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5-sufficiency and i?-ancillarity corresponding to the usual concepts. Several 
reprinted talks with accompanying discussions on these subjects have ap­
peared lately. One, by the author, is in J. Roy. Statist. Soc. Ser. B 38(1976) no. 
2, 103-131 and the others in which he participated can be found by consult­
ing the Math. Rev. Indices which list discussants as well as authors. 

A short middle section gives some special mathematical results and leads to 
the final part on exponential families. There the regular theory of exponential 
families is developed and a number of examples are given. The existence and 
uniqueness of maximum likelihood and maximum plausibility estimates is 
discussed as is prediction by both methods for these families. The final 
chapter then deals with the existence and character of sufficient and ancillary 
statistics for exponential families. 

The mathematical and statistical prerequisites for the book are modest and 
most of the proofs are pretty straightforward. A little measure theory and a 
standard senior statistics course should suffice. This does not mean, unfor­
tunately, that the book is easy to read. The ratio of definitions to theorems is 
very high as is common in this subject. This makes for a lot of cases in which 
it is easier to follow the proof than it is to figure out what the theorem really 
says. This is mainly a problem of attention span (the reviewer's is somewhat 
below average) but is a problem. 

On the positive side, the author provides many good examples, i.e. exam­
ples which are relevant to current statistical practice while also illustrating the 
points involved. Each chapter contains a complements section and a notes 
section which between them tell a great deal about who did what, how it 
could be generalized, and who did it differently. All in all, an interesting book 
for the specialist but a little heavy going for the general mathematical public. 

T. S. PITCHER 
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The collected works of Harold Davenport, edited by B. J. Birch, H. Halber-
stam, and C. A. Rogers, Volumes I, II, HI, and IV, Academic Press, 
London, New York, San Francisco, 1977, xxxiii + 1910 pp., $30.35, $29.35, 
$34.25, $20.35. 

The Collected Works of Harold Davenport fill four handsome volumes. 
Three photographs and the facsimile of a handwritten page form the fron­
tispieces. 

Almost a decade has passed since Davenport died, but few people realize 
that, in part, perhaps, because some of his work continued to appear as late 
as 1975. 

As one starts browsing through the almost 2000 pages, one of the first 
impressions is that of an unusual fluency of the exposition not only in 
English, but also in German and French. When one then looks at the 
frontispieces one remembers the man (most of us will remember him like the 
photos of volumes 3 and 4) and recognizes his handwriting (at least this 
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reviewer never received a typed letter from Davenport). 
Then perhaps, one asks oneself the question; What role will history assign 

to the contributions of Harold Davenport to mathematics? The answer is not 
obvious. Perhaps everyone who asks the question, will have to find his own 
answer. Throughout his mature lifetime he was a towering figure. On many 
topics (e.g., on Diophantine approximations) he was the undisputed supreme 
authority. On the other hand, his interests were rather sharply focused on a 
few important and very difficult problems and he may not have had the 
breath of the very greatest mathematicians. But still—at least number theory is 
not quite the same after his work, as it had been before. Perhaps-at least in 
this reviewer's views-his role in reshaping number theory may be compared 
to that of his friend E. Landau. But then again-it may be best to leave the 
question open and to look instead at Davenport's work. 

The volume of Davenport's publications is large because he considered it 
the duty of a mathematician to publish everything (nontrivial!) he knew, not 
only his best work. And not everything Davenport published can be found in 
these Collected Works. Obviously, his books and lecture notes are not 
reprinted here; nor are the nonresearch papers, such as survey articles, 
obituary notices, the (previously published) texts of some of his lectures, etc. 
Among the 25 or so papers listed, but not republished here are three out of 
four notes in the Comptes Rendus (Paris) in French, one survey article from 
the Jahresbericht der Deutschen Mathematiker Vereinigung in German, three 
other papers in French and 18 in English. All among these papers that have 
substantial mathematical content are either survey articles, or abstracts, or 
partial duplications of papers republished in these Collected Works. 

