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Virtually the entire development of modern algebraic number theory was 
motivated by the attempt to explain and to generalize a simple but very 
surprising fact about positive whole numbers which Euler first discovered in 
the 1740s. He was pursuing some problems Fermât had posed relating to 
numbers of the form x2 + y2, x2 + 2y2, x2 + 3y2 and x2 + 5y2. For a given 
integer n, a prime p is said to "divide x2 + ny2 nontrivially" if there exist 
integers x andj>, not both divisible by/?, such that/? divides x2 + ny2. Euler's 
surprising discovery was that the answer to the question of whether p divides 
x2 + ny2 nontrivially depends only on the class ofp mod An. 

To say that there is no obvious reason why this should be so is an extreme 
understatement. Euler was relatively young when he first made the discovery, 
and, although he clearly understood the importance of the phenomenon and 
returned to it many times throughout the rest of his life, he never made any 
substantial progress toward a proof except in a few special cases like n = 1, 
± 2 , ±3 . His knowledge of the phenomenon rested purely on the empirical 
evidence of many numerical examples. 

He observed another, equally puzzling phenomenon, which is closely 
related to the first. For a given n, let Xp(n) be +1 if the prime p divides 
x2 — ny2 nontrivially and — 1 otherwise. (The sign is changed in order to 
make \p a character mod/?. As far as Euler's theorems are concerned, the 
sign of n is immaterial.) The statement above is that "Xpin) depends only on 
the class of/? mod An. Euler went on to observe that the mappingp H> ^(n) is 
a homomorphism in the sense that if pv p2, /?3 are primes with P\P2^p3 
mod An then Xp^XpjJ1) ^ X*>3(

w)- Moreover, this homomorphism is onto the 
two element group {±1} except when n = a2 for some integer a (in which 
case the choice x = a, y = 1 gives x2 — ny2 = 0 so that all primes p divide 
x2 — ny2 nontrivially). Note that, for fixed p, the map n H» Xp(n) obviously 
depends only on the class of n mod/?; almost as obviously (see below) it is a 
homomorphism from the group of classes of integers relatively prime to p 
mod/? to the group {±1}, and this homomorphism is onto. Euler's observa
tions about p H» Xp(n) a r e of a different order of difficulty altogether from 
these facts about n H» ^ ( H ) . 

Assuming the truth of these theorems, it is easy to find, for given n, the 
primes which divide x2 — ny2 nontrivially. For example, let n = — 5. Then 
l 2 + 5 - l 2 = 6 = 2 - 3 shows that x3(~5) = + 1. Therefore ^ ( - 5 ) = + 1 
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wheneverp is congruent to a power of 3 mod An, that is, whenever/? = 3, 9, 
7, 1 mod 20. With the exceptions of 2 and 5 (which obviously divide x2 + 5y2 

nontrivially) every prime is in one of the 8 classes 1, 3, 7, 9, 11, 13, 17, 19 
mod 20. These classes form a multiplicative group and/? H» ̂ ,(—5) defines a 
homomorphism of this group onto {±1}. The kernel of this homomorphism 
has 4 elements, so the elements in the kernel already found account for them 
all and ^ ( - 5 ) - - 1 if /? = 11, 13, 17, 19 mod 20. 

It is trivial to show that Xp(n) = + 1 if and only if the congruence x2 = n 
mod/? has a solution (on the one hand x2 — n- l2 = 0 mod/? gives a 
nontrivial division by /?, and on the other hand if x2 — ny2 = 0 mod/? is a 
nontrivial division by/? then>> 5£ 0 mod/? and division by y mod/? solves the 
congruence) and it is in this way, rather than in terms of divisors of x2 — ny\ 
that the number denoted Xp(n) above has most often been described since 
Euler's time. 

