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RESEARCH ANNOUNCEMENTS 

NONLINEAR SIMILARITY OF MATRICES 

BY SYLVAIN E. CAPPELL1 AND JULIUS L. SHANESON1 

Works of Poincaré [7], de Rham [8], [9] ,2 Reidemeister, Kuiper and 
Robbin [6], Sullivan, and Schultz [11] showed that in a large number of cases, 
various types of nonlinear similarity of real matrices with eigenvalues all of mod­
ulus one,3 implies linear similarity of these matrices. In [4] we gave the first 
examples of matrices with eigenvalues of modulus one which are nonlinearly sim-

ilar but, as they have different traces, are not linearly similar. Therefore the 
classification of such matrices up to nonlinear similarity is much different from 
what had been conjectured on the basis of the earlier results. This paper begins 
the systematic classification up to nonlinear similarity of matrices with eigen­

values of modulus one (and group representations) which are not linearly similar. 

This could be called the topological canonical form problem for matrices. For a 
large class of matrices (and group representations) we completely solve this prob­
lem. 

Two real entried invertible n x n matrices A and B are nonlinearly or top-

ologically similar if there is a homeomorphism ƒ: Rn —> Rn with4 /(O) = 0 and 
fAf~l = B\ here A and B are regarded as (linear) homeomorphisms of Rn. 

For matrices with eigenvalues of modulus 1, and without roots of unity as 
eigenvalues, or with all eigenvalues which are roots of unity being sth roots of 
unity with s = 1, 2, 3, 4, or 6, Kuiper and Robbin showed that nonlinear simi­
larity implies linear similarity. This is also known for matrices all of whose 
eigenvalues are primitive sth roots of unity, for a fixed s; see [6]. Dennis Sulli­
van, and Reinhard Schultz [11] showed nonlinear similarity implies similarity 
for matrices whose eigenvalues are ps or 2ps roots of unity, p an odd prime. 
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For simplicity we consider first n x n matrices A for which the minimal 
polynomial has no multiple roots. This includes, in particular, all orthogonal 
matrices. Such matrices A are linearly similar if and only if they have the same 
characteristic polynomials, pA(t). Alternatively, they are determined up to lin­
ear similarity by their eigenvalues, the roots of pA(t) counted with multiplicity. 

Let [x] denote as usual the largest integer less than or equal to the real 
number x. 

THEOREM. Let A and B be a real n x n matrices with all eigenvalues of 
A of modulus one and with the minimal polynomial of A having no multiple 
roots (for example: A an orthogonal matrix). Then A and B are nonlinearly sim­
ilar if B has all eigenvalues of modulus one with its minimal polynomial having 
no multiple roots and the characteristic polynomials have real factorizations 

(i) PA(0 = KtM), PBdO = Kt)K~t) 

where h(i) = 1 ifk(~~1) ¥* 0 and where 

Kt) = n hq(t), 
q>l 

degree hq(t) divisible by 4, with the roots ofhq(t) primitive 4qth roots of unity 
and, counting these roots with multiplicity; for each q > 1, 

(q + n) (deg(/^(0)/4) + £ [((-*«&! x)/ir) • n] 
x a root of hQ 

lm(x)>0 

is even for n any integer with 1 < n < 2q - L 
Conversely, this condition is also necessary for B to be nonlinearly simitar 

to A provided that each integer s, for which A has an eigenvalue which is a prim­
itive sth root of unity, satisfies 

(i) s is an odd prime-power or twice an odd prime-power or less than 8, or 
(ii) A has less than 2 eigenvalues5 which are primitive sth roots of unity, 

or 
(iii) A has less than 3 eigenvalues which are nonprimitive sth roots of 

unity. 

REMARK. In view of (ii) and (iii) one can add: or 
(iv) A has less than 6 eigenvalues which are sth roots of unity. 
For n = 2, Poincaré showed by defining rotation numbers that homoge­

neous nonlinear similarity implies linear similarity. In [4] we gave a counterex­
ample in a higher dimension. However, by using the full force of the above theo­
rem, we show 

'Of course, eigenvalues are counted with multiplicity. 
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COROLLARY. For all n x n matrices with all eigenvalues of modulus onef 

when n < 6, nonlinear similarity is equivalent to linear similarity. 

