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NUMBER THEORETICAL DEVELOPMENTS ARISING FROM 
THE SIEGEL FORMULA 

BY S. J. HARIS 

1. Introduction. Siegel Formula is the name Weil gave to an equality which 
relates a theta series with an Eisenstein series [16]. The original result of Siegel 
is quite arithmetic in nature, with special cases yielding for example Fermat's 
theorem that every prime p = 1 (mod 4) is expressible as a sum of two 
squares in essentially one way; Jacobi's theorem on the number of ways of 
writing an integer as a sum of four squares-namely 8 22<*+i|„ (2d + 1) for n 
odd or 24 22<*+i|« (2d + 1) for n even; and also Dirichlefs class number 
formula. In the more arithmetically accessible case, Siegel's theorem can be 
stated as follows: 

Let h be a positive definite quadratic form in m variables, with integer 
coefficients, write 

#{x GZm\h(x) = t}, 

U m i t #{x G (Z/prZ)m\h(x) ~t (modp')} 
/-»oo prim-I) 

.. . volume h~l(D ) 
limit - . J . 7 , 

D^{t) volume (D ) 
where D runs through the compact neighbourhoods of / and h: Rm-*R. 
Then we have d(t) = ^/00(/)II/, dp(t). (At least this formulation is correct when 
m > 2 and the genus of h has only one class. See §6 for a discussion of genus, 
class of h.) 

In general Siegel characterises his result as having the same quantitative 
relationship to the Hasse-Minkowski theorem, as the Jacobi Theorem men­
tioned above has to Lagrange's result that every integer is a sum of four 
squares. 

One can ask also for the number of representations of an n X n integral, 
symmetric, positive definite matrix T by a given m X m one S, and once 
more Siegel has a similar result. Moreover, Siegel has generalized his theorem 
to T indefinite and where the coefficients lie in an algebraic number field 
only now the definition of the densities dp(t) are much more involved, with no 
ready arithmetic interpretation. The proofs consist of constructing an Eisen­
stein series E(r) which behaves like the generating function f(r) for our 
Diophantine problem: 
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if A(T, S) = the number of representations of T by S, 

f(T) - 2 e* ***('&&) 
S e M ^ Z ) 

reMm,M(Z) 

(where r is in the Siegel upper half space), then E(j) is to behave like f(r) 
under all modular substitutions. One recovers the "d(t) = d^t) 11̂  dp(t)

99 

formulation from these analytic functions by equating Fourier coefficients 
[13, p. 180]. 

Tamagawa [14] observed that one can view the dp(tys also as limits of 
measures, in a /7-adic sense, enabling Weil to recast Siegel's theorem in the 
language of adelic analysis and distributions-and to examine the role of the 
symplectic group in these results. We shall discuss Weil's framework in §5 
and show that by a suitable choice of Schwartz-Bruhat function one can 
recover Siegel's theorem on the genus invariant (§6). All these considerations 
are for quadratic forms. 

In another direction, pursuing the Hardy-Littlewood circle method, Daven­
port obtained a result on cubic forms [3], which Birch [1] extended to higher 
degree forms, by the use of some algebraic-geometric techniques. The Daven­
port-Birch theorem asserts that for ƒ, a homogeneous form of degree d, with 
rational coefficients, the variety ƒ = 0 has a rational point if it has a 
nonsingular real point and a nonsingular /?-adic point for every p, provided 
that the singular locus of ƒ = 0 has codimension sufficiently large compared 
with the degree d. 

The developments referred to in the title are the recent results of Igusa, 
which, among other things, yield a Hasse-Minkowski type result as the 
Davenport-Birch theorem for certain ƒ, but from the Weil formulation. The 
spirit of approach is the same as Weil's, with the Poisson Formula playing a 
key role, but for forms of degree higher than two. The strength of this 
approach is that when ultimately all of Weil's techniques have been gener­
alized and in particular a suitable "metaplectic group" found, more will 
follow, just as the Hasse-Minkowski theorem for quadratic forms is a purely 
qualitative consequence of the Siegel Formula, but which has numerous 
quantitative consequences as well (for example: the Tamagawa numbers of 
many of the classical groups follow from the Siegel Formula of Weil). Igusa's 
work is a beautiful blend of algebraic geometry and analysis to yield 
arithmetic results, as we will show. 

In §2 we outline Weil's abstract Poisson Formula. Igusa proves that for 
certain ƒ this holds, if estimates of some associated transforms are satisfied 
(Theorem 2), provided that the singularities of ƒ = 0 are at least of dimension 
2 less than the dimension of the hypersurface. In §4 we will indicate how for 
nonsingular ƒ = 0, these estimates are satisfied-by an application of the 
Riemann hypothesis for such hypersurfaces. Further, we will indicate how the 
recognizably arithmetic result (the Hasse-Minkowski theorem for ƒ = 0) 
follows from the harmonic analysis and algebraic geometry. The fact that 
some restrictions are necessary on ƒ is not surprising, since for example, for 
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the hypersurface: %x\ + • • • + x%„2)
3 "" ^xn-\ ~~ $x% — 0 we have nonsin-

gular real points, as well as nonsingular/?-adic points for every/?, yet it has no 
rational zero [11]. But here the theory is not applicable since the locus of 
singular points: jcf + • • • + x%_2

 = xn-\ = xn = 0 is too large. 
Finally in §7 we mention further applications of Igusa's theory. 
We take this opportunity to thank Professor Igusa for introducing us to this 

branch of number theory, through his lectures at Johns Hopkins on Weil's 
two paper [15], [16]. 

Before embarking, let us recall some notations and concepts. 
A locally compact abelian group X is the limit of elementary pairs of 

subgroups (//, H') in the following sense: we can find an arbitrarily large 
open subgroup H c X, which contains an arbitrarily small compact sub­
group H' c H such that the quotient group H/H' is isomorphic to a direct 
product of a finite group and finitely many copies of R, Z and T (here R is 
the real number, Z the integers and T = R/Z, the unit circle). 