In particular, Legendre defined his famous symbol («//?), for/? prime and n 
not divisible by /?, to be Xp(n\ that is, to be +1 if the congruence x2 = n 
mod/? has an integer solution and to be — 1 otherwise. He used this symbol 
to express an amazing fact which he discovered in the late 1780s: Let p and q 
be distinct odd primes. If either /? = 1 mod 4 or q = 1 mod 4 then (p/q) = 
(q/p) but if p E= # = 3 mod 4 then (p/q) = — (q/p)> He called this, for 
obvious reasons, the law of reciprocity. His efforts to prove it fell short of the 
mark. 

Legendre apparently did not recognize the relationship between his law of 
reciprocity and Euler's work, but Gauss, who was the first to give a rigorous 
proof of the reciprocity law, noticed how close the connection was, saying 
that it would be easy to deduce Legendre's law if Euler's theorems were 
known. Kronecker gave [2] an explicit deduction of the law of reciprocity 
from the two theorems of Euler stated above and from an additional theorem, 
also observed by Euler, which says that if n is positive and /? = — 1 mod An 
then Xpiri) = + 1. (See [1, pp. 291-292]. The essential observation is that Xp(4) 
= + 1 whenever/? = ± k2 mod 4q, that is, q is a square mod/? if and only if 
± p is a square mod 4q.) 

The term "law of reciprocity" caught the imaginations of later generations 
of number theorists. This had an unfortunate effect on the development of 
the subject, because it forced the generalizations of the law into a form that 
they did not seem to want to take. Indeed, the modern generalization known 
as the "Artin reciprocity law" expresses no reciprocal relationship whatsoever 
and is instead a generalization of Euler's original version of the law. In short, 
the notion of reciprocity has had to be separated from the law of reciprocity. 

About the only later number theorist who did not use the term "law of 
reciprocity" was Gauss, who gave the first rigorous proof of the law. He 
called it the "fundamental theorem" and, as is well known, he published six 
different proofs of it. It is less well known that he devoted so much effort to 
these proofs not just out of an interest in the theorem itself but also out of an 
interest in its generalizations, which, as he said in his introduction to his 
treatise of 1818 giving the 5th and 6th proofs, he had found long before by an 
empirical study of the evidence but which long resisted his efforts at a proof. 



BOOK REVIEWS 323 

Gauss's generalizations, which were almost immediately named (by others) 
the laws of "cubic and biquadratic reciprocity", were, very briefly, as follows. 
First, he observed after extensive examination of examples that the study of 
3rd or 4th roots mod/? in the integers becomes intelligible only when the 
integers are extended by the adjunction of a 3rd root of unity <o or a 4th root i 
respectively. For example, in the case of 4th roots, this means that 5 should 
no longer be regarded as prime because 5 = (2 + 0(2 — i). Thus, in the case 
of 4th powers one considers what are now called the Gaussian integers, the 
ring Z[i], Up is any prime Gaussian integer then Np = pp is always an 
integer that is congruent to 1 mod 4 and the multiplicative group of nonzero 
Gaussian integers modp is cyclic of order Np — 1. Therefore, provided 
D ^ 0 modp, D is a 4th power mod/? if and only if DiNp~l)/4 = 1 mod/?. 
Since the fourth power of DiNp~l)^4 is 1 mod/?, it must be one of the four 
fourth roots of unity ±1 , ±i modp. Define ^(D) by ^(£>) = D(Np~l)/4 

mod/?, Xp(D) = ± 1 or ± i . 
For fixed/?, the mapping D ^^(D) is obviously a homomorphism from 

the multiplicative group of nonzero Gaussian integers mod/? to the four 
element group {±1, ± i} . Gauss found that the unexpected phenomenon 
from the quadratic case carried over to fourth powers as well, namely, the 
mapping/? H» Xp(D) is a homomorphism in/?, not mod D but mod a multiple 
of Z). Specifically, the value of Xp(D) depends only on the class of p mod 16£> 
andp H-> ^(D) defines a homomorphism from the group of classes of Gaussian 
integers mod 16D relatively prime to 16D to { ± 1, ± /}. There is a little more 
to Gauss's law of biquadratic reciprocity than this, relating the value of Xp{4) 
for q prime to that of x?(/0> but the real surprise is that p*-*Xp(D) *s a 
homomorphism mod 16Z>. 

