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Recursion-theoretic hierarchies, by Peter G. Hinman, Perspectives in Mathe­
matical Logic, Springer-Verlag, Berlin, Heidelberg, New York, 1978, xii + 
480 pp. 

The turn of the century saw (amongst other things) the beginnings of 
Descriptive Set Theory. Faced with the increasing use of the all-powerful 
methods of Cantorian set theory and, in particular, the Axiom of Choice, 
mathematicians such as Baire, Borel, and Lebesgue began to develop more 
constructive approaches to analysis. Out of such investigations came the 
definition of the Borel sets, Souslin's theorem that a set of real numbers is 
Borel iff both it and its complement are analytic, the result that analytic sets 
are measurable and have the Baire property, and so on. Inherent in the 
notions of Borel set and analytic set (etc.) is the notion of hierarchy. Roughly 
speaking, a hierarchy is a classification of certain mathematical objects into 
levels, indexed by natural numbers, or possibly transfinite ordinal numbers as 
well. Objects appearing in levels low in the hierarchy are somehow more 
simple than those in higher levels: passage up through the hierarchy repre­
sents a gradually increasing complexity of the objects covered. For example, 
consider the Borel sets of real numbers. The standard definition of this class 
is that it is the smallest class of sets which contains all intervals and is closed 
under the formation of complements and countable unions. We can impose a 
hierarchy on this class by putting into the a-th level all sets which require a 
sequence of a applications of complementation and countable union to 
families of intervals for their construction. This hierarchy has precisely cox 

levels, the level of any particular Borel set providing a measure of its 
complexity as a Borel set. Using this hierarchy we can, for instance, prove 
results about Borel sets by induction on the levels of the hierarchy. 

Such hierarchies form a large part of the subject matter of this book. That 
this is so in a book published in the series "Perspectives in Mathematical 
Logic" (i.e. that the study of such hierarchies has fallen into the domain of 
the mathematical logician) arises from the marriage between classical De­
scriptive Set Theory and the developments in Logic which took place in the 
1930s (and onwards). Logicians such as Church, Kleene, Turing, and 
Mostowski were looking at the notions of algorithmically calculable function, 
one function being recursive in another, the arithmetical and analytic hi­
erarchies, and various sorts of definability in formal languages. By the mid 
1950s, it became clear that classical Descriptive Set Theory and the above 
mentioned parts of Recursion Theory are really special cases of a single 
general theory of definability, this realisation being formally acknowledged 
by Addison's announcements in BAMS 61 (1955), 75; 171-172 (Analogies in 
the Borel, Lusin, and Kleene hierarchies. I, II). This general definability theory 
forms the starting point of the book. 

The author is clearly addressing himself to more advanced students, a 
reasonable knowledge of analysis, topology, measure theory, set theory and 
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logic being a prerequisite for the book. Moreover, the very nature of the 
subject gives the book the "heavy" look of a reference text as opposed to the 
gentler appearance of an "introductory text". Nevertheless, it is all there, and 
the suitably qualified reader should not have any problems with the develop­
ment. Your humble (I have to say that for form's sake) reviewer hereby 
confesses his previous ignorance of large parts of the subject matter of the 
book, and was able to rectify matters by commencing at page 7 (where 
Chapter I commences) and proceeding through to page 457 (where the body 
of the text grinds to a final, tentative halt). (In other words, I think I was a 
typical reader of this book!) 

Like Gaul, Hinman's book is divided into three parts. In Part A we meet 
the basic concepts of logic, ordinary recursion theory, definability, and the 
arithmetical and analytical hierarchies. Part B looks at the Analytical and 
Projective hierarchies in some detail, splitting the discussion into two 
parts-the first level, which can be handled quite well, and the other levels, 
where the going quickly gets tough. And in Part C the author branches out 
into the various generalisations of Recursion Theory which have been devel­
oped during more recent times. 

Let us take a quick look at Part A. After some preliminaries concerning 
basic logic and set theory, topology and measure, and inductive definitions, 
the notions of primitive recursion, recursive functional, and recursive relation 
are defined, and the development taken through to the Normal Form Theo. 
rems. Unless the reader has some prior acquaintance with the early parts of 
Recursion Theory, the going will be very tough. The development is formal 
and nonintuitive, and is clearly designed to set up the required machinery in 
the most convenient form with the minimum of fuss. I would suggest that the 
novice reader has a look at the early parts of Roger's book Theory of 
Recursive Functions and Effective Compatibility (McGraw-Hill, 1967) before 
opening Hinman. Armed with a good intuition about recursive functions etc., 
Hinman's account can then be read without much trouble. (But note that 
Hinman uses the term "semi-recursive relation" instead of the older term 
"recursively-enumerable relation".) The first real hint of the connection 
between recursion theoretic hierarchies and classical Descriptive Set Theory 
comes next with the observation that if R Cwco (where wco is the set of all 
co-sequences of natural numbers), then R is open iff R is recursive in some 
real parameter /?. So far, the development has been essentially that of the 
prerequisites for the later material. But with the start of Chapter III we get 
onto one of the main themes. The arithmetical and analytic hierarchies are 
defined and a number of technical properties of the hierarchies are proved. 

The arithmetical hierarchy is defined thus. A relation (on (?u)n X <om) is 
called 2o (or 11$) if it is recursive. Then, inductively, a relation is 2° + 1 (resp. 
U°n+i) if it is determined by prefixing a 11° (resp. 2°) relation with an 
existential (resp. universal) natural number quantifier. This gives a strictly 
increasing hierarchy of sets of relations. All members of the arithmetical 
hierarchy are Borel. 