For X a locally compact abelian group, the space S (X) of Schwartz-Bruhat 
functions is defined as follows: for E elementary, <ï>: E -» C is to belong to 
S(E) if ||/?(JC)Z)$(X)|| is finite for each polynomial p(x) and each invariant 
differential operator D on E, where || — || is the sup norm. Then ||/?Z>$|| is a 
seminorm on S (E) and the collection of all of these defines the topology on 
§(£*). Now if (//, H') is an elementary pair, set S (77, H') = the complex 
valued functions on X whose support is in //, which are constant on the 
cosets of H' and whose projection to H/'H' belongs to S(H/H'). %{X) is 
then the inductive limit, over all elementary pairs (H9 H') of the topologial 
vector spaces S (77, H'). These are the functions we will be concerned with, 
for special X. 

Another ingredient will be adelisation. Chevalley introduced adeles (in 
1936) in connection with an algebraic approach to class field theory, while 
Tate (1950) used "valuation vectors." These are two instances of "adelisa­
tion," a language that is ideally suited to treating questions concerned with 
the interplay between local and global properties of varieties. Given a variety 
X defined over a global field k (that is either a number field or a function 
field of dimension one over a finite field) we can associate with X a locally 
compact topological space XA, as follows: for every valuation v of k, let Xv 

denote the kv-rational points of X. These spaces Xv are locally compact for 
every v9 but unfortunately the easy way of putting these together, namely 
n„ Xv, is not locally compact, so we must be more clever. Let X® denote the 
Durational points of X, where for v nonarchimedean, £)v is the ring of 
integers in kv, so the X® are compact. Now if S is a finite set of valuations of 
k, containing all the archimedean ones, we put Xs = JlvGS Xv X II„^5 X®, 
which, with the product topology, is locally compact. Then we take XA = 
U s Xs, the union being over all such sets S, with topology: 0 open in XA iff 
0 n Xs is open in Xs, for all S. XA is a locally compact space. 

For example, for X = Ga = {(o*)\x G $2), the additive group, XA = kA, the 
group of adeles of k. In particular QA = {(xv) G II Qv\xp E Zp for almost all 
p). Note that Q C QA, via the diagonal embedding and it is a discrete 
subgroup. Amazingly, the quotient QA/Q is connected, amazing when we 
consider that for all but one factor Qv = R, QA is built up from totally 
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disconnected spaces. If X is a finite-dimensional vector space over k, then XA 

is a locally compact abelian group. 
For certain varieties X, we can define a positive measure on the space XA. 

Let co be a differential form of degree = dimension X and suppose co never 
vanishes on X. We can define a measure \ai\v on Xv, then multiply them 
together to obtain \J\A on XA. Often one needs "convergence factors" to 
ensure that the resulting produce measure converges. It is a fact that for the 
varieties we shall consider, we may take these convergence factors to be 1 
[17]. The measure \o)\v is given by: co = f(x) dxx A • • • /\dxn locally, and set 
lwL = IKx)\v\d*\\v • ' • \dxn\v, where for a ^ 0 G kv \a\v is the module of the 
automorphism x -» ax, while 10^ = 0. Then we obtain \u\v on Xv by patching 
together the local charts. 

ƒ 
2. Abstract Poisson Formula [16]. Let I - > G b e a continuous mapping of 

locally compact abelian groups and fix Haar measures dx, dg on X, G. Let G* 
denote the Pontryagin dual of G and for $ G S (X), set 

n(g*)= ( * (* )<ƒ(* ) , g*>dx. 

This defines a continuous, bounded function on G* for every O. We are 
interested in decomposing the measure dx into measures carried along the 
fibres ƒ _ 1(g). 

WEIL'S CONDITION (A). If the function F£ is integrable on G* and if 
fG*\F£(g*)\ dg* is uniformly convergent on all compact subsets of S(X), 
then there exists a unique family of positive measures d\ig on X, with support 
d[ig c / _ 1 ( g ) , such that for every 4> G L(X) (= continuous functions of 
compact support), the function F#( g) = ƒ x <É>(x) ^ ( x ) is continuous on G 
and satisfies fG F$ dg = fx ® dx-(*). In fact, the d^g are tempered measures 
and for all 3> G S (X), the F 0 are continuous, belong to Ll(G% satisfy (*) and 
have as their Fourier transform the F&. 

This theorem ensures the existence of the decomposition of the measure dx. 
The next result guarantees that the conditions of (A) are met, as well as the 
Poisson Formula. Let T be a discrete subgroup of G such that G/T is 
compact and let T+ denote the annihilator of T in G*. 

CONDITION (B). Suppose that for all $ G S (AT), g* G G*, the series 
2y*er \F$>(g* + y*)| is convergent and uniformly so on all compact subsets 
of S (X) X G*; then condition (A) is satisfied for the mapping X-> G and we 
have the Poisson Formula: 

S ^ ( Y ) = S *Ï(Y*). 

Notice that if F 0 , F£ would be Schwartz-Bruhat functions, this latter equality 
would be trivial, but in general the F#, F£ are far from being such functions. 
The above two theorems follow from functional analysis-generalities on 
Fourier inversion, Fubini's theorem and tempered distributions. They occupy 
a short part of Weil's paper. The number theory enters when one makes the 
measures d/zg explicit and in verifying condition (B), as we will outline in §5. 
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Now condition (B) has two parts. Writing ®g*(x) = $(x)</(x), g*>, (B) 
follows from: 

(B0) the mapping 

S(X)XG* -> S(X) 

($, g*) -> <ï>g* 

is continuous, 
(Bt) the series S 7 * e r |^S(ï*)l *s uniformly convergent on compact subsets 

of S (X). 
Whenever ƒ is defined by polynomials, condition (B0) is satisfied [10], so 

one must verify (Bj). For quadratic ƒ, this follows from reduction theory 
applied to the metaplectic group; for higher degree forms, it is one of the 
main points of Igusa's work. 

