 by independent work of Weil 
and Langlands (1936—). Weil showed how a relatively mild generalization 
of Hecke's theory might allow one to identify the zeta functions of elliptic 
curves with the Dirichlet series of modular forms, and Langlands indicated 
a path toward identifying the Artin L functions (see section 19) with the 
Dirichlet series arising in a generalization of Hecke theory to the general 
linear group of degree n. In Langland's case, n is the dimension of the ir­
reducible representation of the Galois group parameterizing the Artin L 
functions. Langlands began his career by making extensive contributions to 
the development of the Selberg-Gelfand program, and for the past decade 
he has been the leader in developing the new program suggested by the 
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above considerations. For further details about the very complex theory 
which has emerged, the reader is referred to Borel's 1974-1975 Bourbaki 
seminar report [7]. 

Naturally, a program like Langland's cannot progress very far without 
knowledge of the irreducible unitary representations of the p-adic analogues 
of the semi-simple Lie groups. Mautner began the study of the unitary 
representations of these p-adic groups in 1958 with an attempt to settle the 
type I-ness question and a determination of some irreducible unitary 
representations. He was soon joined by Bruhat (1929—). The road was 
blocked for a while by insufficient understanding of the structure of the 
groups, but there is now a rather large literature on both structure and 
representations which I cannot even sketch here. A summary account will 
be found on pages 316-327 of [75]. As with physics, a few decades earlier, 
the needs of number theory have greatly stimulated the development of the 
theory of infinite-dimensional group representations. 

2 3 . SUMMARY AND CONCLUSION 

With the preceding sketch of the nature of modern applications of the 
theory of unitary group representations to probability, physics, and number 
theory, we come to the end of our story. My central theme has been the 
power and scope of what I have called "the method of harmonic analysis." 
In addition there have been several unannounced subthemes. One of these is 
that physics is not so mysterious as many mathematicians seem to consider 
it. It is rather that physicists have different values and a different viewpoint, 
and this leads them to explain things in a manner uncongenial to 
mathematicians. If one works at it, it is possible to translate practically all 
of physics into well-defined mathematics. Moreover, when one does so, one 
finds a beautifully coherent scheme, which can be rather briefly sum­
marized. 

Another subtheme is that a rather large part of modern mathematics has 
developed in a natural way out of attempts to understand the solutions of 
quite simple equations. On the one hand, much of modern algebra and 
number theory has arisen out of attempts to understand the solutions in in­
tegers of equations of the form Ax2 + Bxy + Cy2 = D where A, B, C, and 
D are known integers (and certain straightforward generalizations). On the 
other, much of modern analysis originated in attempts to deal with the par­
tial differential equations that were encountered in physics as Newton's 
ideas were applied to continuous matter and as electricity, magnetism, and 
light began to be understood more quantitatively. The fact that the method 
of harmonic analysis is a key tool in dealing with both types of equations 
helps make it possible to see much more unity in mathematics and in 
mathematics and physics together than usually meets the eye. 
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In order to develop these themes, I have presented some of the main ideas 
and concepts of physics and number theory in more or less chronological se­
quence with emphasis on the impact of harmonic analysis. Before 1800 (ex­
cept for Laplace's use of generating functions in probability) there was no 
systematic harmonic analysis, and both number theory and mathematical 
physics remained in a relatively primitive state. I have tried to emphasize the 
considerable progress made possible in both subjects by the introduction of 
Fourier analysis and its (unrecognized) analogue for finite commutative 
groups. At the end of the nineteenth century Frobenius invented group 
representations—under the indirect inspiration of the needs of number 
theory. Thirty years later Hermann Weyl recognized the essentially group-
theoretical nature of Fourier analysis and observed that the theory of 
Frobenius was just the finite special case of an extension of Fourier analysis 
from commutative to non-commutative groups. The ensuing decades saw 
this new and enlarged concept of harmonic analysis produce advances in 
physics and in number theory comparable with those made over a century 
earlier by the original commutative version. These advances are still being 
made—especially in number theory. Indeed, it is possible to hope that 
startling progress will be made in classical problems once the intricate in­
teraction between unitary group representation, automorphic forms, and 
number theory is better understood than it is at present. 

The preceding account may seem to neglect such powerful tools as the 
theory of functions of a complex variable. As I have shown in the text, 
however, this latter theory can be regarded as an integral part of harmonic 
analysis, as can certain other techniques which are superficially rather dif­
ferent. 