Note that (1) implies, in particular, that A2 and B1 are linearly similar. In 
some cases, the homeomorphisms used in constructing the topological similarity 
of the not linearly similar matrices can be chosen to be diffeomorphisms on al­
most all of Rn. 

The criteria (1) for nonlinear similarity is implied by a simpler condition 

0'). 

(O pA(t)^k(t)(U hq(t))\ pB(f) = k(t)(U hc-t))2 

\q>l I \q>l / 

where all hq(t) = 1 if k(~~ 1) =£ 0 and the roots ofhq{i) are primitive Aqth roots 
of unity and the degree of each hq(t) is divisible by A. 

Moreover, condition (l') is equivalent to (1) if A does not have - 1 as an 
eigenvalue, or if for all nontempered integers Aq greater than 80, A has less than 
8 eigenvalues5 which are primitive 4#th roots of unity. To define tempered, 
consider the function ƒ from the integers modulo Aq to the integers modulo 2, 
ƒ: Z4q ~~*Z2, given by f(x) = 1 for x = 1, 2, . . . , (2q - 1) and f(x) = 0 for 
x = 2q, (2q -f 1 ) , . . . , Aq. Call Aq a tempered number if the functions fa, 
where fa(x) = f (ax), for a £ Z4 , a prime to q and a = 1 (modulo 4), satisfy 
only the linear identities over Z2 which are sums of the obvious identities 

fa + Z(2* + (-i)*fl) = / i +f(2q+(-i)q) (modulo 2). 

Among the tempered numbers are 2r and 4#, # a Fermât prime, all 4# < 84, 
and other classes of numbers. 

These theorems give results on topological equivalence of different cyclic 
group representations. In [4] we announced the first example of this phenome­
non (for each Z4q, q > 1). Here we will give a sample of our classification re­
sults for group representations. Let ta denote the underlying 2-dimensional real 
representation of the complex representation which sends the generator of Z4 

to e2naf4q. The real representations of Z4q are well known to be sums of ta> 
0 < a < 2q together with the trivial and nontrivial one-dimensional representa­
tions, b+x and 5_ t , of Z4c?. 

Let Z%q denote the elements of Z4q which have multiplicative inverses. 

COROLLARY. A representation y ofZ4q is topologically equivalent to 

5 ,̂ + S cat\ 
a^Z%q 

0<a<2q 

nonnegative integers if and also when Aq is tempered only if 
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7 = 8^ + Z dat\ da > 0, 
aGZ4q 

0<a<2q 

where for each a, ca~da = d2q^a - c2q„a is even, and 20<a<q (ca - da) is 

divisible by 4. 

There are even more exotic examples of topologically equivalent linear 
representations of Z4 when 4q is not tempered. The first example of this is 
for 84. 

EXAMPLE. The representation ofZS4, 8_x + t5 + £ 1 3 -ht11 + t23 + 
t31 + t41 is topologically equivalent to d_1 + t1 + t11 + t19 + t25 + t29 + f37. 

In [4] we also gave an example of homogeneous topological similarity of 
different representations. Further discussion of this will appear in [5]. 

SKETCH OF PROOF. These results follow from classifying up to topological 
similarity the linear representations of Z 4 which are free actions on Rn with a 
line deleted and fixed point free on Rn - 0. 

The quotient space of such a representation on Euclidean space is obtained 
by compactifying, at one end, R x Y where Y is the one-point compactification 
of a nontrivial line-bundle over a lens space. By studying the classification of 
these spaces R x Y and relating it to invariants of lens spaces, we show that find­
ing a topological similarity is the same as solving a certain multiplicative equation 
involving the corresponding Reidemeister torsions. Further algebraic reductions 
show that the existence of a solution to these equations is equivalent to the con­
dition (1) above. 
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