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THE DUALITY OPERATION IN THE CHARACTER RING
OF A FINITE CHEVALLEY GROUP
BY DEAN ALVIS

It is possible (as in [4]) to define a duality operation { — ¢* in the ring
of virtual characters of an arbitrary finite group with a split (B, N)-pair of
characteristic p. Such a group arises as the fixed points under a Frobenius map
of a connected reductive algebraic group, defined over a finite field [1]. This
paper contains statements of several general properties of the duality map { — ¢*
and two related operations (see §§2 and 4). The duality map { — {* generalizes
the construction in [2] of the Steinberg character, and interacts well with the
organization of the characters from the point of view of cuspidal characters
(86). It is hoped that there is also a useful interaction with the Deligne-Lusztig
virtual characters R%@. Partial results have been obtained in this direction (§5).
Detailed proofs will appear elsewhere.

1. Let G be a finite group with split (B, N)-pair of characteristic p. Let
(W, R) be the Coxeter system, and let P, = L,V be the standard parabolic sub-
group corresponding to J C R, with V; = Op(P)) (see [3] for definitions and
notations). Let char(G) denote the ring of virtual characters of G, and Irt(G)
the set of irreducible characters of G, all taken in the complex field. ForJ C R
and ¢ € char(G) define

.1 $oprvy = ZG, X%)6A

where ~ denotes extension to P; via the projection P, — L; = P;/V,, and the
sum is over all X € Irr(L;). Let & Py = $ P,/ VJ)N. The duality map is then
defined by:

1.2 DEFINITION. $* = Z;c o(=1)"§(p @, for all § € char(G).

2. The truncation map { — §¢ PV )) and the map A — X© behave in
much the same way as ordinary restriction and induction. The following basic
properties follow directly from the structure theorems [3].

2.1 FROBENIUS RECIPROCITY. Let § € char(G) and X € char(L;). Then
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(¢ X'G)G = (f(PJ)y’X)PJ = (pr/VJ)y )‘)LJ'

2.2 TransiTivity. If K CJ CR, let Qi be the standard parabolic
subgroup Py N Ly of Ly and let Vy o = OP(QK) =L; N Vg. Thenif { €
char(G) and § € char(L;), we have

Ceerv kv = g(PK/VK)’
and

(XLJ)"' G =C,

2.3 INTERTWINING NUMBER THEOREM. Let \; € char(L, ) fori =12 .
]
Then

(chaﬁxg)c = Z ()\1(

Qk . IVy ))’w}\z(QK IVy, k Vi
weW; 1) 1N 2K Ky

where Wy, .z, is the set of distinguished W, - W double coset representatives,
Wk, -w, n "Wy, and W =W, nW~'w

2.4 SuUBGROUP THEOREM. Let A € char(Ly 1)‘ Then

-1
Here K, is as in 2.3 (note: ¥ LKI =

3. The results of this section are of independent interest, and are due to
Curtis ([4]). They are needed to apply the results of §2 to the duality
operation.

3.1. LEMMA. LetwE W, le —L,l WA, =, where }\iEChar(LJi).
Then \§ = \§.

The idea of the proof is to show that the numbers ()\l » Ny )G are all the
same for i, j = 1, 2. The proof in [3] (for the special case when A, A, are
cuspidal) can be modified to work in the present situation.

The following is Lemma 2.5 of [4].

32. LemMa. Letay ; x = H{we W,lhle =Wy N ww,z}l.
Then

Z 10", = DKL
J,CR
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4. The first main result relates duality and the operations { — f(PJ 1V
and A — \C. Part (1) is Theorem 1.3 of [4].

THEOREM. (1) (§'*)(PJ vy = (§(PJ/VJ))* for J CR, ¢ € char(G)
(2) R%)* = A*)~C for J C R, \ € char(L)).

We provide a sketch of the proof of (2). LetJ, =J. Using 2.4, 2.2, and

then Lemma 3.1 (noting that Lg L= YLk , by Proposition 2.6 of [3]) we
have

@ =2 0 2 Nog vy )
JCR weW; g @k, Yy k)

The proof is then completed by applying Lemma 3.2 and 2.2.

4.2 THEOREM. The map ¢ — ¢*, from char(G) — char(G) is an isometry
of order two. In particular, $** = ¢ and * ¢* € Irr(G), whenever ¢ € Irr(G).

In order to prove Theorem 4.2, one first proves that (§,, {3)s = ¥, $2)g-

It then suffices to prove {** = {. The key is to apply Theorem 4.1 part (1) to
the expression for {**. We have

*k _ ! e
§—%§UQWM

=2 DV X Kl

¢
JCR KcJ (Pg)

using 2.2. To finish the proof, note that = (-1)¥! summed over all J such that
K CJ C R is zero unless K = R.

5. It is clear that {* = (= 1)'R'¢ for any cuspidal ¢ € Irr(G). Thus by
applying Theorem 4.1 part (2) we have:

5.1 CoROLLARY. Let \ € Irr(L,) be cuspidal. Then (X°)* = (=1)V'XC.

Thus duality permutes (up to sign) the components of NCG. We can thus
determine the “sign” of ¢* as follows: (- 1)V!¢* is in Irr(G) if ¢ € Irx(G) is a
component of A\C, A € Irr(L 7) cuspidal. In particular, { — ¢* permutes the
principal series characters, i.e. the components of N, ne Irr(Lg). A more
explicit result is known for the components ¢ 0.q of lg((g)) in a system of groups
{G(q)} of type (W, R). Specifically, $.a = Sep,q Where € is the sign character
of W ([4]).
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Finally, consider the case G = GF where G is a reductive algebraic group
and F : G — G is a Frobenius map over Fq. Let Rg 0 denote the Deligne-
Lusztig generalized character of G (T an F-stable maximal torus of G, 0 a linear
character of TF). It is natural to ask whether

(5.2) (RS0)* = + RS0
holds. The following suggests the answer is yes.
(5.3) (R0)*(s) = * RS(5)

for semisimple elements s of G. The * sign in 5.3 does not depend on the par-
ticular element s of G. The proof of 5.3 uses several results of [5]. (Note
added in proof: The conjecture 5.2 has been proved by G. Lusztig.)

5.4 ExaMPLE. Let G = GF as above, with (relative) Coxeter system
(W, R). Let V be the set of unipotent elements of G and let €, be the
characteristic function of V. A recent result of Springer (Theorem 1 of [6])!
shows

ey =4 2 CDVIRI"11G,
JCR

where d = dim(G/B), B a Borel subgroup of G. Applying Theorems 4.1 and
4.2 we have:

5.5 THEOREM. (1) €} = @°/ |Gl)o where pg; is the regular character
of G.
(2) For ¢ € Irr(G),

i Z 80 = G R)).
vev

(3) For § €1ri(G), I§*(1)l,» = §(1),+ where p is the characteristic of F,
and n,,» is the p' part of n.

(4) For § € In(G), 1/5(1) Z,cy$) is, up to sign, a power of p.

Part (4) of Theorem 5.5 confirms a special case of a conjecture of
Macdonald (see [6]), namely the case when g = p is prime.
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