As indicated in the Preface to Volume 1, the papers are grouped by subject 
matter. Within a given category, they are listed in roughly chronological 
order. The first two volumes contain Davenport's main work on Diophantine 
approximation (but see also vol. 4, e.g., paper No. 182) and the geometry of 
numbers (edited by C. A. Rogers, with assistance from J. W. S. Cassels, W. 
M. Schmidt and G. L. Watson), while vol. 3 contains papers on the Hardy-
Littlewood method (edited by B. J. Birch, with assistance from D. J. Lewis). 
Volume 4 (edited by H. Halberstam, with assistance from Armitage, 
Bombieri, Burgess, Erdös, Lewis, Montgomery, and Watson) consists of four 
sections, as follows: (I) character sums and exponential sums; (II) polynomi­
als and Diophantine equations; (III) Dirichlet and other series; and (IV) 
miscellaneous results. After each group of related papers one finds a section 
of, generally rather short, commentaries, on such topics as the evolution of 
Davenport's thought on the problem, his successive ever sharper results on it, 
the extent to which the solutions given by Davenport are definitive and, 
whenever it has been the case, the progress made by others on the problem. 

There is, of course, no point to list here the individual papers (the list of all 
198 titles can be found at the end of each volume), even less to analyse them 
individually, or even in clusters of related papers. As already stated, short, 
but eminently competent comments can be found in the volumes themselves. 
However, as pointed out by C. A. Rogers in his bibliographical notes, in vol. 
1, " . . . the main bulk of [Davenport's] work was centred round a few key 
problems that he regarded as of outstanding importance . . . ". Perhaps one 
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could attempt to assess the relevance of Davenport's work on some of these 
problems. This has indeed been done already and by much more competent 
hands (C. A. Rogers, B. J. Birch, H. Halberstam, and D. A. Burgess; see [10] 
and [10a]). For this reason, the present reviewer limits himself to a simple 
mention of some of the "key problems" and a statement of a few of the 
results obtained by Davenport. 

Even this modest goal is not easily attained, because the number of those 
"key problems" is not all that small. With all their ramifications considered 
by Davenport, they do, in fact, cover quite some ground and it will be 
necessary to make a selection of problems and contributions to be 
mentioned-and, like all such selections, also the present one will inevitably 
reflect the reviewers own biases. 

Before any discussion of Davenport's work, however, it is necessary to 
recall that, especially in his later years, Davenport published many joint 
papers. It would be cumbersome to mention for each result the name of all 
his collaborators and of those who influenced his thought. On the other hand, 
it also would be unfair to ignore their contributions and Davenport would not 
have liked to take alone credit for joint work. In fact, even in papers 
published under his name alone, he gives generously credit to people who had 
influenced his work-be they mature mathematicians, like Mordell, or young 
students. For this reason we list here in alphabetic order the names of joint 
authors of papers republished in the present four volumes: A. Baker, R. P. 
Bambah, B. J. Birch, E. Bombieri, H. Chatland, S. Chowla, J. G. van der 
Corput, P. Erdös, H. Halberstam, M. Hall, H. Hasse, H. Heilbronn, E. 
Landau, W. J. LeVeque, D. J. Lewis, K. Mahler, G. Pólya, D. Ridout, C. A. 
Rogers, K. F. Roth, A. Schinzel, W. M. Schmidt, H. P. F. Swinnerton-Dyer, 
and G. L. Watson. 

Returning now to the "key problems", it is not really the case that these 
constitute discrete entities. Consider, for instance, Waring's problem, one of 
Davenport's lasting interest. It deals with the representation of integers as 
sums of a fixed number s of kth powers. This question is immediately 
generalized to the representation by diagonal forms of degree k in s integral 
variables and, more generally, by aribtrary forms of degree k. In particular, 
one may study the representation of zero by indefinite forms, and this leads 
to the general problem of Diophantine equations and systems. The same 
questions can be asked about forms, equations, systems, etc., over finite 
fields, rather than over the rationals. Next, if zero itself cannot be repre­
sented, how small can the forms be made? This question leads to Diophantine 
inequalities and Diophantine approximation. In many of these questions the 
main tool used is the Hardy-Littlewood "circle method", in the Vinogradov 
version. This, in turn, requires the study of certain exponential sums. These 
sums are, of course, interesting in their own right and lead to important 
results, e.g., on the distribution of quadratic residues and nonresidues, and, 
more generally, of A:th power residues and nonresidues, the size of the 
smallest primitive root, etc. These last questions are closely related to the 
distribution of primes, and lead, on the one hand, to the study of Dirichlet 
(and also other) series; on the other hand to the consideration of the large 
sieve. While these topics have all been studied by Davenport, who made 
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significant contributions to many of them, the preceding titles do not repre­
sent by any means an exhaustive list of his work. 

Let us recall now (selectively) some of the results obtained by Davenport. 

1. Waring's problem. Let Ns
(k\n) be the number of integers less than n, that 

are sums of s positive kth powers and let G(k) be the least s, so that every 
sufficiently large integer should be a sum of s (or fewer) kth powers. Here are 
some of Davenport's results. 

with 

a,* = 1 ï
i ~

f c ~ ï
 i 2 0 - 2/r1)( l - ft-')'"2. 