3. The Poisson Formula for the higher degree forms. We now come to the 
main topic of this article. For k any field, a polynomial/(x) E k[xv . . . , xn] 
gives rise to the mapping/: X — An -> A of affine «-space, all defind over k. 
Let 

Sf= {xŒ X\df/dxx = • = df/dxn = 0}, 

the critical set of ƒ. Note that by Euler's result, if char(/c)} degree ƒ, ƒ 
homogeneous, then Sf c / _ 1 (0) . In general we say ƒ is "almost homogeneous" 
when Sfcf~l(0). In explaining the results, Weil's language of algebraic 
geometry suffices, although as it will become apparent shortly, the proofs rely 
heavily on all of the Grothendieck machinery. So, let Q, be a universal domain 
containing k, and for i E Ö, set U(i) = f~\i) — Sf, a nonsingular variety. 
Write dx = dxx f\ • • • f\dxn for the «-form on X. Then we can express it as 
dx = df A # for an (n — l)-form 9 on X. In fact we can choose 0 so that it is 
regular along U(i), when 0t = 0\u(i) is well defined. 

Since the explicit determination of the measures d\xg involves these $i9 let us 
consider an example. Let/(x,.y) = x3y + x2^2. Then Sf = {(0, J>)|J> arbitrary} 
and we need 0 = A dx + B dy such that ^(x 3 + 2x^y) - BQx^y + 2xy2) = 
1. Now if i ¥= 0, (x, y) E £/(/) «=> x3>> + x^y2 = i ^ 0, so in particular xy ^ 0 
and we may take 

,4 = -9/Sxy2
9 £ = - (3* + 4y)/8x>>3; 

while (x, .y) E (7(0) <=> x3>> + x2^2 = 0, x 7̂  0, so that we may take A = (1 — 
y)/(x3 + 2x2j>), # = l/(3x2 + 2xy). The reader familiar with complex analy­
sis will recognize that the 0/s are just the residues of (f(x) — i)~l dx along 
the fibers over /. 

From here on, we assume that k is a global field, with kv the completions of 
k and kA the adele ring of k. Fix a nontrivial character xp of kA/k. We further 
assume that ƒ is almost homogeneous. Then X is an «-dimensional vector 
space defined over k and put Xv (respectively XA) into Pontryagin duality 
with itself by \pv([x,y]) (resp. *p([x,y])) where [x,y] = 2 , x ^ . 
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(1) LOCAL CASE. We can explicitly describe the Schwartz-Bruhat functions 
in this case: 

f rapidly decreasing C°°-functions on Xv, if v G S^ 
v [ locally constant functions of compact support, if v & S^ 

The assumption that ƒ is almost homogeneous means that U(i)v = f(i)v for 
i T^ 0 G kv and define 

M O - ƒ *J»/L toriekf. (l) 

Here jo,^ is the measure that the residue 0, defines on U(i)v, as we outlined 
earlier. Easy estimates and Fubini's theorem show that F$ (i) is a continuous 
function on k* for all $ C G § (A^) and regarding it as an L1 function on kv it 
has F£ (*'*) = fx ®v(x)\l/v(i*f(x)) \dx\v as its Fourier transform. Further the 
equality fko F$(i) \di\v = fx ®v(x) \dx\v holds. The point is that for i =j£ 0 in 
the local case, the measures \9t\v work as the "d/Ag" that would follow from 
the condition (A), with only the mild assumption that ƒ be almost homoge­
neous. The conclusion of condition (A) is that the functions F0(g) are 
continuous on G, so we are faced with the question: does limit,^ F#~(i) exist? 
Denote the limit F# (0) when it exists, Igusa's first contribution is an analysis 
of this question and it involves some deep algebraic geometry, in the form of 
a Hironaka resolution of the singularities of ƒ = 0. In its simplest form, this 
consists in "blowing up a point on a variety". More generally it is a finite 
sequence of monoidal transformations. Briefly, the situation is this in C2. If 
P1 denotes the projective line and [£, TJ] the point in P1 defined by (£, TJ) G C2 

- (0, 0), consider C2 X P1 D (C2 - (0, 0)) X P1 D W =_{((x9y)9 [fc y)])\[x,y] 
= [fc rj]}JLet W be the closure of W in C2 XJP1; then W = {((x,y)9 [£, IJ])|JCTJ 

— yè}> W is a manifold with a projection m\W' —> C2. For/? G C2, 

_ f single point if /? ^ (0, 0), 
W " ( * ) = I P ' if, = (0,0). 

Then W is called the monoidal transformation centered at (0, 0) of C2 and 
denote it by ii0(C

2) say. Similarly for JU0(C). Now for a manifold M of 
dimension «, with a submanifold TV c M of dimension &, if « — k > 2 we 
have pN(M) defined as follows: locally M œCn~k X C* where the second 
factor is N locally while the first factor is the normal to N locally. Set 
Mc*(C"~* X C*) = fioCC1"*) X C*. Then these patch together to form \iN(M). 
Hironaka's theorem asserts that if chr(A:) = 0, the algebraic geometric ana­
logue always exists, which by a finite sequence of monoidal transformations 
yields a smooth variety in birational correspondence with the variety ƒ = 0. 

For our purposes, we assume that such a resolution exists for ƒ = 0. 

