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ON SIMPLICITY OF CERTAIN INFINITE DIMENSIONAL 

LIE ALGEBRAS 

BY V. G. KAC1 

1. The main statements. Let A = (atj) be a complex (n x w)-matrix. 
Denote by ($(4) a complex Lie algebra with 3n generators et, fp ht, i GI = {1, 
. . . , « } , and the following defining relations (i, /ET): 

[et, fj] = 5 ^ , [hp hj[ = 0, [/*,, e;] = ̂ / 5 [/*,, fj[ = - a ^ . 

Set C = {Cjftj + • • • + cnhn\aljcl + • • • + aw/cw = 0,/ G ƒ}; clearly, Clies 
in the center of &(A). Set T = Zn, r + = {(fcj,. . . , fc„) G ri*, > 0}\{0}. 
Let n = {ax, . . . , an} be the standard basis of I\ For r? = (fcj, . . . , kn) set 
Tn = s « aakikj " s* *«*/• 

THEOREM 1. Provided that atj = 0;/, i, ƒ G ƒ, and 7^ =£ 0 for any 17 G 
r + \ n , tfze Lfe algebra ($(4)/C is simple, 

COROLLARY 1. Provided that A is a real symmetric matrix with positive 
entries, the Lie algebra ®(4)/C is simple. 

COROLLARY 2. The Lie algebra K2 with the generators ev e2, fv f2, h 
and the defining relations [e-, fj[ = d^h, [h, et] = ei9 [h, ft] - -ft is simple. 

PROOF. 

K2=s ((; ;)) ic. 
Corollary 2 has been conjectured in [1]. Further one can find a motiva­

tion for this problem. Setting deg et = -deg ft = ai9 deg h( = 0, / G I, defines 
a r-gradation ®(4) = ©a€Er ®a- ^ ^ b e t h e s u m o f a11 Braded ideals in @(4) 
intersecting &0 trivially. We set 0 (4 ) = ®(4)/3; let ®(4) = 0 a G r ® a be the 
induced gradation. Note that if D is a nondegenerate diagonal matrix, then 
&(DA) ~ ©(4); the matrices A and ZX4 are called equivalent. Let C be the 
image of C in ©(,4); then C is the center of ®(4) [1]. The Lie algebra &(A)/C 
has no graded ideals if and only if [2] 

(m) for any 1, ƒ G ƒ there exists i19 . . . 9irGI such that a^a^ ' ' ' %j ̂  0. 

If A is the Cartan matrix of a simple finite dimensional Lie algebra ©, 
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then © — ©04). In general, the Lie algebras <$(A) are infinite dimensional. A 
number of applications of these algebras in various fields of mathematics have 
been found in the last decade. The Lie algebra K2 plays the role of a "test" 
algebra in [I] . Due to the fact that K2 is simple, we immediately obtain a 
stronger form of Theorem 1 from [1]. 

THEOREM 2. Suppose that matrix A satisfies the condition (m). Then 
there are only the following three possibilities: 

(i) A is equivalent to the Cartan matrix of a simple finite dimensional Lie 
algebra © (and <$(A) a ©); 

(ii) A is equivalent to one of the matrices from Tables 1—3 [1], and the 
Gelfand-Kirillov dimension of&(A) is 1 (the construction ofi&(A)jC is given by 
Lemma 22 [1]); 

(iii) i&(A) contains a free subalgebra of rank 2 and the Lie algebra ^>(A)/C 
is simple. 

Suppose that the matrix yl is symmetric. Then there exists an invariant 
symmetric bilinear form ( , ) on &(A) which is uniquely defined by the proper­
ties (a) (hv hj) = <ty and (ep fj) = 8ijt i, ƒ e / , (b) (®ft, <^) - 0 for a * - f c 
(c) Ker( , ) = 3» + C [1]. Let a be an involutive antiautomorphism of <$(A) 
defined by o(e-) = fp a(/V) = ei9 o(h.) = hv On each ©a, a E r + , we introduce 
a bilinear form by Ba(x, y) = (x, o(y)), x, y G &a. Since © a G r ®a is freely 
generated by et, . . . , en, we can fix a basis in each @a which does not depend 
on A. Let <pa = *pa(A) be the determinant of the matrix of Ba in this basis. 
This is a function on the space of symmetric (n x «)-matrices. It follows from 
Theorem 1 that provided that 7L ^ 0 for any T? E T, \II, the Lie algebra 
1&(A)/C is simple. Hence, <pa is different from 0 outside the hyperplanes 7^ = 
0, r? E r + \ I I , and we obtain 

THEOREM 3. Up to a nonzero constant factor (depending on the basis) one 
has: 

r?er+\n 

where c ^ are nonnegative integers. 

