RESEARCH ANNOUNCEMENTS

PROJECTIONS OF C^{∞} AUTOMORPHIC FORMS

BY JACOB STURM ${ }^{1}$

The purpose of this paper is to exhibit an explicit formula which describes the projection operator from the space of C^{∞} automorphic forms to the subspace of holomorphic cusp forms, and to apply it to the zeta functions of Rankin type.

Fix a number $k>0$ such that $2 k \in Z$. Let N be a positive integer such that $N \equiv 0 \bmod (4)$ if $k \notin Z$, and let $\chi:(Z / N Z) \longrightarrow \mathbf{C}$ be a Dirichlet character modulo N. Define

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in S L_{2}(Z) \right\rvert\, c \equiv 0 \bmod (N)\right\}
$$

and $\mathfrak{F}=\{z=x+i y \in \mathbf{C} \mid y>0\}$. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(Z)$ and $z \in \mathfrak{D}$, we put $\gamma(z)=(a z+b)(c z+d)^{-1}$. For $b \geqslant 0$, denote by $S(k, N, \chi, b)$ the set of functions F satisfying
(1) F is a C^{∞} function from \mathfrak{S} to \mathbf{C},
(2) $F(\gamma(z))=\chi(d) j(k, \gamma, z) F(z)$ for all $\gamma \in \Gamma_{0}(N)$ where

$$
j(k, \gamma, z)= \begin{cases}(c z+d)^{k} & \text { if } k \in Z \\ \left(\frac{c}{d}\right)\left\{\left(\frac{-1}{d}\right)(c z+d)\right\}^{k} & \text { if } k \notin Z\end{cases}
$$

where (c / d) is the Legendre symbol (see Shimura [1] for a more complete explanation of this automorphy factor),
(3) $|F(z)|<C\left(y^{a}+y^{-b}\right)$ for some positive real numbers C and a.

Let $G(k, N, \chi)$ be the set of all holomorphic modular forms satisfying condition (2) and let $S(k, N, \chi)$ be the subspace of $G(k, N, \chi)$ consisting of cusp forms.

Let $f \in S(k, N, \chi)$ and $F \in \mathbb{S}(k, N, \chi, b)$. The Petersson inner product of f with F is defined as follows.

$$
\langle f, F\rangle=m(N)^{-1} \int_{\Gamma_{0}(N) \backslash \mathscr{y}} \overline{f(z)} F(z) y^{k-2} d x d y
$$

Received by the editors September 24, 1979.
AMS (MOS) subject classifications (1970). Primary 10D15, 10H10; Secondary 30 A 31.
${ }^{1}$ Partially supported by NSF Grant MCS77-0660.
where $m(N)$ is the area of $\Gamma_{0}(N) \backslash \mathscr{S}$ with respect to the measure $y^{-2} d x d y$. The functions F and f have Fourier expansions of the following type.

$$
\begin{aligned}
& F(x+i y)=\sum_{n=-\infty}^{\infty} a(n, y) e(n x) \\
& f(x+i y)=\sum_{n=1}^{\infty} a(n) e(n z)
\end{aligned}
$$

where $e(x)=e^{2 \pi i x}$. The functions $a(n, y)$ are C^{∞} on $(0, \infty)$.
Theorem 1. Let $F \in \Subset(k, N, \chi, b)$ with Fourier expansion as above. Assume that $k>2$ and $b<k-1$. Let

$$
c(n)=(2 \pi n)^{k-1} \Gamma(k-1)^{-1} \int_{0}^{\infty} a(n, y) e^{-2 \pi n y} y^{k-2} d y
$$

Then $h(z)=\Sigma_{n=1}^{\infty} c(n) e(n z) \in S(k, N, \chi)$. Moreover, $\langle g, F\rangle=\langle g, h\rangle$ for all $g \in$ $S(k, N, \chi)$.