Although probability theory has been mentioned both as one of the fields 
in which harmonic analysis originated and as one of the fields to which the 
modern theory of group representations may be applied, the connection has 
developed in rather a different manner than has been the case for number 
theory and physics. Probability theory did not advance much during the 
nineteenth century (although many new applications were found). It re­
joined the mainstream of modern mathematics when it was integrated with 
measure theory in the 1930s, and the main applications of harmonic 
analysis to it have been via the developments in the classical commutative 
theory made possible by the introduction of measure theory. While ergodic 
theory and the ergodic theorem are not usually thought of as being a part of 
harmonic analysis, I have taken pains in the text to show that in fact they 
are. It is this relatively new and undeveloped branch of harmonic analysis 
which has the most far-reaching connections with probability theory at pre­
sent. 
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NOTES 

1. Shortly after the typescript of this paper had been sent to the editors, I received a pre­
print of an article by K. I. Gross entitled "On the Evolution of Noncommutative Harmonic 
Analysis," scheduled to appear in the American Mathematical Monthly. The central theme of 
Gross's article is the same as that of this one. His execution is different in being more elemen­
tary, less than one fifth as long, and much less detailed. The reader may find it helpful to read 
Gross's treatment as an introduction to this one. 

Sections 14 through 22 (about three-quarters of the paper) were written while I was a 
member of the Institute for Advanced Study in Princeton. I wish to express my gratitude to the 
Institute as well as to the following individuals who read all or part of the typescript and made 
helpful comments and corrections: Allan Adler, Armand Borel, Philip Green, Harish-
Chandra, Howard Jacobowitz, Ian MacDonald, B. Simon, Robert Stanton, M. Taylor, David 
Vogan, and A. Weil. 

2. To call the prime number theorem a conjecture of Riemann's is perhaps too loose a 
statement. Other mathematicians such as Gauss had suggested the truth of such a result rather 
earlier. Riemann's contribution was to suggest a method of proof. 

3. Rayleigh himself suggested an ad hoc modification of his law which made it more rea­
sonable at low temperatures and short wave lengths. 

4. Since writing these paragraphs about Planck's contribution, I have examined the 
original papers and decided that the disclaimer "This of course is not how Planck proceeded" 
is an inadequate indication of the amount of "poetic" license I have taken in trying to make 
clear the essential point in Planck's discovery. This point is of course a lot clearer now than it 
was then. In actual fact Planck published two papers, a few months apart. In the first he found 
his now famous radiation law by making a (physically unmotivated) mathematical adjustment 
in Wien's derivation of Wien's law. He was not satisfied with his reasoning and published the 
law only because its predictions agreed with those of Wien's law at one end of the spectrum and 
with recent experimental results at the other. In the second paper he showed that the law could 
be derived in a more satisfying way by making his famous discreteness assumption. He does 
not talk about passing to the limit. It should also be mentioned that Planck did not refer to 
Rayleigh's law as such, but only to the experimental results confirming its validity at high 
temperatures. For a full account of the complex history of the old quantum theory, the reader 
is referred to Hermann [12] and Kuhn [13]. 

5. With this recognition of the group theoretical character of harmonic analysis, the fur­
ther development of the subject proceeded along two semi-independent paths. The followers of 
one path concerned themselves with obtaining ever deeper and more refined results about har­
monic analysis on the line and the circle (and later with extensions to n dimensions). The 
followers of the other path concerned themselves with extending the easier theorems to more 
general groups and to the new applications which this made possible. This paper does not pre­
tend to be a complete history of harmonic analysis, but is concerned rather with harmonic 
analysis as a method for exploiting symmetry. Accordingly, I shall concern myself almost ex­
clusively with the work of the followers of the second path, and with all due respect will say 
nothing about the work of such important mathematicians as Zygmund, Beurling, and Salem. 
For similar reasons, the reader will find no discussion of the generalization of harmonic 
analysis associated with the Gelfand map in the theory of Banach algebras. 

6. I am informed by Professor Weil that his conversation with von Neumann took place 
before he had seen Koopman's paper and that he independently had the idea of introducing the 
representation V. 

7. For details see pages 657-658 of [14]. 
8. For details see page 270 of [15]. 
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