THEOREM 1 (IGUSA) [5], [7]. (i) F^(0) exists if and only if F^ G Ll(kv); 
(ii) F%9 G L'(kv) if and only if \F*u(i*)\ < const max(l, \i*\vy° for a fixed 

o > I, for every i* G kv. Here the constant depends on $v. 
Suppose the condition (ii) is satisfied for every ^ G S (XV). Then the mapping 

"$v -» FQ (0) — fU(!S) ^tJ^oL" defines a positive tempered measure on Xv> with 
support contained in Sv = ƒ ~\0)v — U(0)v. Then 
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(iii) the equality F^(0) = fUi0)v ®V\0Q\V for one $ > 0, smooth, of compact 
support implies a certain geometric property (P) for the Hironaka resolution of 
ƒ = 0. Conversely, if property (P) holds, then F^Jf)) = J W ) ü *O|0O|O holds for 
every % G S(XV). 

The proof of this theorem is contained in [5], [7]. In the first, the behaviour 
of F$,v, F#o and a certain zeta function Z(cc, ®v) = fXo o)(f(x))$v(x) \dx\v, for 
w a quasi-character of k*, are related. The asymptotic behaviour of F^, F£ 
is intimately related to the meromorphic continuation of Z(co, &v), the infor­
mation coming from the Hironaka resolution of ƒ = 0. (iii) is studied in the 
second work, and it should be thought of as providing the answer to the 
question: when can the measure |0O|O on the open subset U(0)v cf~l(Q)v be 
extended to a measure on ƒ ~ *(())„? 

The importance of the theorem is that, depending solely on the geometric 
nature of the singularities of ƒ = 0 and given that the estimates of (ii) hold, 
the measures d[ig of the abstract Poisson Formula are explicitly given by the 
10,-1,,. The condition (P) of (iii) is too technical in nature to even state here. 
The interested reader is urged to read [7]. 

(2) GLOBAL CASE. The polynomial ƒ also gives rise to a continuous mapping, 
f:XA-»kA.Stt 

F*(i*) = f *(x)*(i7(*)) \dx\A, JxA 

which defines a bounded, continuous function on kA, for all $ G S(XA). In 
the global case we can describe a dense subspace of S (XA). It is the C-space 
of functions of the form II0 ®v, where $ o e S (Xv) for every v, with $v = the 
characteristic function of X®, for almost all v. Now the measures {0^ (i G k) 
exist for every v, but their restricted direct product \9\A may or may not exist 
on U(i)A and even when it does exist, the image measure under the mapping 
U(i)A -> XA may not exist. 

THEOREM 2 (IGUSA) [7]. Suppose (1) that ƒ is homogeneous of degree m > 2, 
over a global field k, with chr(A:) { m and that a Hironaka resolution exists for 
ƒ = 0. (2) codim(5y. in f~\0)) > 2. (3) For almost allp-fields kv, \F*(i*)\ < 
max(l, (i*)v)~° for a fixed o > 2, for every i* G kv. Here a is to be indepen­
dent of v and F* = F£ for $v the characteristic function ofX®. 

Then, for every i G k, \0t\A exists on U(i)A and its image measure exists on 
XA. The sum of these image measures on XA is tempered; condition (B) holds for 

the mapping XA -» kA and the discrete subgroup k c kA. Further we have the 
Poisson Formula: 

s f m\A = s f *(*)*(i-v(*)) \JX\A-
itEkJU(i)A i*E:kJXA 

This can be written as 2 / e A : | ^ | ^ = 2,-*e* $(i*f(x)\ as an identity of distribu­
tions. 

REMARK. Condition (2) is easy to verify. It means that the hypersurface 
ƒ = 0 is irreducible and normal. The usefulness of this theorem is that it 

file:///jx/a-
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reduces a proof of the Poisson Formula to the verification of the estimate in 
(3), for almost all nonarchimedean valuations. 

The proof is an assembling of the local data, careful estimates in the 
asymptotic expansions and Theorem 1. 

Now this analysis has only incidentally seemed to be number theory-in so 
far as the objects constructed start from number fields, in some cases, but it 
has been much more harmonic analysis and algebraic geometry. Further, how 
can one ascertain that condition (3) of Theorem 2 is met? To indicate the 
number theory involved and to answer the above question, let us consider an 
important special case. This in itself will require another massive dose of 
algebraic geometry. 

Suppose Sf = {0}, i.e. assume that the projective hypersurface defined by 
ƒ = 0 is nonsingular. Introduce coordinates in X with respect to a A>basis for 
Xk. Then, by the Hubert Nullstellensatz 

*f s24/*)-ör(*)» l < i < » , AtJ e k[xl9... 9 xH], 
j OXj 

for some p. We say a valuation v or k is "good" if 

(i) v £ Sw , 
(ii) the coefficients off, Atj belong to O , 
(iii) \f/v is of conductor 1 i.e. \pv = 1 on O but \pv ¥* I on Pj~l. These 

conditions exclude only finitely many Ü'S. For the rest we have 

LEMMA. For v a "good" valuation, $v = the characteristic function of X®, 
i* €E kv of order -e < 0, we have 

FUi*) = 

qn[-e/m), e ^ ! (mo(j „ ^ 

q-nde-\)/m + \) ^ ^(^'H*t)N\(t)9 e = 1 (mod m) 
t (mod/>0) 

where q = qv = card(©„//>„). N^t) = #{a (modpv)\f(a) = / (modpv)} andir 
is the uniforming parameter in €)v = £> . 

By the very definition F | (i*) = fxo \pv(i*f(x)) \dx\v and now hidden be­
hind the symbolism of integration, in this p-adic case, is the usual number 
theory of counting the number of solutions to polynomial equations, since 
basically such integrals can only be evaluated if we can use orthogonality of 
characters and one must count in how many ways a given situation arises. 

