THE DUALITY OPERATION IN THE CHARACTER RING OF A FINITE CHEVALLEY GROUP

BY DEAN ALVIS

It is possible (as in [4]) to define a duality operation $\zeta \to \zeta^*$ in the ring of virtual characters of an arbitrary finite group with a split (B, N)-pair of characteristic p. Such a group arises as the fixed points under a Frobenius map of a connected reductive algebraic group, defined over a finite field [1]. This paper contains statements of several general properties of the duality map $\zeta \to \zeta^*$ and two related operations (see §§2 and 4). The duality map $\zeta \to \zeta^*$ generalizes the construction in [2] of the Steinberg character, and interacts well with the organization of the characters from the point of view of cuspidal characters (§6). It is hoped that there is also a useful interaction with the Deligne-Lusztig virtual characters $R_T^G \theta$. Partial results have been obtained in this direction (§5). Detailed proofs will appear elsewhere.

1. Let G be a finite group with split (B, N)-pair of characteristic p. Let (W, R) be the Coxeter system, and let $P_J = L_J V_J$ be the standard parabolic subgroup corresponding to $J \subseteq R$, with $V_J = O_P(P_J)$ (see [3] for definitions and notations). Let $\operatorname{char}(G)$ denote the ring of virtual characters of G, and $\operatorname{Irr}(G)$ the set of irreducible characters of G, all taken in the complex field. For $J \subseteq R$ and $G \in \operatorname{char}(G)$ define

(1.1)
$$\zeta_{(P_J/V_J)} = \Sigma(\zeta, \widetilde{\lambda}^G)_{G} \lambda$$

where \sim denotes extension to P_J via the projection $P_J \to L_J \cong P_J/V_J$, and the sum is over all $\lambda \in \operatorname{Irr}(L_J)$. Let $\zeta_{(P_J)} = \zeta_{(P_J/V_J)}^{\sim}$. The duality map is then defined by:

1.2 DEFINITION.
$$\zeta^* = \Sigma_{J \subset R} (-1)^{|J|} \zeta_{(P_J)}^G$$
, for all $\zeta \in \text{char}(G)$.

- 2. The truncation map $\zeta \to \zeta_{(P_J/V_J)}$ and the map $\lambda \to \widetilde{\lambda}^G$ behave in much the same way as ordinary restriction and induction. The following basic properties follow directly from the structure theorems [3].
 - 2.1 Frobenius reciprocity. Let $\zeta \in \text{char}(G)$ and $\lambda \in \text{char}(L_J)$. Then

Received by the editors May 7, 1979.

AMS (MOS) subject classification numbers (1970). Primary 20C15.

$$(\zeta, \widetilde{\lambda}^G)_G = (\zeta_{(P_I)}, \widetilde{\lambda})_{P_I} = (\zeta_{P_I/V_I}, \lambda)_{L_I}$$

2.2 Transitivity. If $K \subseteq J \subseteq R$, let Q_K be the standard parabolic subgroup $P_K \cap L_J$ of L_J and let $V_{J,K} = O_p(Q_K) = L_J \cap V_K$. Then if $\zeta \in \text{char}(G)$ and $\zeta \in \text{char}(L_J)$, we have

$$(\zeta_{(P_J/V_J)})_{(Q_K/V_{J,K})} = \zeta_{(P_K/V_K)},$$

and

$$(\widetilde{\lambda}^{L_J})^{\sim_G} = \widetilde{\lambda}^G.$$

2.3 Intertwining number theorem. Let $\lambda_i \in \operatorname{char}(L_{J_i})$ for i=1,2 . Then

$$(\widetilde{\lambda}_{1}^{G},\widetilde{\lambda}_{2}^{G})_{G} = \sum_{w \in W_{J_{1},J_{2}}} (\lambda_{1(Q_{K_{1}}/V_{J_{1}})}),^{w} \lambda_{2(Q_{K_{2}}/V_{J_{2},K_{2}})})_{L_{K_{1}}}$$

where W_{J_1,J_2} is the set of distinguished $W_{J_1} - W_{J_2}$ double coset representatives, $W_{K_1} = W_{J_1} \cap {}^w W_{J_2}$ and $W_{K_2} = W_{J_2} \cap {}^{w_{J_1}} W_{J_1}$.

