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A second chapter of equal size is taken up with discoveries in the plane,
and a 124-page final chapter carries the subject into 3-space and higher
dimensions. Up to the end of the solution of Hilbert’s problem, the discussion
is generally easy-going and elementary. Beyond this point, the arguments
soon become longer, more complicated and sophisticated (from p. 130).
While the author continues to explain everything in full detail, this part of the
book demands much more drive and concentration and is clearly an object
for serious study. However, the motivated reader will not go unrewarded. He
will discover another instance of the unity of mathematics in the way several
branches of abstract mathematics converge to solve a problem of the most
concrete kind. For example, the 20-page proof of the Dehn-Sydler theorem is
highly algebraic and draws not only from the now standard vector methods
of modern geometry (Minkowski sums) but uses techniques and results from
functional equations, group and ring theory, set theory, and linear algebra. As
often observed in many quarters, it is impressive what mathematics can do
when it pulls itself together.

Later topics include an extension of a few of the results to spaces of higher
dimension, notably 4 dimensions, and a brief discussion of connections with
the modern subject known as the algebra of polyhedra. Although the volume
constitutes a self-contained account of a topic which is now essentially
complete, it concludes with a short list of unresolved questions.

There are a few misprints, but few mistakes that the reader will not see
through in a matter of moments.

The subject is related to a surprising discovery made recently by Robert
Connelly (Cornell University), who is working in this general area at the
present time. In 1813, Cauchy proved that a convex polyhedron with rigid
faces is itself a rigid solid, that is, even if it were hinged along every edge, its
shape could not be altered without forcibly breaking the surface. Connelly
produced a nonconvex rigid-faced polyhedron which, if considered to be
hinged at its edges, can be moved continuously through a small range of
shapes without distortion of any face. For a description of this polyhedron
and instructions for constructing a model, see Robert Connelly, 4 flexible
sphere, The Mathematical Intelligencer (Springer-Verlag), volume 1, number
3, 1978.

The interested reader might also be on the lookout for a forthcoming book
by Irving Kaplansky on all 23 of Hilbert’s Paris problems.

Ross A. HONSBERGER
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 1, Number 4, July 1979
© 1979 American Mathematical Society
0002-9904/79/0000-0307/$02.00
Mechanizing hypothesis formation. Mathematical foundations for a general
theory, by P. Hajek and T. Havranek, Universitext, Springer-Verlag,

Berlin-Heidelberg-New York, 1978, xv + 396 pp., $24.00.

I know of no book on statistics that has “Hypothesis formulation” in its
index; nor is it in the indexes of Ralston and Meek [17], Mathematical
Society of Japan [13], Polanyi [15], Winston [20], nor Boden [1]. But some-
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thing had been said about the matter before Hajek began publishing his work
in 1966.

Perhaps the earliest opinion about the formulation of hypotheses is that it
is an exclusively human creative activity requiring imagination and inspira-
tion. When people became interested in artificial intelligence they began to
question this opinion, and some small successes were achieved. I shall attempt
to give a brief account of some of these advances.

Let us begin by considering computer chess. When you analyze a chess
position it is usually necessary to construct an analysis tree of variations,
whether you are a human or a machine. It is seldom practicable to allow the
analysis tree to grow to the end of the game; instead it is of course necessary
to truncate the tree by some procedure, such as when the position reaches
quiescence (suitably defined). At these quiescent positions some evaluation of
the position must be made, and then, by working backwards we can arrive at
sensible moves. This much has, I think, always been clear to introspective
chess players, and part of the problem in playing good chess is to use good
“evaluation functions”. For example, if, for the sake of simplicity, we allow
only for the values of the pieces (which is not in fact sufficient for good
chess), we might score cp, ¢z, ¢y, g, and o for the pawns, bishops, knights,
rooks, and queens. Then White’s evaluation function would be cp(xp — yp)
+ ¢+« + +cy(xy — yp), where xp and y, are the numbers of white and black
pawns, etc. We could now imagine a computer playing many games of chess
and gradually improving on the coefficients. This would be a learning
program in which a near-optimal linear evaluation function was attained by
estimating its coefficients. This would normally be described as an estimation
procedure. But every problem of estimation can also be regarded as one of
looking for a hypothesis, namely the hypothesis that the best estimate is at or
near some specified point. For the game of chess this method was first
proposed in print by Shannon [19] and was first used effectively in a
computer program for checkers by Samuel [18]. In statistics the correspond-
ing method is known as “evolutionary operation” (see Box and Draper [2]).

But the mere optimization of coefficients, even if polynomials of higher
than the first degree are used, can hardly be regarded as creative. Automatic
creativity can reasonably be regarded as occurring if the program finds a
good form for the evaluation function. Suppose we, the programmers, had
included quadratic terms and had repeated the experiment. This time the
experiment would take longer because there are many more quadratic than
linear terms. But we might very well have discovered the principle known to
chess players, for at least a century, as “the advantage of two bishops” (Good
[5]). This means that although the values of bishops and knights are about
equal, a bishop pair is usually more valuable than two knights or than a
bishop and a knight. In statistical terminology there is an “interaction effect”
between the two bishops. To a human, this might suggest the hypothesis that
the control of two squares of equal value (for squares too have various values)
is better than the double control of one such square; but a machine could not
propose this hypothesis by the method just described.