For e 5É 1 (mod m), we see immediately that |/?(/*)| < max(l, | /* | ü )~ w / w 

for such /* E kv, but for e = 1 (mod m), we must estimate Nx(t). For n = 2, 
Gauss sums yield the required estimates, but for n > 3, we consider the 
projective hypersurface f(x) — tx™, defined over the finite field Fq. Here, 
reduction of ƒ mod pv makes sense, since v is assumed "good", and these give 
rise to absolutely irreducible, nonsingular varieties. To estimate Nx(t) we use 
Deligne's theorem on the Weil conjectures [4]. Deligne's theorem asserts: 
there exist complex numbers a„ a2, . . . of absolute value qn/2~l such that 
#i(0) =* tf""1 + (~l)n(q - !)2/ «,; and complex numbers ax(t)9 <x2(t)9 . . . of 
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absolute value qn/2 l, depending on / ^ 0, such that 

^,(0 = 9"- ,-(-ir(2«, + 2«/o), 

where the number of a/s, ay.(0's depends only on n, m. Thus again we can 
estimate |F*(/*)| < max(l, \i*\v)~

n/m-
Whence, if n > 2m, the Poisson Formula in Theorem 2 is valid for a form ƒ 

of degree m > 2, if ƒ = 0 is an irreducible, normal variety. 
This example should indicate why the analysis is really number theory, as 

well as the depth of Igusa's results. 

4. An application of the Poisson Formula. Keeping all the assumptions on/ , 
namely that it be a homogeneous form of degree m, chr(/c) { m, Sf = (0) with 
n > 2w, we define two distributions 

£($) = 4>(0) + 2 f Hi*Âx)Mx)\dx\A, 

and E'($) = 2^e^fc <£>(£)• Note that E' is independent of ƒ and it exists for 
every n. The remarkable fact is that there is a relationship between these two 
distributions! For quadratic forms, Weil introduces the metaplectic group and 
proves a uniqueness result on distributions that have certain invariance 
properties under this group. For higher degree forms, no such general group 
is known, but Igusa introduces a smaller one, which still enables him to 
establish a relationship. This group is modelled after the Weil metaplectic 
group. Set GA = kA X kA and define (u, 0 • (w', t') = (w + tmu\ tt')> which 
makes GA into a locally compact group. Define an action of GA on S (XA) by: 
for g = (M, t), (U(g)®)(x) = \t\n

A
/2\p(uf(x))^(tx). For simplicity, introduce the 

notation: if <ƒ>, <f>' are complex valued functions on a set X, write <j>(x) < <j>'(x) 
if there is some constant c such that |<f>(-*:)| < c<p'(x) for all x G X. Also if 
g = (n,/), write |gL, = | ^ . T h e n 

THEOREM 3 (Igusa [8]). (i) the function "g-*(E' - E)(U(g)$)" is a 
Gk~ invariant function on GA,for every O G S(XA). 

(ii) ifn^>m, then for any given $ £ § (^)> ^ r e exists € > 0 swc/* //*#/ 

ƒ ((E* - 20£/(g)*) k " L < \g\lA+€'H/2m 

JkA/k 

on the subset of GA defined by \ g\A < 1. 

This is a truly remarkable result, since as we have remarked, the E' does 
not depend on/ . Actually more is true. The function defined in (i) vanishes to 
an order (n/2m) — 1 at the A>rational "boundary points of GA\ a result 
analogous to the classical theorem which asserts that the theta series defined 
by a quadratic form behaves, up to lower order terms, like an Eisenstein 
series at every cusp. The proof of Igusa's Theorem 3 heavily uses the two 
expressions for £(<£) given by the Poisson Formula of Theorem 2. 

We are now ready to derive certain cases of the Davenport-Birch theorem 
as a corollary of the foregoing analysis and we give the details to show how it 
all fits together. 
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COROLLARY. Keeping all the previous assumptions on ƒ, if H » m then the 
nonsingular hyper surf ace defined by ƒ = 0 has a k-rational point if and only if it 
has a kv-rational point for every v. 

PROOF. For t(u) = U(u, 1), d(t) = (7(0, t), we have U(g) = U(uy t) = 
t(u) </(/), while (t(u)9)(x) = tKw/(jc))3>W, (^(0$)W = V\T^tx\ S o 

(/?' - £)(/(«)*) - 2 (K«)*)(ö - 2 ƒ (*(«)*) \eê\A 

by the Poisson Formula. Now in the sum over Xk, group together the terms 
such that ƒ(£) = /, so then ((£" - E)t(u)<&) = 2 / e * c,(^)^(/w), where cf.(*) = 
2^G(/(/% ^ ( 9 ~ fu(oA ^l^/L' f° r every i G A:. By Theorem 3(i), the function 
"w -> ((E' — E)t(u)$)" is a /c-invariant function on fc^, whence calculating its 
Fourier coefficients we have 

c,(«) - f ((£' - E)t(u)m(-iu) \du\A. 
JkA/k 

In particular, for / = 0 and <£ replaced by d(t)$, we have 

c0(d(t)9) = ƒ ( (£ ' - E)t(u) </(/)*) \du\A < |/|5(«+—/2m) 

for some c > 0, on the subset of kA defined by \t\A < 1, by Theorem 3(ii). 
Here c depends on the choice of <l>. But the original expression for c0 now 

gives: 

'o(rf(')*)- S (</(/)*)«)-f (*(')*) l*<L 

= MWY2( S * ( * ) - ƒ *(tx)\0o(x)\\ 
U e 1/(0), JU(0)A ) 

Change variables in the integral over U(0)A, x —> t~lx; the explicit nature of 
the measure 0O now gives us \0o(t~

lx)\A = |f|™~/l|0oCx)|y4* Th*s explains why 
we were so concerned about finding the explicit nature of the d[ig in the 
abstract Poisson Formula! Making the appropriate substitutions, this yields 

S *(/«) = \t\rn(ƒ *I*<L + o(M7)) as I'L ->°-

But the support of \0O\A is L^O)̂  and so choosing <E> to be nonnegative, not 
identically zero on U(0)A, we have SU{Q)A $ |0OL > 0 if U(0)A ¥= 0 . But now 
n > 2m at least so that the right-hand side of (2) is >0, for small \t\A, whence 
we must have the left-hand side > 0, so in particular U(0)k ¥= 0 . That is, we 
have U(0)A ^ 0 implies U(0)k ^ 0 a s required. 

