REALIZATIONS OF NONLINEAR SYSTEMS AND ABSTRACT TRANSITIVE LIE ALGEBRAS

BY MICHEL FLIESS

Introduction. We shall derive nonlinear analytic realizations in system theory from infinite transitive Lie algebras and Lie pseudogroups. By using noncommutative generating power series, this new approach allows a local input-output viewpoint which was not possible until now (cf. [5], [6], [9], [10]) and should lead, thanks to the notion of *syntactic* Lie algebra, to many developments.

I. Review of noncommutative generating power series (cf. [2], [3]). X^* is the free monoid generated by $X = \{x_0, x_1, \ldots, x_n\}$ and 1 is its identity element. Let R(X) and R(X) be the R-algebras of formal polynomials and power series with real coefficients and associative variables $x_j \in X$ (noncommutative if $n \ge 1$).

A causal functional $F(t; u_1, \ldots, u_n)$, where u_1, \ldots, u_n : $[0, T) \rightarrow \mathbf{R}$ are piecewise continuous functions, is said to be *analytic* iff it is given by an element

$$g = (g, 1) + \sum_{\nu \ge 0} \sum_{j_0, \dots, j_{\nu} = 0}^{n} (g, x_{j_{\nu}} \dots x_{j_0}) x_{j_{\nu}} \dots x_{j_0}$$

of $\mathbb{R}(\langle X \rangle)$, called its *generating* power series, such that its value is

(1)
$$F(t; u_i) = (g, 1) + \sum_{\nu \geq 0} \sum_{j_0, \dots, j_n = 0}^{n} (g, x_{j_\nu} \dots x_{j_0}) \int_0^t d\xi_{j_\nu} \dots d\xi_{j_0}.$$

The iterated integral is defined recursively on the length

$$\xi_0(\tau) = \tau, \qquad \xi_i(\tau) = \int_0^{\tau} u_i(\sigma) d\sigma \qquad (i = 1, \ldots, n),$$

$$\int_{0}^{\tau} d\xi_{j} = \xi_{j}(\tau) \qquad (j = 0, 1, ..., n),$$

$$\int_0^t d\xi_{j_{\nu}} \dots d\xi_{j_0} = \int_0^t d\xi_{j_{\nu}}(\tau) \int_0^\tau d\xi_{j_{\nu-1}} \dots d\xi_{j_0}.$$

HYPOTHESIS (H). (1) is absolutely convergent for t and $\max_{0 \le \tau \le t} |u_i(\tau)|$ sufficiently small.

Received by the editors November 9, 1979.

AMS (MOS) subject classifications (1970). Primary 93B15, 93B20, 17B65, 58H05; Secondary 93B05, 93B07, 57R27, 58A99.

Let us introduce the differential system

$$\begin{cases} \dot{q}(t) \ (= dq/dt) = A_0(q) + \sum_{i=1}^{n} u_i(t) A_i(q) \\ y(t) = h(q), \end{cases}$$

where q(t) belongs to a real analytic manifold Q and q(0) is given; A_0, A_1, \ldots, A_n are analytic vector fields and $h: Q \longrightarrow \mathbf{R}$ is an analytic function, which are defined in a neighbourhood of q(0). The output y is an analytic functional with the following generating power series

$$g = h|_{q(0)} + \sum_{\nu \geq 0} \sum_{j_0, \dots, j_{\nu} = 0}^{n} A_{j_0} \dots A_{j_{\nu}} h|_{q(0)} x_{j_{\nu}} \dots x_{j_0},$$

where the bar $|_{q(0)}$ indicates the evaluation at q(0).

- II. Results. Let $\mathcal{H}(\mathfrak{g})$ be the Hankel matrix (cf. [1]) of $\mathfrak{g} \in \mathbf{R}(\!\langle X \rangle\!\rangle$. The R-vector space spanned by its columns has the canonical structure of a left $\mathbf{R}(\!\langle X \rangle\!\rangle$ -module: the product $u \cdot c_v$ of $u \in X^*$ and the column with index $v \in X^*$ is the column $c_{uv} \in \mathcal{H}(\mathfrak{g})$.
- L(X) is the free Lie algebra the envelopping algebra of which is R(X). The Lie rank of g is the dimension of the R-vector space spanned by $\{pc_1|p\in L(X)\}$.