Gauss never published a proof of the theorem for 4th powers, and for third 
powers he never even published the statement of the law. Naturally this 
stimulated younger mathematicians-notably Jacobi, Dirichlet, Eisenstein, 
and Kummer-to try to discover them for themselves. This, more than 
anything else, led to the creation of modern algebraic number theory. 

It was quickly discovered that the cases of 2nd, 3rd, and 4th powers were 
especially simple in that the fields Q, 6(VT ), Q(V\ ) have a finite number of 
units-so that a prime modulus corresponds to only a finite number of prime 
numbers-whereas this no longer holds for Q{ vT ) f or n > 5 ( vT = a primi
tive nth root of unity). The problem was further complicated by Kummer's 
discovery in 1844 that unique factorization does not generally hold in 
Q(VÏ ), so that it is not even meaningful to speak of "primes" in the general 
case unless one means "ideal primes" in the sense defined by Kummer in 
1847. 

In 1847, Kummer overcame these difficulties and discovered what he 
believed to be the correct statement of the law for Xth powers in all cases 
where X is a prime which is "regular" (that is, X does not divide the class 
number of g(VT )). However, as Gauss had found in the cases 2, 3, and 4, 
the discovery of the statement of the law was much easier than a discovery of 
the proof. 

After three years of unsuccessful efforts to prove the law himself, Kummer 
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"in the interest of science" published it in 1850 in order to make it "the 
common property of all mathematicians working toward the advancement of 
number theory." One's admiration of Kummer's altruism in publishing the 
law and running the risk that someone else might prove it is diminished 
somewhat by the fact that Eisenstein only a few weeks later published on the 
same subject, stating and even proving Kummer's law in a special, very 
restricted, case. Could it be that Kummer knew of Eisenstein's impending 
publication and wanted at least to establish his priority in the discovery of the 
statement? 

In any case, Kummer did after all have the distinction of giving the first 
proof of the general law, although it took him another 9 years to find it. In 
the final proof a central role is played by the fields which Hubert later named 
"Kummer fields", namely, fields of the form Q(VT, YD) where 
D EL Ö ( V T ) , and the theory of factorization in such fields, including the 
"ideal primes" and the "class group" which Kummer had first defined in 
connection with the cyclotomic fields Q(VJ ). 

Kummer's theorem was by no means the end of the story. As always seems 
to be the case in mathematics, the new questions it raised were more 
numerous than the old ones it resolved. Could the proof be simplified? What 
about primes such as X = 37 which are not regular? What about composite 
values of À? And, perhaps most interesting of all, the following question, 
which is a clear generalization of the original question raised by Euler's 
observation: Kummer's reciprocity law implies that when one passes from a 
cyclotomic field Q(VT ) to a Kummer field Q(VJ, YD ) containing it, the 
way in which a prime p in the small field factors in the big field depends only 
on its class mod XD. What underlies this phenomenon, and for what field 
extensions do similar phenomena occur? 

This is the central question of the subject of modern number theory that 
goes by the awe-inspiring name of "class field theory". 

Robert L. Long begins the Preface of his book Algebraic number theory 
with the words, "As one question gives rise to another, pure mathematics 
arises from the conceptual framework within which man organizes his experi
ence." When a book has such a beginning, one expects something other than 
the usual ad hoc style of contemporary mathematical writing. Unfortunately, 
this expectation is not fulfilled. 

On the contrary, the exposition is almost entirely unleavened by motivation 
or insight. There are very few connective passages. A typical one is the one on 
p. 46: 

Wc now turn to the more detailed study of finite extensions of a field 
which is complete under a discrete valuation. Those results which do not 
depend on completeness are given first. The separate consideration of 
totally ramified and unramified extensions is justified in Exercise 3 1 . . . . 

So much for one question giving rise to another. By the way, Exercise 31 has 
no apparent connection with ramified or unramified extensions, and reference 
should probably be made to Exercise 32 instead. 