The above result is an excellent example of the blending of analysis and 
algebraic geometry that has come about from the Siegel Formula, to achieve 
results of a number theoretical nature; Igusa's work having extended the 
earlier quadratic forms results of Weil. The above corollary is, in spirit, how 
Weil proves the Hasse-Minkowski theorem, but it is only a qualitative 
consequence of the Siegel Formula, which has also quantitative aspects [16]. 



NUMBER THEORETICAL DEVELOPMENTS 427 

5. Weil's formulation of the Siegel Formula [16]. Having seen some of the 
developments resulting from the Siegel Formula, let us now look at a special 
case of Weil's theory. 

Let A: be a number field, ƒ a nondegenerate quadratic form on km defined 
by ƒ(") ='uhu, for h G Mm(k). Let Xk = Mmn(k\ the space of all linear 
mappings kn -» km and for x G Xk, ƒ ° x is a quadratic form on kn, with 
matrix 'xhx. Let I(X)k denote the space of all quadratic forms on A:". We 
regard Xk, I(X)k as the /c-rational points of varieties X91(X) defined over k 
and define ix: X -» I(X) by ix(x) ='xhx. Let G = the group of matrices in 
Mm which keep the form ƒ invariant and for each i G I(X\ set U(i) = {x G 
X\ ix(x) = /, rank x = «}. Then £/(/) is a G-orbit. In [16], Weil considers the 
more general situation where X is a module over a semisimple algebra and 
then G is one of the classical groups, but to illustrate the ideas, we discuss 
only the orthogonal group, which in the next section, we relate to Siegel's 
work. Further, let Sp = Sp(X) denote the algebraic group of matrices s G 
M2n satisfying 'ses = e, where e = (_? l

0
n). The group of matrices {p = (g J) 

G £/?} forms a parabolic subgroup of Sp. Now each of the objects 
X, G, Sp, P are algebraic varieties defined over k so we can attach to them 
their adelisations XA, GA, SpA, PA> and notice that XA is a locally compact 
abelian group. There exists a unitary representation r of Sp(X)k on L2(XA) 
defined by: 

41a , ° ! )*) (*) - *(*«) if a G M„(A:), invertible. 

r r _, MfcHx) « Ô(jcy) for y G M„(*), invertible. 

" ( (o j ) * ) W - * W x C 5 t r C « p ) ) f o r p - ' p e ^ ( * ) . 

Here Ô is the Fourier transform of $ defined by 

* O 0 - f *(*>0x(tr('x /*>>)) l<&U 0> e xA) 

and x is a character on 4̂ = Ak such that (x, >>) -> xC*v) P u t s ^ into duality 
with itself in such a way that k = /cx . The space S (A^) is mapped to itself by 
the r(s), s G §/?(AT)̂ . The Eisenstein-Siegel series is now defined by 

* ( * ) - S (rW*)(0). 
Pk^SPk 

This is absolutely convergent for all $ G S (XA\ uniformly on every compact 
subset of S (XA)9 provided m > 2n + 2. 

In fact, Zi(<I>) = S y £V($) where the summation is extended over all 
subspaces Y c Xk which satisfy Mm(k) Y = y. In particular, 

* * ( * ) - S f ^ ( x ) x ( t r ( ' x M ) I ^ L 
p-'peA/ f l(Jk)^^ 

for a suitable choice of coset representatives. The abstract Poisson Formula 
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gives the Fourier transform of the function 

p^f 9(x)X(tr('xhxp)) \dx\A 

as the integral fU(ih 9\9É\A9 if i G I(X)k. 
E is a tempered positive measure, with an invariance property under Spk 

and G,, "*(*)->*(gjc)M. 
Consider now another distribution, an integral of a theta series given by 

ƒ($) = $GA/Gk ^£&xk ®(g£) dv(g) where v is the Haar measure on GA, nor­
malized to make GA/Gk have volume 1. ƒ($) is absolutely convergent for all 
$ 6 § (XA) if r = 0 or m — r > n + 1, where r = the index of/. 

The Siegel Formula is now the equality / == E if m > 2n + 2. Restricting 
the measures /, E to U(i)A9 one has 

f 2 *(*Ö Mg) = f $ |*L for/ G ƒ(*)*. 
JGA/GkteU{i)k

 JU(i)A 

We mention this result, since the Hasse principle is a simple corollary: 
U(i)A ¥* 0 implies that U(i)k ^ 0 . We saw a similar application made for 
forms of degree more than two. 

6. Deriving Siegel's result from Weil's theorem, k = Q. There are two 
distinct cases, depending on whether r = 0 (the definite case) or r > 0 
(indefinite case), requiring different treatment. For brevity we shall treat only 
the definite case, even though this necessitates the complication of genus, 
class considerations. For k a number field, h ='/i e Mm(/c), det(/i) ^ 0, set 
G = { « £ Mm(K)\uhu — h), a reductive group, defined over k. Write S = {a 
G A/m(£)| « ='ö, det(tf) ^ 0} and SLm = {a G Àfm(*)|(det a)2 = 1}. We say 
h, h' G S belong to the same gewas if /*' = h[g] ='ghg for some g G (SL^)^ 
and we say h, h' E. % belong to the same class if /z' = h[y] for y G SL(o), 
where a = the ring of integers of k. Since SLm(o) c (SLm)s , each class 
belongs to a genus. In fact we have the following 

PROPOSITION. Every genus consists of a finite number of classes. Moreover if 
GA = Ua Gs aGk is the double coset decomposition, then this corresponds to the 
class decomposition of the genus of h {recall G was defined in terms of h) and 
the correspondence is explicitly given by. G G SLm and (SLm)A = (SLm)s . 
(SLfn)k 3 a = g • y - 1 . Then GSoo a Gk -> class of h[g], where a = gy~\ g G 