The function h is denoted by $h=P(F)$.
Theorem 1 can be used to study the Rankin zeta function.
For $f(z)=\Sigma_{n=1}^{\infty} a(n) e(n z) \in S(k, N, \chi)$ and $g(z)=\Sigma_{n=1} b(n) e(n z) \in$ $G(r, N, \psi)$, define

$$
D(s, f, g)=\sum_{n=1} \overline{a(n)} b(n) n^{-s} .
$$

Then $D(s, f, g)$ can be analytically continued to a meromorphic function on the whole s-plane. There is a unique cusp form $K(k, g, s) \in S(k, N, \chi)$ such that

$$
\langle f, K(k, g, s)\rangle=D(s, f, g)
$$

for all $f \in S(k, N, \chi)$. The Fourier expansion of $K(k, g, s)$ will now be determined for s inside a vertical strip of the complex plane.

Let R be a set of representatives for $\Gamma_{\infty} \backslash \Gamma_{0}(N)$ where

$$
\Gamma_{\infty}=\left\{\left. \pm\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right) \right\rvert\, m \in Z\right\}
$$

and put

$$
E(z, s)=\sum_{\gamma \in R} \chi(d) \psi(d) j(k, \gamma, z) j(r, \gamma, z)|c z+d|^{-2(s+k)}
$$

Rankin's representation of $D(s, f, g)$ as an inner product can be stated as follows.

$$
(4 \pi)^{-s} \Gamma(s) D(s, f, g)=\left\langle f, g E(z, s+1-k) y^{s+1-k}\right\rangle m(N)
$$

Hence $K(k, g, s)=P\left(g E(z, s+1-k) y^{s+1-k}\right)(4 \pi)^{s} \Gamma(s)^{-1} m(N)$. In order to obtain the Fourier expansion of $K(k, g, s)$ from Theorem 1, it is necessary to know the Fourier expansion of the function $E(z, s)$.

For $y>0$ and $(\alpha, \beta) \in \mathbf{C}^{2}$, define

$$
W(y, \alpha, \beta)=\Gamma(\beta)^{-1} \int_{0}^{\infty}(u+1)^{\alpha-1} u^{\beta-1} e^{-y u} d u .
$$

The integral is absolutely convergent for $\operatorname{Re}(\beta)>0$, and $W(y, \alpha, \beta)$ can be analytically continued to a holomorphic function on all of \mathbf{C}^{2}. If $y>0$ define $W(y, \alpha, \beta)=W(-y, \beta, \alpha)$.

The function $E(z, s)$ has a Fourier expansion of the following type

$$
E(z, s)=c(y, s)+\sum_{t \neq 0} a(t, s) W(4 \pi t y, k-r+s, s) e^{-2|t| \pi y} e(x t)
$$

The functions $a(t, s)$ are known. When $k-r \in Z$, they are simple arithmetic functions, and when $k-r \notin Z$, they are, up to simple arithmetic factors, Dirichlet L-functions [1], [4].

Let $c \geqslant 0$ be such that $b(n)=O\left(n^{c+\epsilon}\right)$ for every $\epsilon>0$. Put

$$
I(s, t, u)=\left\{\begin{array}{l}
\int_{0}^{\infty} W(4 \pi t y, s+1-r, s+1-k) e^{-2 \pi(|t|+u) y^{s-1}} d y \quad \text { if } t \neq 0 \\
\int_{0}^{\infty} c(y, s+1-k) e^{-2 \pi u y} y^{s-1} d y \quad \text { if } t=0
\end{array}\right.
$$

Theorem 2. Let

$$
c(u, s)=(2 \pi)^{k-1} \Gamma(k-1)^{-1} u^{k-1} \sum_{n+t=u} b(n) a(t, s+1-k) I(s, t, u) m(N)
$$

where $a(0, s)=1$. Then this sum converges for $c+1<\operatorname{Re}(s)<k+r-2-c$, and for such s, the function $K(k, g, s)=\Sigma_{u=1}^{\infty} c(u, s) e(u z) \in S(k, N, \chi)$. Furthermore, $(4 \pi)^{-s} \Gamma(s) D(s, f, g)=\langle f, K(k, g, s)\rangle$ for all $f \in S(k, N, \chi)$.