THEOREM. (A) For $g \in \mathbf{R}(\langle X \rangle)$, the two following conditions are equivalent:

- (i) The Lie rank of g is finite, equal to N.
- (ii) There exist a commutative power series $h \in \mathbb{R}[[q^1, ..., q^N]]$ and formal vector fields

$$A_j = \sum_{k=1}^N \theta_j^k \frac{\partial}{\partial q^k} \quad (\theta_j^k \in \mathbf{R}[[q^1, \dots, q^N]]; j = 0, 1, \dots, n),$$

defined up to equivalence, such that

$$g = h|_{0} + \sum_{\nu \geq 0} \sum_{j_{0}, \dots, j_{\nu} = 0}^{n} A_{j_{0}} \dots A_{j_{\nu}} h|_{0} x_{j_{\nu}} \dots x_{j_{0}},$$

where the bar $|_0$ indicates the evaluation at $q^1 = \cdots = q^N = 0$.

- (B) When hypothesis (H) is satisfied, it is possible to choose the series θ_j^k and h to be convergent in a neighbourhood of 0. This choice is unique up to equivalence.
 - III. Sketch of the proof. Let I be the ideal of L(X) defined by

$$I = \{ p \in L(X) | \forall k \ge 0, \ \forall p_1, \dots, p_k \in L(X), \ [p_k, \dots [p_1, p] \dots] c_1 = 0 \}.$$

We shall say that $\mathfrak{U}(\mathfrak{g}) = L(X)/I$ is the *syntactic* Lie algebra of \mathfrak{g} which can be looked upon as an *abstract transitive* Lie algebra (cf. [4], [8]) with the following *fundamental* subalgebra:

$$L^{0} = \{ p \in \mathfrak{A}(\mathfrak{g}) | pc_{1} = 0 \}.$$

The Lie rank of g is equal to the dimension of $\mathfrak{U}(\mathfrak{g})/L^0$. As a result, part A of the theorem follows from [4, Theorem III], or [8, Theorem 4.3].

When hypothesis (H) is satisfied, the corresponding local Lie pseudogroup can be constructed with the same kind of methods used in $[6, \S 5]$. The uniqueness up to equivalence follows from $[8, \S 3.2]$, or [7].

REFERENCES

- 1. M. Fliess, Matrices de Hankel, J. Math. Pures Appl. 53 (1974), 197-222.
- 2. ——, Développements fonctionnels en indéterminées non commutative des solutions d'équations différentielles non linéaires forcées, C. R. Acad. Sci. Paris A287 (1978), 1133–1135.
- 3. ——, Fonctionnelles causales non linéaires et indéterminées non commutatives (submitted).
- 4. V. R. Guillemin and S. Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47.
- 5. R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat. Control 22 (1977), 728-740.
- 6. B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, Preprint 148, Instit. Math., Warsaw, 1978.
- 7. A. M. Rodrigues and A. Petitjean, Correspondance entre algèbres de Lie abstraites et pseudo-groupes de Lie transitifs, Ann. of Math. (2) 101 (1975), 268-279.
- 8. I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. I, J. Analyse Math. 15 (1965), 1-114.
- 9. H. J. Sussmann, A generalization of the closed subgroup theorem to quotients of arbitrary manifolds, J. Differential Geometry 10 (1975), 151-166.
- 10. ____, Existence and uniqueness of minimal realizations of nonlinear systems, Math. Systems Theory 10 (1977), 263-284.

UNIVERSITÉ PARIS VIII, ROUTE DE LA TOURELLE, 75571 PARIS CÉDEX 12, FRANCE

Current address: LABORATOIRE DES SIGNAUX ET SYSTÈMES, C. N. R. S.-E. S. E., PLATEAU DU MOULON, 91190 GIF-SUR-YVETTE, FRANCE