The experience of reading a book like this reminds me of the game in 
which one is required to eat a certain number of dry crackers and then 



BOOK REVIEWS 325 

whistle. After reading for a few minutes I find my mathematical juices 
entirely dried up and feel incapable of whistling even the simplest tune-not to 
mention working 31 exercises. 

This is the more regrettable because the book covers a great deal of 
important material. The author has a good command of the subject and his 
treatment is basically sound. His style is unpretentious and direct, and his 
proofs are clear. The problem, for this reader at least, is that the material is so 
condensed that it is indigestible. 

It is a shock to see the book referred to as a "textbook" on the back cover. 
I think the book has utility as a monograph for readers already versed in the 
subject who want to review it from another point of view, or as a sort of 
encyclopedia article giving condensed treatments of various topics. And I am 
prepared to entertain the notion that we have raised a generation of automata 
able to plow their way through this kind of mathematics and store it in their 
databanks. But I would not recommend this book even for a very highly 
motivated beginner in algebraic number theory, much less for an ordinary 
graduate student. 

In fairness to the author, who is clearly a dedicated and able mathemati
cian, I should say that the book's failing is the same as that of most 
contemporary books on mathematics, and particularly of those on pure and 
abstract subjects. Why is there such a dearth of readable mathematical 
writing? Why are there so few books in which the reader has some sense of 
where he is going and why he is going there? Why can't meaning be imparted 
as well as definitions and theorems? Indeed, why can't one see pure mathe
matics arising from the conceptual framework within which man organizes 
his experience? 

A welcome contrast to Long's dry and example-free formality is provided 
by Harvey Cohn's book A classical invitation to algebraic numbers and class 
fields. The word "invitation" in the title is well chosen. The frequent exam
ples, the informal style, and the many loose ends in the treatment make it a 
book that one is able to get something out of even without reading word-for-
word from the beginning, as well as a book that will involve the reader and 
send him off in pursuit of the many references that it recommends. 

Cohn seems to want to make a point about the way in which mathematics 
is normally written in our time. As a frontispiece he presents the following 
quotation from George Orwell's novel 1984: 

The purpose of Newspeak was not only to provide a medium of expres
sion, but to make all other modes of thought impossible. It was intended 
that when Newspeak had been adopted once and for all and Oldspeak 
forgotten, a heretical thought should be literally unthinkable, at least so far 
as thought is dependent on words. This was done chiefly by eliminating 
undesirable words and by stripping such words as remained of unorthodox 
meanings, and so far as possible of all secondary meanings whatever. 

The reader is left to interpret for himself the relationship between Newspeak 
and modern algebraic number theory. 

Cohn's unorthodox style will not please everyone as much as it pleases this 
reviewer. For one thing, there is the matter of proofs. He says in his 
Introduction that he found it necessary "to permit the completeness of proofs 
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to decrease exponentially as the text progresses, until the culminating Weber-
Takagi and Artin correspondences are left unproved." This is to be regretted, 
of course, but if he did not choose to make these proofs a part of his 
"invitation" and if he did not feel he wanted to add anything to the published 
proofs in the works he cites, why should he not omit them? (The two proofs 
he cites are both in German. Perhaps he should have prefaced his invitation 
with a warning that invitees will feel ill at ease and a bit left out at the 
algebraic number theory party if they aren't able to read German.) More to 
be regretted is his failure to deliver on his promise (p. 229) to justify the use of 
the word "reciprocity" in the name of the Artin Reciprocity Law. He does 
explain the relationship between the generalized Legendre symbol, which 
occurs in the statement of the classical reciprocity laws, and the Artin symbol, 
but he says nothing that explains how the Artin Reciprocity Law involves a 
reciprocal relationship between (q/p) and (p/q). 

Some other explanations are disappointing. On p. 177, after stating a 
theorem which he calls the gem of class field theory, he promises to show 
"how naturally it comes as a conjecture" but then gives only an ad hoc 
illustration in a single case that does not, to this reader at least, show how it 
comes naturally as a conjecture even in this one case. Still, even though it 
doesn't do what is claimed for it, this illustration is interesting and informa
tive, and its inclusion enlivens the book. 