The particular case 7V3
(3) > n

47/54~e is somewhat stronger. Every sufficiently 
large integer m is the sum of 14 fourth powers, unless m = 15 or 16 (mod 16); 
it is the sum of 15 fourth powers, unless m = \6h • k, where k has only a finite 
number of values; finally, every sufficiently large integer is the sum of 16 
fourth powers. There are infinitely many integers (e.g., m = \6h • 31), that are 
not sums of fewer than 16 fourth powers, hence G(4) = 16. Similarly, (7(5) < 
23 and G(6) < 36. The best previous results were G(5) < 28 (Hua, see [6]) 
and G(6) < 42 (Estermann see [5]). It seems that most of these results have 
not been superseded until now. 

2. Cubics. Let C, Q, L, N stand for forms (i.e., for homogeneous polynomi­
als) with integral coefficients, of degrees 3, 2, 1,0 respectively. Also, define A, 
as the smallest integer, that permits a decomposition of the form 
C(x„ . . . , xn) = y2jsslLJ(xv . . . , xn)Qj(xl9 . . . , xn). Here are some of 
Davenport's results: C(xv . . . , xn) = 0 has nontrivial solutions if n > 16. If 
0(JC„ ...,xn)=C+Q + L + N and if <j> satisfies the (obviously necessary) 
"congruence condition" of solvability of <f> = 0 (mod/?"), for all primes/? and 
integers v > 1, with xl9..., xn not all divisible by p, then n > 20, h > 4 are 
sufficient conditions to insure the solvability of 

<t>(xl9..., xn) — 0 in integers xl9..., xn. 

3. Forms in many variables. If Q = 2 j , XXJXJ is an indefinite quadratic form 
with real coefficients, with at least one ratio \j/\k irrational, then, for every 
e > 0 there exist arbitrarily large integers P, such that \Q(xl9..., j^)| < e has 
more than yP3 solutions in integers xp 1 < \xj\ < P with y > 0. 

If Q(xl9..., xn) is an indefinite quadratic form with real coefficients in at 
least 21 variables, for every e > 0, the inequality \Q(xl9..., xn)\ <e is 
solvable in integers xl9... 9 xn9 not all zero. If the coefficients of Q are not all 
in rational ratios, then the set of values of Q (still for integral xfs) is 
everywhere dense. 

Let G*(k) be the least value of s such that F(xl9..., xn) = 2"!=1 Cjxf = 0 
def 

has infinitely many integral solutions for all sets of integers cj9 for which 
F = 0 (mod/?") is solvable (i.e., the equation is solvable in every/?-adic field). 
Also, let T*(k) be the least s that insures said congruence condition. Then, if 
s = max{ G*(k\ Y*(k)} (and also, if k is even, if not all cfs are of the same 
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sign, so that the equation should be solvable over the reals) the Diophantine 
equation F = 0 has infinitely many solutions. Davenport shows that T*(k) < 
k2 + 1 and, if S > 0, G*(k) < (4 + S)k log k. Furthermore, if k > 18, G*(k) 
< T*(k). It may also be shown that, if k < 6, then s = k2 + 1 (or lower 
values) suffice for the solvability of F = 0. One concludes that Artin's 
Conjecture (namely that s variables suffice if s > k2 + 1) holds, except, 
perhaps, f or 7 < k < 17. Many other related nice results concerning, e.g., the 
simultaneous solvability of two cubics deserve to, but cannot be restated here. 

4. Exponential and character sums. In the study of the distribution of 
quadratic residues and nonresidues one is led to the estimation of the sum 
Sr(av . . . , ar) = 

pj?((n + al)...(n + ar)\ 

where (*) stands for the Legendre symbol. By elementary methods, Daven­
port shows that Sr = 0(p3/4), if r — 3 or 4. He also obtains similar results for 
higher power residues. The sum Sr occurs however also in a different context. 
If Nr stands for the number of solutions (x, y), distinct modulo p, of the 
congruence y2 = (x + ax) . . . (x + ar) (mod p), then Nr = p + 
Sr(a\, • • •, ar)- Hence, Weil's proof of the Riemann hypothesis for curves, 
from which it follows that Sr = 0(pl/2% supersedes these results of Daven­
port and also his results on the sums S f = ^\=Q€(f(<x)/p)(<f(x) = polynomial 
of degree n with rational coefficients, or (with some restrictions) a rational 
function; e(v) = e2mv) and on the generalized Kloosterman sums 5 ' = 
'2p

xZ\e(axn + bx~n). Davenport's results were (i) Sf = 0(p{~m~\ where, for 
n > 4, m is the largest integer not in excess of n and of the form 2g(g > 2), or 
28 • 3(g > 1); and (ii) S" = 0(p2/3) (identical to Salié's result for the classical 
Kloosterman sum [12]). 