2.4 Subgroup Theorem. Let $\lambda \in \text{char}(L_{J_1})$. Then

$$(\widetilde{\lambda}^G)_{(P_{J_2}/V_{J_2})} = \sum_{w \in W_{J_1,J_2}} {}^{w^{-1}} (\lambda_{(Q_{K_1}/V_{J_1,K_1})})^{\sim^{L_{J_2}}}.$$

Here K_1 is as in 2.3 (note: $^{w^{-1}}L_{K_1} = L_{K_2}$).

- 3. The results of this section are of independent interest, and are due to Curtis ([4]). They are needed to apply the results of §2 to the duality operation.
- 3.1. Lemma. Let $w \in W$, ${}^wL_{J_2} = L_{J_1}$, ${}^w\lambda_2 = \lambda_1$, where $\lambda_i \in \operatorname{char}(L_{J_i})$. Then $\lambda_1^G = \lambda_2^G$.

The idea of the proof is to show that the numbers $(\widetilde{\lambda}_i^G, \widetilde{\lambda}_j^G)_G$ are all the same for i, j = 1, 2. The proof in [3] (for the special case when λ_1, λ_2 are cuspidal) can be modified to work in the present situation.

The following is Lemma 2.5 of [4].

3.2. Lemma. Let $a_{J_2,J_1,K} = |\{w \in W_{J_1,J_2} | W_K = W_{J_1} \cap {}^w W_{J_2}\}|$. Then

$$\sum_{J_2\subseteq R} (-1)^{|J_2|} a_{J_2,J_1,K} = (-1)^{|K|}.$$

4. The first main result relates duality and the operations $\zeta \to \zeta_{(P_J/V_J)}$ and $\lambda \to \widetilde{\lambda}^G$. Part (1) is Theorem 1.3 of [4].

THEOREM. (1)
$$(\zeta^*)_{(P_J/V_J)} = (\zeta_{(P_J/V_J)})^*$$
 for $J \subseteq R$, $\zeta \in \text{char}(G)$ (2) $(\lambda^G)^* = (\lambda^*)^{\sim G}$ for $J \subseteq R$, $\lambda \in \text{char}(L_J)$.

We provide a sketch of the proof of (2). Let $J_1=J$. Using 2.4, 2.2, and then Lemma 3.1 (noting that $L_{K_1}={}^wL_{K_2}$ by Proposition 2.6 of [3]) we have

$$(\widetilde{\lambda}^G)^* = \sum_{J_2 \subseteq R} (-1)^{|J_2|} \sum_{w \in W_{J_1,J_2}} \lambda_{(Q_{K_1}/V_{J_1,K_1})} \sim^G$$

The proof is then completed by applying Lemma 3.2 and 2.2.

4.2 THEOREM. The map $\zeta \to \zeta^*$, from $\operatorname{char}(G) \to \operatorname{char}(G)$ is an isometry of order two. In particular, $\zeta^{**} = \zeta$ and $\pm \zeta^* \in \operatorname{Irr}(G)$, whenever $\zeta \in \operatorname{Irr}(G)$.

In order to prove Theorem 4.2, one first proves that $(\zeta_1, \zeta_2^*)_G = (\zeta_1^*, \zeta_2)_G$. It then suffices to prove $\zeta^{**} = \zeta$. The key is to apply Theorem 4.1 part (1) to the expression for ζ^{**} . We have

$$\begin{split} \xi^{**} &= \sum_{J \subseteq R} \left(-1 \right)^{|J|} \xi_{(P_J/V_J)}^{**} \sim^G \\ &= \sum_{J \subseteq R} \left(-1 \right)^{|J|} \sum_{K \subseteq J} \left(-1 \right)^{|K|} \xi_{(P_K)}^{G} \end{split}$$

- using 2.2. To finish the proof, note that Σ $(-1)^{|J|}$ summed over all J such that $K \subseteq J \subset R$ is zero unless K = R.
- 5. It is clear that $\zeta^* = (-1)^{|R|} \zeta$ for any cuspidal $\zeta \in Irr(G)$. Thus by applying Theorem 4.1 part (2) we have:
 - 5.1 Corollary. Let $\lambda \in \operatorname{Irr}(L_{\lambda})$ be cuspidal. Then $(\widetilde{\lambda}^G)^* = (-1)^{|J|} \widetilde{\lambda}^G$.