The flavor of the book is well represented by a passage on pp. 97 and 98: 

G. DISCRIMINANTAL DIVISORS 
THEOREM 10.55 (DEDEKIND [1882]). The rational primes which ramify in an 

extension field are exactly the divisors of the discriminant. 
REMARK 10.56. This theorem is of supreme ideological significance. From 

the point of view of function theory, it tells us that the ramified primes must 
determine a field in the same way that the singularities determine a rational 
function. From the point of view of class field theory it leads us to expect 
that the modulus of the arithmetic progressions (called the "conductor" also, 
see Chapter 7) is related to the ramified primes and discriminant. (Compare 
Theorem 10.23 and Corollary 10.35 for the quadratic field and Theorem 
10.45 and Corollary 10.51 for the cyclotomic field). 

Although we avoid a complete proof (for convenience of presentation), a 
limited proof of a stronger result is more illuminating as it stresses the 
"local" analysis of an ideal in terms of individual prime ideals. (This is 
analogous with points of a Riemann Surface in Chapter 8). 

What other book would assign "ideological significance" to a theorem? 
And who else "avoids" proofs instead of simply omitting them? 

This informal and discursive style can lead to difficulties for the reader and 
can sometimes be rather irritating. The two factors which mitigate these 
problems are, first, the fact that the reader can ignore the difficult passages 
and skip to some other part of the book while waiting for the light to dawn, 
and second, the fact that the book contains many examples and illustrations 
of a very specific and computational type. The theory, after all, is a way of 
systematizing and clarifying the understanding of specific algebraic number 
fields. When the theory becomes too far removed from the reader's experi
ence there is no better remedy than a specific example to reestablish contact 
with computational reality. Cohn's examples are numerous, substantial, and 
well chosen. 
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Two appendices by Olga Taussky make the book even more valuable than 
it would otherwise have been. The first of these is particularly important 
because it contains, in English, the three famous lectures which Artin gave on 
class field theory in Göttingen in 1932, here published for the first time in any 
language. 

A healthy balance between theory and examples is also a praiseworthy 
feature of the third book under review, Number fields by Daniel A. Marcus. 
This book is much less ambitious than Cohn's, and it is commensurately 
better organized and easier to read. It covers the basic theory of factorization 
in number fields-ideals, units, the ideal class group, the class number for-
mula-and ends with an "introduction to class field theory." 

Unfortunately, in this book the theory invariably precedes the examples, 
which would probably make it very difficult for a beginner to read on his 
own. However, it is not written as a book for a beginner to read on his own, 
but as a textbook, and as a textbook it should be quite effective. There are 
numerous exercises, and with a teacher to assign and read the exercises, and 
to explain those that the student is unable to do, and, most importantly, with 
a teacher to give lectures that motivate and illustrate the material in the text, 
this book should be an excellent basis for an introductory graduate course in 
algebraic number theory. (Question: How many such courses are being 
taught today, and how many will be taught in the next ten years?) 

On p. 4, the book contains a serious historical misstatement that needs to 
be corrected. There it states that "Kummer attempted to prove Fermât's [last 
theorem] by assuming that the unique factorization property of Z and Z[i] 
generalizes to Z[co]. Unfortunately it does not." It goes on to say that the 
argument can be salvaged for certain prime exponents, including/? = 23, and 
that "this results from Dedekind9 s amazing discovery of the correct generali
zation of unique factorization" (italics added). The fact is that the work here 
ascribed to Dedekind is entirely due to Kummer and was completed before 
Dedekind left gymnasium; on the other hand, the "attempt" ascribed to 
Kummer is undocumented and very likely never occurred (see [1, pp. 79-80]). 

It is gratifying to see that algebraic number theory remains a subject of 
vital interest and inspires the publication of works of such quality as the three 
under review. However, the vitality of the subject stems more from its 
illustrious history and from the fascination of the phenomena that it studies 
than from a widespread appreciation of its content and recent advances. 
These books leave ample room for others that will make more accessible and 
attractive the great tradition of number theory and give it renewed vitality for 
the next generation of mathematicians. 
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