The study of exponential and character sums led Davenport to number 
theoretic results, such as the following: 

A (technically elementary) proof of the fact that, if d is the least quadratic 
non-residue, then d = 0{pl/2logp)l/ } (the improvement over the previ­
ously known bound is small; the relevance of the paper resides in the 
"elementary" nature of its argument). More generally, if dk is the least 
positive &th power nonresidue modulo /?, k > 2, p = 1 (mod k), p large, then 
dk — 0(pak+e), where u = l/2a^ is the (unique) root of p(«) = k~\p(u) = 1 
— log u for 1 < u < 2, wp'(w) = — p(w — 1) for u > 2). Also, each class of 
cubic nonresidues modulo p contains a positive integer less than py*e

9 

provided that/? > p0(e) and where y = .383 . . . is defined by 

- loë(2y) + f^" f^-tdt= 1/3. 

Among Davenport's results on character sums over finite fields one finds, 
e.g., the following: Given a polynomial P(x) of degree k, there exists p0(k) 
with the following property: If p > p0(k) and P(x) is irreducible modulo p, 
then there exists an integer a, such that x — a is a primitive root modulo 
P(x). Equivalently, if 0 is any generating element of the Galois field GF(q) of 
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q — pk elements, then there exists an integer a, such that 0 — a is a primitive 
root of GF(q). 

Finally, a perhaps isolated result, but which struck this reviewer as particu­
larly nice, is the following: Let nl9... 9nN be any N distinct integers and let 
E = S ^ ï ^ J t ) . Then P. Cohen [4] proved that fl

0\E(x)\dx > CQoglogN) 
(C > 0, some undetermined constant). Within hours after hearing a presenta­
tion of this result, Davenport proved that 

This result has been superseded only very recently by S. K. Pichorides (see 
[8]; for related problems see also [9] and [11]) who increased the exponent to 
1/2 (the best possible exponent is 1). 

5. The large sieve. Davenport did not write many papers on the large sieve 
and, as far as this reviewer knows, all were joint papers either with Bombieri, 
or with Halberstam (possible exception: a posthumously published paper, 
edited by Halberstam). But these papers are of greatest importance, especially 
for the clarification of the analytic basis of the method. While one just has to 
read the original papers, in order to fully appreciate their relevance, here are 
some of the (by now classical) results. 

Let Xj be real numbers, an real, or complex ones, denote by ||JC|| the 
distance of x to the nearest integer, assume that, for r ¥=s, \\xr — xs\\ > 8 > 
0, and set S(x) - 2 £ t f + I ane(nx). Then ^=l\S(xr)\

2 < K^+»+l\an\
2. 

Here K = K(N9 8) < 2max(7V, 8 _1) and also K < (N1'2 + 8~l/2)2. If N8 is 
"large", K < (1 + e)N; more precisely, if N8 > 1, then K < N{\ + 
5(N8)~l), but if c < 1, then there exist sums for which K = N(l + c(N8)~l) 
is not sufficient. If N8 is "small", then K < (1 -I- e)8_1; more precisely, for 
N8 < 1/4, K <8~l(l + 270(7VS)3), but for some sums K = 8~l(l + 
(N8)3/12) does not suffice. 

These results were used to prove, among others, that 
q 

E S {*H*; q, a) - x/<l>(q)}2 < Oc2(log xf~A for X < x(log x)'A9 
q<X a=\ 

where 

\P(x; q,a)= 2 A(«); 
n=a(mod q) 

and, for N sufficiently large and k < N/39 

TT(M + N\k9l)- TT(M; k9l) < 12N/<t>(k)log y ] 

.{ l + 0(loglogf/logf)}, 
where 

TT(X; k91) = 2 1-
p<x 

/>=/(mod k) 
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6. Series. Davenport's results on series are numerous and perhaps less 
focused upon a central theme than some of his other work. For that reason 
only a somewhat random sampling of the results is possible. 

For fixed s and a(= Re s) in 0 < a < 1, with x a nonprincipal character 
modulo k, L(s, x) = 0(k(l~a)/2). This improves the previously known bound 
by a logarithmic factor. This result has been improved since by Burgess (see 
[1], P], [3]). 