Thus duality permutes (up to sign) the components of $\widetilde{\lambda}^G$. We can thus determine the "sign" of ζ^* as follows: $(-1)^{|J|}\zeta^*$ is in $\operatorname{Irr}(G)$ if $\zeta \in \operatorname{Irr}(G)$ is a component of $\widetilde{\lambda}^G$, $\lambda \in \operatorname{Irr}(L_J)$ cuspidal. In particular, $\zeta \to \zeta^*$ permutes the principal series characters, i.e. the components of $\widetilde{\lambda}^G$, $\lambda \in \operatorname{Irr}(L_{\emptyset})$. A more explicit result is known for the components $\zeta_{\varphi,q}$ of $1_{B(q)}^{G(q)}$ in a system of groups $\{G(q)\}$ of type (W,R). Specifically, $\zeta_{\varphi,q}^* = \zeta_{\varepsilon\varphi,q}$ where ε is the sign character of $W(\{4\})$.

Finally, consider the case $G = \mathbf{G}^F$ where \mathbf{G} is a reductive algebraic group and $F: \mathbf{G} \to \mathbf{G}$ is a Frobenius map over F_q . Let $R_{\mathbf{T}}^{\mathbf{G}}\theta$ denote the Deligne-Lusztig generalized character of G (T an F-stable maximal torus of \mathbf{G} , θ a linear character of \mathbf{T}^F). It is natural to ask whether

$$(5.2) (R_{\mathbf{T}}^{\mathbf{G}}\theta)^* = \pm R_{\mathbf{T}}^{\mathbf{G}}\theta$$

holds. The following suggests the answer is yes.

(5.3)
$$(R_{\mathbf{T}}^{\mathbf{G}}\theta)^*(s) = \pm R_{\mathbf{T}}^{\mathbf{G}}\theta(s)$$

for semisimple elements s of G. The \pm sign in 5.3 does not depend on the particular element s of G. The proof of 5.3 uses several results of [5]. (Note added in proof: The conjecture 5.2 has been proved by G. Lusztig.)

5.4 EXAMPLE. Let $G = \mathbf{G}^F$ as above, with (relative) Coxeter system (W, R). Let V be the set of unipotent elements of G and let ϵ_V be the characteristic function of V. A recent result of Springer (Theorem 1 of [6])¹ shows

$$\epsilon_V = q^d \sum_{J \subseteq R} (-1)^{|J|} |P_J|^{-1} \mathbf{1}_{V_J}^G$$

where $d = \dim(G/B)$, **B** a Borel subgroup of **G**. Applying Theorems 4.1 and 4.2 we have:

- 5.5 Theorem. (1) $\epsilon_V^* = (q^d/|G|)\rho_G$ where ρ_G is the regular character of G.
 - (2) For $\zeta \in Irr(G)$,

$$\frac{1}{\zeta(1)} \sum_{v \in V} \zeta(v) = q^d(\zeta^*(1)/\zeta(1)).$$

- (3) For $\zeta \in Irr(G)$, $|\zeta^*(1)|_{p'} = \zeta(1)_{p'}$ where p is the characteristic of F_q and $n_{p'}$ is the p' part of n.
 - (4) For $\zeta \in Irr(G)$, $1/\zeta(1)$ $\Sigma_{v \in V}\zeta(v)$ is, up to sign, a power of p.

Part (4) of Theorem 5.5 confirms a special case of a conjecture of Macdonald (see [6]), namely the case when q = p is prime.

REFERENCES

- 1. A. Borel and J. Tits, Groupes reductifs, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965), 55-151.
- 2. C. W. Curtis, The Steinberg character of a finite group with a (B, N)-pair, J. Algebra 4 (1966), 433-441.

¹The author is indebted to T. A. Springer for communicating both his results in [6] and the suggestion of G. Lusztig of combining them with duality.

- 3. Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan 27 (1975), 666-688.
- 4. ———, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra (to appear).
- 5. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- 6. T. A. Springer, A formula for the characteristic function of the unipotent set of a finite Chevalley group (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403