Restrict attention now to k = Q, h > 0, positive definite form. Then 
G5 = GR. Hp^eo Gp is a compact group, whence GA/ GQ = II, GS^GQ/GQ 

is compact, ss II, GS^/(GS n tf/G^fl,"1) and write et = card(G5 n 
afiGca^1). Let us now examine the integral ƒ(<£) introduced by Weil. This is 
convergent for all m, n and v(GA/GQ) = 1 gives v(Gs ) = (2, 1/e,.)"1. Thus 

JGA/GQ\texQ ' 

-L^r'f If *(ua,i))M«). 
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Take $ = <I>0 0 Q^ where <E>0 = the characteristic function of 11^ Xp° and 
*oo(*oo) = e(\(iT M*oJT)) f o r T e S/i» t n e Siegel upper half space of complex 
matrices {* + *T|X, y symmetric real, Y > 0} and e(- - ) = e27ri"-. Then 
$(wa,£) T^ 0 if and only if the finite part of uafe is integral, i.e. nafe S Xs . But 
writing at = g,?,"1 *or ft G ( 5 "4 ) s M ' Y,- G (^m)c t h e n M' ft k e e P xsO0 stable, 
so wa,£ G *£ iff y/ *£ E A ^ n A^ = Xz. Hence 

© . . • f S *(«*,€) * ( * ) = ƒ ( 2 *(«»€)) *(«) 

But, writing ht = /i[yj, we see that 

so 

since now the integral is independent of u. But Siegel calls E^eA- e{\ tr ^[flr) 
= ƒ (r), the analytic invariant of the class of hif so we have 

the analytic invariant of the genus of h. The arithmetic meaning of these 
invariants is that in the sum J].(T) = 2 $ ^ e(^ t r^f^r)) , if we group together 
the terms £ for which /*,[£] = 17, then if this occurs, say A(h^ 17) times, we have 
fi(r) = S-qe* ^(/J,., T])e7r,tr(r?T), the generating function for the number of 
representations of the 17 by /*,. Then 

^ V * / T,e^z 

where ^4(/z, 17) = the mean of the number of representations of 77 by the genus 
of h (c f. Siegel [12]). 

To explicate the other side of Weil's theorem, we need a convenient set of 
coset representatives for Pk\(Sp)k. Let & = Mm, with xl = h~uxhy X = 
Af n, a left 6E-module. The set Q(X/&) of all sesquilinear, hermitian map­
pings X X X -* & can be identified with {p E AfJ p = 'p} hy (x,y)~* 
xp\hy), with ^(x) = \ tr(xp'(/z.x)) = ^ tr(/z[x]p) the associated quadratic form. 
Then, to obtain coset representatives, we take Xx c X, and & -submodule and 
choose a complement as follows: if rank (Xx) = r (0 < r < ri), since .Y = Ix 

0 • • • 0 /„ of minimal left ideals, Xx is one of (") possible submodules of 
rank r. Fix v E SLn(7) to put them in the order /, ® • • • ©7r, i.e. A^i; = 
Afm/. 0 0 and choose I 2 = (0© A/mtn_r)ü_1. Pick P l E g C ^ / S ) , then the 
collection {(Xv pt)} forms a complete set of representatives, with 
?,((«, O)©"1) =£ tr(/z[(o]Pl), for P l = 'P l e Mr, co E A/mr and then (r(s0)<ï>)(0) 
= I(Mm,r)A *((*>, 0 ) Ü " ^ tr /z[co]p,) 1 ^ . Here e = II, ep of the local func-

- f 2 ^tr*[MftUH<M"). 
7 C s J e i z 

= A[(aU] = A,{«] 
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tions where c^ = e and Cp(jc) = e27rin/p* where pvx integral and n ^ppx 
(mod/O- So that 

* ( * ) - S f *((«, O ) © - ^ ^ tr * [«] P l ) |rfw|^. 

Thus, for the $ = <3>0 0 ^ as before, this gives 

£ ( * ) - 2 H f * , ( ( < * > - ^ t r A [ c * ] P l ) ) | « M , 

Now to evaluate these. 
(i) oo-/>arf. $ M ( x J = e ( | tr * [ x J T ) , while * [ («„ , O)»"1] 

= '«~1M(woo.0)]t;-1,so that tr(A[(Woo, 0)tr']T) = trffl». , OJU- 'T ' I J - ' ) . Writ­
ing « " V o - 1 = (J *), /i[(oK, 0] = (g1"»1 g) with T, e S r l the trace is 
tr(M<o J T , ) . Thus 

'co = f M ( w o c . O ) ^ - 1 ) ^ ^ tr A[Woo]Pl) |d»L 

•/Mm,,(R) 

" f e ( l t r *[«»](T1 ~ Pi)) I ^ J o o 
LEMMA. For S * S e Mm(R), S positive definite, x G Mm r(R), die/we $$(*) 

— e -" t r (xS j t ); /Aen ite Fourier transform is given by 

(er* s)(x) = f $ s ( r )e ( t r^x) 4> 

= ( d e t S ) - r / 2 ^ ' ( x ) . 

The proof is by contour integration. In particular, for x = 0, 

f e-"tr<xSx)dx = (detSyr/2. 
JMmtr(K) 

Now 

But TJ - p, = (^! - Pi) + ITJ G S r , Yx > 0, so 

ƒ . f -̂irtKMwool̂ ^^CtfMwooK î-Pi)) Uw 1 

and by analytic continuation, it suffices to evaluate this for Xx = pj i.e. 
T, — pj purely imaginary. Since Yx > 0, we can write it Yx = ZlZ, h ='LL9 

thus, by the above lemma, 

700 = ( d e t / l ) - ^ ( d e t ( T 1 - p 1 ) / - ' ) - m / 2 . 