Remark. In [5], Zagier (using a different method) computes $K(k, g, s)$ for $g(z)=\theta(z)=\Sigma_{n=-\infty}^{\infty} e\left(n^{2} z\right), k \in Z$ and $N=1$. He shows that the nth Fourier coefficient of $K(k, g, k / 2)$ is essentially the trace of the nth Hecke operator, and in this way, he recovers the Eichler-Selberg trace formula for $S L_{2}(Z)$. Using Theorem 2, it seems possible to recover the trace formula arbitrary congruence subgroups of $S L_{2}(Z)$.

Now assume that $k, r \in Z$ with $k>r>0$. Then, for $m \in Z, r<m<k$ -1 , the function $K(k, g, m)$ has a simpler form. In fact, for those special values of m, the integrals which appear in Theorem 2 can be evaluated and the sums defining $c(u, m)$ are finite.

In order to write down the Fourier expansion of $K(k, g, m)$ for $m \in J=$ $\{m \in Z \mid r<m<k-1\}$, it is necessary to introduce some notation. Let

$$
D_{N}(s, f, g)=L(2 s+2-k-r, \chi \psi) D(s, f, g)
$$

If ω is a character modulo N, and $d \in Z$, define

$$
\mathscr{H}(\omega, d)=\sum_{q=1}^{N-1} \omega(q) e(d q / N) \text { and } \quad \delta(\omega)= \begin{cases}0 & \text { if } \omega \neq I_{N} \\ 1 & \text { if } \omega=I_{N}\end{cases}
$$

where I_{N} is the trivial character modulo N. For $m \in J, t>0$ and $u>0$, define $I(m, t, u)$

$$
=\pi^{-m} \sum_{i=0}^{m-r}\binom{m-r}{i}\left\{\prod_{j=0}^{i}(m+j-k)\right\} t^{k-m-i-1}(t+u)^{k-i-1} 2^{k-i-2 m-1}
$$

$$
a(t, m)=i^{r-k}(2 \pi / N)^{2 m+2-r-k} \Gamma(m+1-r)^{-1}
$$

$$
\cdot \sum_{d / t} d^{2 m+1-r-k}(\leftrightarrow \leftrightarrow(\chi \psi, d)+V \leftrightarrow(\chi \psi,-d))
$$

where $V=(-1)^{k-r}$. Let

$$
\begin{aligned}
\xi(s)= & 2 L(2 s+2-r-k, \chi \psi)(2 \pi u)^{-s} \Gamma(s) \\
& +\left\{(2 \pi)^{s+2-r-k} i^{r-k} N^{2 s-r-k} \varphi(N) \delta(\omega) \Gamma(r+k+s-1) \Gamma(2 s+1-r-k)\right. \\
& \left.\cdot \Gamma(s+1-k)^{-1} \Gamma(s+1-r)^{-1}\right\} 2 L\left(2 s+1-r-k, I_{N}\right)
\end{aligned}
$$

where φ is the Euler φ-function. For $u>0$ define

$$
\begin{aligned}
& c(u, m)=(2 \pi u)^{k-1} \Gamma(k-1)^{-1} \\
& \quad \sum_{t=1}^{u} b(u-t) a(t, m) I(m, t, u)+b(u) \xi(m) .
\end{aligned}
$$

Let $K_{N}(k, g, m)=\Sigma_{u=1}^{\infty} c(u, m) e(u z)$.

Corollary. If $r<m<k-1$, then

$$
m(N)^{-1}(4 \pi)^{-m} \Gamma(m) D_{N}(m, f, g)=\left\langle f, K_{N}(k, g, m)\right\rangle .
$$

The Fourier coefficients of $K_{N}(k, g, m)$ are explicitly given by the above formulas. This corollary supplements Shimura's theorem (Theorem 4 of [3]).

REFERENCES

1. G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98.
2. ——, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), 783-804.
3. ——O_ On periods of modular forms, Math. Ann. 229 (1977), 211 -221.
4. J. Sturm, Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math. 102 (1980).
5. D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Lecture Notes in Math., vol. 627, Springer-Verlag, Berlin and New York, 1977, pp. 105-169.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