To obtain the analytical hierarchy, call a relation (on ("co)" X <om) 2^ (or 
nô) if it is arithmetical and 2 j , + 1 (resp. nj,+i) if it is determined by prefixing a 
11), (resp. 2),) relation with an existential (resp. universal) real number 
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quantifier. (Throughout this book, the members of w<o are the "reals", as is 
common in this subject.) 

In both of the above definitions, if we allow arbitrary real number parame­
ters to figure in the relations of level zero, we denote the enlarged hierarchy 
by using boldface type 2'„, H*„- The hierarchy 2^, Ul

n is of particular 
importance and is known as the projective hierarchy. Indeed, the first few 
levels of this hierarchy are familiar to all descriptive set theorists-though 
under a different guise. One immediately striking result is that the Borel 
relations are just those which are both 2} and H{. Other questions of interest 
discussed in the book concern the question as to the relationship between the 
complexity of a set of reals and the complexity of the reals in that set. 

Part A ends with brief discussions of definability in formal languages for 
arithmetic and arithmetical forcing, the latter being used to obtain results on 
the arithmetical hierarchy. 

Part B deals with the analytical and projective hierarchies, and consists of 
just two chapters. The first of these deals with the sets 2} and H}. These are 
singled out for special consideration not only because they are more easily 
handled than higher levels in the hierarchy, but also because they are closely 
connected with notions in Descriptive Set Theory-the example that 2} fïïïî 
= Borel having already been mentioned. 

The Borel hierarchy is defined as follows. Let 2o (or HQ) be the class of all 
clopen sets (i.e. subsets of (w<o)m X <ow). For any ordinal a > 0, let 2° consist 
of all countable unions of members of U #<« II^, and let D£ consist of all 
complements of members of 2«. Then 2°, = 11°, - U a<Wl 2° -
U a<Wl TL°a, so the hierarchy stops growing at stage cov It can be shown to be 

strictly increasing below cov and clearly U a<Wl 2« is the class of all Borel 
sets. For n < <o, the sets 2°, IK coincide with their previous definitions as 
members of the relativised arithmetical hierarchy. 

Besides discussing the Borel hierarchy, this chapter provides a mine of 
useful results about 2} and II{ sets from the point of view of cardinality, 
measure and category. One aspect of this which may well interest the 
newcomer is how techniques of recursion theory provide elegant proofs of 
standard results in Descriptive Set Theory, thereby exemplifying the benefits 
of the blending of the two subjects. 

When we come to leave the familiarity of 2} and H} and venture further up 
the hierarchy, the going soon gets tough. Very little can be said without the 
assumption of additional axioms of set theory. Two (mutually inconsistent) 
such axioms have a profound effect on the projective hierarchy. The first of 
these to be considered is the Axiom of Constructibility ( V = L). The key 
result here which effects the projective hierarchy is that, if V = L, the reals 
(i.e. wco) have a well-ordering which is both 2^ and IÎ - The other axiom is the 
axiom of Projective Determinancy. The adoption of this axiom lends an 
altogether different flavor to the subject, and several appealing consequences 
can be obtained though Hinman does not go very far in this direction (other 
books on this very subject being already well under preparation). Neverthe­
less, he should stimulate the reader to look further into this fascinating 
branch of mathematics. 

And so to Part C, where Hinman introduces us to various generalisations 
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of recursion theory. Broadly speaking, there are two possibilities. Firstly, we 
can try to generalise our recursion theory from (w<o)m X o)n to Ceo)* X (<0co)m 

X co", and so on. Once the "correct" definition of "recursive" has been made, 
many of the results considered in the book can be generalised, and Hinman 
provides several such generalisations. The second generalisation arises when 
we try to replace to by a larger ordinal number. Not all ordinals a admit a 
reasonable "recursion theory". Those that do are called "admissible ordi­
nals". Much is now known about such ordinals, and they play an important 
role in Set Theory as well as Recursion Theory-indced some of the argu­
ments employed in recursion theory on admissible sets have a distinctly 
set-theoretic flavor! 

It should be said that, despite our brief reference to this section given 
above, Part C occupies fully one half of the book, and contains a vast amount 
of material. Indeed, as Hinman says in his Preface, this is the material of 
which his volume was originally intended to consist! 

So how did I find the volume? Well, let me first of all admit to being a 
reluctant reader (of any serious text); as well as one with a marked tendency 
to miss all sorts of errors. Consequently, I read the book in a fairly "shallow" 
fashion, and gained a fairly good impression of an area in which I am not at 
all expert. Armed with a reasonable foreknowledge of basic recursion theory 
and set theory as I was, I found the going not too bad. But the book is plainly 
intended for the more dedicated reader, with most proofs given in some 
detail. My feeling (prejudice?) here is that the lone reader may well find the 
going heavy (I would have, had I tried to read through it in depth), so that it 
would be preferable to couple the reading with a series of seminars or 
discussions on the material. There is a large selection of exercises, distributed 
throughout the text, some easy, some not so easy, and some with hints. So as 
a "standard text" the book stands very well indeed. 

KEITH J. DEVLIN 
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In a celebrated inaugural address at Erlangen in 1872, Felix Klein defined 
geometry as the study of those properties of figures that remain invariant 
under a particular group of transformations. Thus, Euclidean geometry is the 
study of such properties as length, area, volume and angle which are all 
invariants of the group of Euclidean motions. In Klein's view, by considering 
a larger group one obtains a more general geometry. Thus Euclidean geome­
try is a special case of affine geometry. The latter in its turn is a special case 
of projective geometry. In any of these geometries, the group is relatively 
large. What Klein had in mind must be geometry of homogeneous spaces. 
For this reason, a homogeneous space G/H of a Lie group G is sometimes 
called a Klein space. 