REMARK. An interesting open question is to compute the exponents c^ a . 
It follows from the proof of Theorem 1 that cn>0i = 0 if a = kat or a - r? £ r+ 
U {0}. It is also clear that deg ^a = (height a - 1) dim ®a. 

2. Proof of Theorem 1. Set n± = © a G T + @±a and $ = ©0 ; then ®(4) 
= n_ ® £ © n+. Since &(A)/C is simple ([1, Lemma 6]) the theorem will fol­
low from the fact that u_ is a free lie algebra with free generators f x , . . . , fn. 
To prove this, we employ the highest weight representations M(\), X E Jp*, of 



ON SIMPLICITY OF CERTAIN INFINITE DIMENSIONAL LIE ALGEBRAS 313 

i$(A) [3]. We recall that M(X) = U(($(A)) <g>u(§ e n + ) Cx, where Cx is a 1-di-
mensional representation defined by u4 .(l) = 0, h(l) = \(h), K § . The grada­
tion of <$(A) induces a gradation: M(X) = ©r?Gr + u{o} M(X)-ri- W e s e t 

ch M(X) = ^ ^ ( d i m A ^ X ) . ^ ) ^ . Clearly one has 

ch M(X) = ex H (1 - <r<*)-dim<*-«. 
a e r + 

From now on we will assume that 4 is symmetric. We recall the definition 
of the Casimir operator £2 on the space MÇK) (in a slightly modified form, cf. 
[3]). The form ( , ) on <$(A) induces a bilinear form on i$(A) which we also 
denote by ( , ). Note that ( , ) is nondegenerate on @a © @_a, a G r + . We 
define a bilinear form on F by setting (af, oy) = a^\ we set / ^ = 2 kth( for 77 = 
2 left. We choose in each ($ a , a G r + , a basis e £ \ i = 1, . . . , dim @a, and 
in &_a a dual basis <?<ƒ>. We define p G § * by pCfy) = 1/2^, i G I. Finally, 
we define Î2 as follows: 

«GO = (ft, ij) - 2 ( \ + p ) ( / g > + 2 £ £ e « e « ( u ) , u G M(X)_. 
a e r + i 

A direct verification (cf. [4, Proposition 2.7]) shows that fi = 0. This and the 
fact that M(X) is irreducible if any vector killed by all ($ a , a G r + , lies in M(X)0, 
gives the following lemma (see [5] for a more precise statement). 

LEMMA 1. If (i?, rj) - 2(X + p X ^ ) ^ 0 for any r? G T + , tfœw the ©(4> 
module M(X) is irreducible. 

Now we are able to complete the proof of Theorem 1. Consider the ($(4)-
module M = M(Q). The module M contains submodules Lt = U(^{A)\M{0)^\ 

set L = SjLj.. Clearly, dim Af/L = 1 and the ($(4)-module Lj is isomorphic to 
M(-a(). Moreover, since (T?, T?) - 2(p - f y X ^ ) = 7^+^.,by Lemma 1, M(-a,) is 
irreducible and therefore Z, is a direct sum of Lfs. Hence, we have ch M/L = 1 
= ch M(0) - Sfch M(-at). This gives the following formula: 

(1) 1 1 ( 1 - <ra)dim(^~<* = 1 - £ *"*'. 
a e r + Ï = I 

But (1) is equivalent to the fact that n_ is freely generated by fp i G ƒ (indeed, 

the inverse of the left-hand side of (1) is the generating function of U(n_); but 

n_ is free «-» U(x\J) is free [6] «-> the generating function of U(nJ) is the 

inverse of the right-hand side of (1)). 

PROOF OF THEOREM 2. It follows from §11 6 of [1] (see also 

[2, Lemma 3.11]) that each time when A is not one of the matrices 

of (i) or (ii), the Lie algebra <&(A) contains K2 and therefore (by Theorem 1) 

contains a free subalgebra of rank 2. 
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REMARK. The problem about the defining relations for arbitrary <$(A) 
is still open; the first unclear case is A = (_?3 ~2

3) (see the conjecture in [1, §11 
7]). I think that this problem can be solved by a detailed study of the func­
tions ipa. 
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