(ii) p-part. 

7 '"L „>ütr/*K>>)l<H-
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px ='p! G Mr(Q\ so we can write it p1 = yx~
l8x for yl9 8X G Mr(Z), det y, 

> 0; for example if the denominator of px = N, set yx = NI9 8X = Npx. We 
say the pair (y,, 81) has no left zero divisors if for u G Mr(Z), det(w) 7̂  0, the 
condition u~l(yx, 8X) G Mr2r(Z) implies u G SLr(Z). Now, by the theorem on 
elementary divisors we may choose the (y^ 8X) in the expression for px to 
have no left zero divisors. We consider the additive subgroup Mmr(Zp)yx c 
Mmr(Zp) and noting that 

x^(trHH^iyr lôi) 

= <P(-2 *hi<*p]Pih(l t r ^ c o ; 8 / Y l ) 

since /i G Mm(Z), we have 

' , - d 
wn mod 

2 , , ƒ , , ,̂(5 tr/([co+<O;Y1]P,)(^;Y1) 
Mm,r(Zp)yl

JMm,(Zp)yl
 y * y P 

Wp mod Mm>r(Zp)yi
 JM^r{Zp)yx 

which, by the change of variable 00' = coy f ! becomes 

«D mod Af. 
|detyi|^(ItrA[^]Pl)f ^ t r ^ ^ y . ' ^ W 

.,r(Zp)Yi •/A/IM,r(Zp) 

and denoting the integral 8p, its value being 1 or 0 as the character "a£ -» 
tp(\ tr Afco^y/Sj)" is trivial or not on the compact group Mm>r(Z ), we have 

/ , - | d e t Y l | ; 2 ^ tv h[Up]Pl)Sp. 
u>p mod Mw,,r(Z/,)Y1 

Now yx G Mr(Z), so it is a/?-adic unit for almost all/?. For such/?, we may 
take wp = 0, €p(0) = 1 so that Ip = |det y ^ . 

For the remaining/?, yx defines an injective mapping Tp: 71^ -» Z™, and by 
elementary divisors again we see the index [Z™: Tp(TI^n)\ = |det Tp\p. 

Thus, the^ T: Zmn -* Zmn that yx defines gives the isomorphism 
Zmn/T(Zmn)-*T[p Z^/TpiZ™). Thus, assembling the parts ƒ„, ƒ, for all/?, 
we see 

(r(Jo)*)(0) = I I |det Y l | ; S S Ü t r * [ « * > i K * 7oo 
P ap mod A/m,,(Zp)Y, 

- | d e t Y , r m ( 2 e(£ fr * [ > > , ) ) I Ï V (det A) - , / 2 

V co mod M m r ( Z ) Y l / ƒ> 

• (de t (T 1 -p 1 ) / - 1 )~ m / 2 

= «""•/2(det/I)-r /2 |dety ir
m/2(det(Y1T1 - 5,))~m/2 

• W 2 e ^ t r ^ c o j Y r ' ô , ) ) 
ƒ> \ co mod y! / 

whence £(<$) = the sum of such terms over the coset representatives (Xx, px). 
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SiegePs main theorem then asserts that E($) = F(T), giving another expres­
sion for the analytic invariant of the genus of h. 

7. Other applications of these developments. The theory of the asymptotic 
expansions of F{, F& developed by Igusa to establish the Poisson Formula, 
has another interesting application, settling a conjecture raised by Borevich-
Shafarevich [2, p. 47]. Let K be a/?-adic field of characteristic zero, with R the 
maximal compact subring in K and P the unique maximal ideal of R. Let 
Fq = R/P and f(x) G R[xv . . . , xn] be any polynomial. Set N(e) = 
#{£ e Rn (modpe)\f(£) == 0 (mod/>*)}> and form the Poincaré series P(z) 
= 27-oN(eKz/qnY. 

THEOREM 4 (IGUSA [9]). P(z) is a rational function of z. 

We emphasize that this holds for any polynomial ƒ ! The method of proof 
again relates this arithmetically defined power series to an integral, in this 
case to Z(s) = fRn\ f(x)\s dx, for s a complex number with positive real part. 
An elementary computation, involving counting the number of solutions 
shows that P(q~s) = (1 — q~sZ(s))(\ — q~s)~l. Thus it suffices to prove that 
the analytic continuation of Z(s) is a rational function of q~s. A Hironaka 
resolution for ƒ = 0 is used (which exists, since chr K = 0 is assumed) to 
study the analytic behaviour of Z(s). 

Classically one studied exponential sums of the type 2^eZ«nT-iy e(woo/(£))> 
where ƒ G Z[xl9 . . . , xn], J an open set in R", r G R+, u^ E Rm and e(i) = 
e2mt as before. Such a sum behaves quite delicately as a function of t/^, r [1]. 
For a suitable choice of function $ and g G GA, this is just E'(U(g)&) 
introduced by Igusa and so related to E(U(g)<!>) by his theory. 

One final comment should be made. As is evident from the corollary to 
Theorem 3, a significant result can be obtained by using only such a small 
group G. Weil's metaplectic group is much larger, and gives also the complete 
Siegel Formula. Further, the use of the metaplectic group allows one to treat 

ƒ 
the situation where one has a mapping X-* Y of affine varieties, with 
dim Y > 1; that is, of ƒ = (fl9 . . . , fr) of r quadratic polynomials. The 
generalization of the metaplectic group for higher degree forms would be 
extremely useful, but is off in the future. It appears to be quite difficult, since 
the natural candidate that Igusa has introduced for a finite field [8] behaves 
in unexpected ways. For example Mp is not a central extension of SL2(K) 
and it turns out that every homomorphism SL2(K) -> M is in fact trivial. So 
there is much room for further developments. 
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