Machine creativity becomes possible by the following polynomial search
procedure. Suppose that when an “interaction” or significant quadratic terms
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has been discovered, this term is redefined as a “primitive concept”, that is, it
is denoted by a single symbol x (such as xgp in the above example). To quote
Good [9, p. 206] (or see Good [7, p. 94]), “In this way one might then discover
a concept involving three or more of the original primitive terms without ever
using evaluation functions of degree higher than the second.” This saving of
time would be important because the number of cubic terms is enormous
when the number of primitive terms is appreciable. If a machine were so fast
that it could cope with all cubic terms from the start it might achieve
apparent creativity by brute force, but if it used the search procedure just
described it could reasonably be called “intelligently creative”. Incidentally
the brain compensates for the slowness of its individual neurons by having
billions of neurons operating simultaneously, a feat that no computer can yet
emulate. The ultra-parallel machine has yet to be built, which partly explains
why creativity is still mainly a human accomplishment.

The question now arises whether this discussion in terms of polynomials
can be extended to the domain of propositions. Everything depends on
whether the propositions of interest can usually be built up hierarchically by
simple operations. For, if so, an analogue could be found for the intelligently
creative process. For the so-called “propositional calculus”, much can pre-
sumably be done by using Boolean algebra, but when we consider ordinary
science we have to use at least the predicate calculus and then the difficulties
become formidable. This is clear from the attempts to express science in
terms of formal logic made by Woodger [21] and by Carnap [3].

It is interesting to note how evolution proceeds by mixing and mutation of
long instruction sequences known of course as chromosomes, a point dis-
cussed at some length by Holland [10] in the context of adaptive behavior in
general. This suggests that one approach to the automatic generation of
hypotheses is to use much the same method, but this is easier said than done.
Some primitive experiments in somewhat this direction were described by
Fogel et al, [4]. From the point of view of the survival of humanity it is worth
noting that intelligent machines constructed by too closely imitating natural
selection would be liable to be aggressive.

The activity of perception, including the understanding of language, de-
pends on hypothesis formulation, although we do not usually think of it that
way. We start with “elements” such as phonemes and build these up into
words, phrases, and other structures. But often we recognize or assume the
elements because we have already conjectured the larger structures. (This is
why we often don’t notice misprints.) Thus hypothesis formulation can work
both up and down a hierarchical classification of linguistic or pictorial units,
a point emphasized by Good [8].

In statistics I know of only one method for the automatic generation of
hypotheses, other than the polynomial search procedure, namely the method
of maximum entropy. As used by Jaynes [11], this method was used for
generating prior distributions, but it was applied to the generation of hypothe-
ses for multidimensional contingency tables and for Markov chains by Good
[6]. In this application it turned out that the hypotheses generated were the
same as one previously suggested by statisticians for intuitive reasons, and
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this suggests that the method is of value for the formal embodiment of some
parts of intuition.

The book by Hajek and Havranek has little to say about the historical
background, apart from pages 374 to 376 where the earliest references are to
Chytil (1964, unpublished), and to Leinfellner [12]. Also one industrial
application is given but “the most important factors occurring in output
sentences are of technical character and give little information to a layman”
(p. 380). Clearly there is not yet an application of scientific, as distinct from
mathematical or logical, interest, and at present the whole subject is still in its
infancy although the mathematics used by Hajek and Havranek is extremely
complicated. The results obtained by Michalski and Negri [14] are much
easier to understand (though they do not describe their methods in that
paper); for example, in a chess end game with K and P versus K, one
conclusion reached by their program was “Black can draw the game when the
pawn is a rook [’s] pawn and the black king is ahead of the pawn on the same
column or on the adjacent one.” This kind of knowledge about the game is of
course a powerful adjunct to the analysis of trees mentioned before.

In conclusion I again ask: Can interesting hypotheses be built up hierarchi-
cally by simple automatic steps? One would expect this to be possible in a
manner analogous to the parsing or diagramming of sentences and to the
development of chromosomes. If so, the intelligent creative process can be
automated. This in my opinion is the central problem of automatic hypothesis
formulation and I was surprised that, in a book of 400 pages, I was unable to
find this fact stated in plain English. Perhaps it is implicit somewhere in the
masses of intricate formalism. The aim of producing interesting hypotheses is,
however, clearly stated.
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The theory of the group ring has a peculiar history. In some sense, it goes
back to the 1890’s, but it has emerged as a separate focus of study only in
relatively recent times. We start with the early development of the theory of
representations of finite groups over the complex field. Most people familiar
with this think immediately of Frobenius and Burnside, who used approaches
that seem unsuitable and even bizarre in the light of modern treatments.
Admittedly, Frobenius’ group determinant and Burnside’s Lie-theoretic ap-
proach both yielded the basic properties of complex characters. However,
they said much less about the representations themselves. For this reason, they
have little application to the important problems of finding properties of
representations over other rings—representations over fields of finite character-
istic and over rings of algebraic integers have very important applications in
group theory, algebraic number theory and topology. Hence, a more flexible
approach was needed. In fact, the groundwork was being done by the
little-known Estonian innovator Theodor Molien. Molien developed a theory
of algebras over the complex field that included many of the features of the
more general theory later developed by Wedderburn. He applied his theory to
the case of representations of groups as follows: the Cayley representation of
a finite group G as a permutation group on itself can be linearized to obtain a
faithful representation of G in GL(n, C), where r is the order of G. The linear
span of the image of this representation is a subalgebra of the algebra of
n X n matrices. When it is analyzed by Molien’s methods, the basic proper-
ties of the irreducible characters are deduced from properties of the irreduc-
ible representations.

This useful point of view lay dormant until the late 1920’s, when Emmy
Noether considered group representations as an illustration of her results on