It had been known (see Ingham [7]) that 

lim ~ fT\Uo + it)\2k dt = f dl(n)n-2° 

(dk(n) defined by £*(*) = 2£L, dk(n)n-s) holds f or 0 < k < 2, if a > 1/2. 
Davenport proves that this holds for all integers k > 1, provided that a > 1 
- (v + I)/(2k + 2V - 2) (v defined by (v - 1)2"-2 + 1 < k < v • 2v~l + 1). 

Davenport proved that certain Dirichlet series (among which are the 
Epstein and Hurwitz zeta functions, for certain values of their parameters) 
have an infinity of zeros with o > 1; this contrasts sharply with the case of 
the Riemann, or Dedekind zeta functions. 

Let {t} = t - [t] - 1/2 for nonintegral *,{/} = 0 for t an integer. A large 
number of series involving {nt} were studied by Davenport. He showed, e.g., 
that 2^»! ix(n)n~l{n9) converges uniformly to — 7r~1sin27rö and that 
2^„i n(n)n~2{n20} converges for all real 9 and is equal to 
~ 7T~ 12f°(y?(ri)/ri) sin 2imQ. As a last example, assume that, for n -» oo, one 
has ^ - > 0 , S^ooK - an+l\ and S ^ a„ convergent, and that the partial 
sums of S^TV ane(nt) a r e uniformly bounded for real t. Assume also that a is 
real and irrational and y is real and set g(t) = 2 f «, ane(ni). Then, for 
|*| < 1, the two series 

~ ane(ny) ™ 
Z, 1 7—T and 2, g(m + y)** 

are both convergent and converge to the same value, which, for x = re(ka\ 
r-> 1, is asymptotically equal to a_ke(—ky)(l — r)"1. 

7. Miscellanea. Much of the most beautiful and some of the most important 
work of Davenport has not yet been mentioned. But a review has to stop 
somewhere. To the slighted contributions belong those on the geometry of 
numbers, on the products of homogeneous linear forms with the beautiful 
"isolation theorems", on the Minkowski problem, on the study of binary and 
ternary cubic forms and on nonhomogeneous quadratics. Also the determina­
tion of all real quadratic fields with an Euclidean algorithm, much of 
Davenport's work on Diophantine inequalities and on Diophantine ap­
proximation, his work on polynomials, a beautiful paper on the product of 
power series, work on number theoretic problems (such as Euler's ^-function, 
small differences of primes, numeri abundantes, etc.) all this and much more 
has not even been mentioned. 

Having gone through this long and incomplete list, one may well be 
tempted to reread one of the publications themselves, say a paper that one 
already knows well; it almost does not matter which. One will appreciate the 
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clarity of the exposition and the precision, which leaves no room for uncer­
tainty. The style has sometimes been characterized as austere or severe. It 
may, occasionally be also somewhat elliptic. The ideas are presented in a 
most economical fashion and the author does expect the reader to be able to 
fill in the more obvious details. This permits him to present the leading ideas 
in an uncluttered way. 

Finally, while the ultimate verdict on the work, like everything human, 
belongs to history, those of us, who were fortunate enough to have known 
Harold Davenport, cannot help remembering also the man. While much of 
what he was-cultured, articulate, logical-is indeed reflected in his work, not 
everything is. He was generous with his time and enjoyed (or at least seemed 
to enjoy) showing Cambridge to his guests. While, to judge by his students, 
his standards must have been very high, he was quite patient with the more 
common brand of mankind and made genuine efforts to make himself 
understood by the less sophisticated reader (see, e.g., his book "The Higher 
Arithmetic"). In fact, this reviewer can recall only one outburst of impatience 
(or indignation?) of Davenport: it was with mathematicians who claim 
results, but never publish their proofs, either because they don't have any, or 
in order to keep their methods as private property of a small group of close 
collaborators. No names were named. 

The reviewer wants to take this opportunity to thank Professor D. J. Lewis 
for a very helpful letter concerning Davenport which confirmed many and 
completed some of the reviewer's own recollections. 
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Automata-theoretic aspects of formal power series, by Arto Salomaa and Matti 
Soittola, Texts and Monographs in Computer Science, Springer-Verlag, 
New York, Heidelberg, Berlin, 1978, x + 178 pp., $16.50. 

In the early sixties, stimulated by the discoveries of M. P. Schûtzenberger, a 
number of researchers at the University of Paris contributed to a new 


