HOMOLOGY STABILITY OF GL_n OF A DEDEKIND DOMAIN¹

BY RUTH M. CHARNEY

The purpose of this paper is to prove that for a Dedekind domain Λ , the homomorphisms

$$H_i(GL_n(\Lambda); \mathbb{Z}) \longrightarrow H_i(GL_{n+1}(\Lambda); \mathbb{Z})$$

are isomorphisms for n sufficiently large. This problem has been of particular interest to K-theorists since $K_i(\Lambda) = \Pi_i(BGL^+(\Lambda))$ where $BGL^+(\Lambda)$ is a topological space with the property that $H_*(BGL^+(\Lambda)) \cong H_*(GL(\Lambda)) \cong \lim_{\longrightarrow} H_*(GL_n(\Lambda))$. In particular, if Λ is a ring of algebraic integers in a number field, then the groups $GL_n(\Lambda)$ are algebraic groups, and the stability theorem allows us to apply the well-developed theory of algebraic groups toward computations of K-groups. For example, Borel-Serre [2] show that for these rings, $GL_n(\Lambda)$ has finitely generated homology. Stability then implies that $H_i(Gl(\Lambda))$ and hence $K_i(\Lambda)$ is finitely generated, thus giving a new proof of a theorem of Quillen [5]. In addition, for $\Lambda = \mathbb{Z}$, a good deal is known about p-torsion in $GL_n(\mathbb{Z})$. It is conjectured that this will give p-torsion information about $H_*(GL_n(\mathbb{Z}))$ and hence, via the results of this paper, about $K_i(\mathbb{Z})$. (At the moment, the connection between torsion in a group and torsion in the homology of the group is not entirely understood, but considerable progress in this direction has been made by K. S. Brown [4] and C. Soulé [8].)

The exact statements of the main theorems are as follows:

THEOREM 1. For V, W finitely generated projective modules over a Dedekind domain,

- (i) $H_k(\text{Aut}(W \oplus V), \text{Aut}(W); \mathbf{Z}) = 0$ for $\text{rk } W \ge 4k + 1$,
- (ii) $H_k(\operatorname{Aut}(W \oplus V), \operatorname{Aut}(W); \mathbf{Z}[\frac{1}{2}]) = 0$ for rk $W \ge 3k + 1$.

Theorem 2. For Λ a PID, $G_n = GL_n(\Lambda)$ or $SL_n(\Lambda)$

- (i) $H_k(G_{n+1}(\Lambda), G_n(\Lambda); \mathbf{Z}) = 0$ for $n \ge 3k$,
- (ii) $H_k(G_{n+1}(\Lambda), G_n(\Lambda); \mathbb{Z}[\frac{1}{2}]) = 0$ for $n \ge 2k$.

Received by the editors October 2, 1978.

AMS (MOS) subject classifications (1970). Primary 18H10; Secondary 18F25.

¹ This research was supported in part by NSF grant MCS 77-04242.

THEOREM 3. For Λ a PID such that $SK_1(\Lambda) = 0$,

- (i) $\Pi_k(BGL_{n+1}^+(\Lambda), BGL_n^+(\Lambda) = 0 \text{ for } n \ge 3k,$ (ii) $\Pi_k(BGL_{n+1}^+(\Lambda), BGL_n^+(\Lambda)) \otimes \mathbb{Z}[\frac{1}{2}] = 0 \text{ for } n \ge \max(2k, 3).$

Similar theorems have been obtained by Quillen and Wagoner for Λ a field or local ring, and by Vogtmann, Friedlander, and Alperin for various other classical groups (see [9], [10], and K. S. Brown's survey article in [3]). The only such result which applies to $\Lambda = \mathbf{Z}$ is Borel's theorem for $H^*(SL_n(\Lambda); \mathbf{Q})$, Λ a ring of algebraic integers [1].

In this paper, we follow the approach used by Quillen in [6] and Vogtmann in [9]. Namely, we construct a simplicial complex with the homotopy type of a wedge of spheres and use the action of GL_n on this complex to prove our results.

Recall that the Tits building V on a vector space V is the geometric realization of the partially ordered set of proper submodules of V. If dim V =n, Solomon and Tits [7] have shown that $V \simeq VS^{n-2}$.

The action of GL_n on Λ^n gives rise to a spectral sequence converging to 0 with

$$E'_{p,q} = H_q \left[\begin{array}{c|c} GL_p & * \\ \hline 0 & GL_{n-p} \end{array} \right] ; H_{p-2} \left(\boxed{\Lambda^p} \right)$$

where the groups

GL_p	*
0	GL_{n-p}

arise as the stabilizer of the vertex Λ^p in $|\Lambda^n|$.

Our problem in this paper is to obtain a spectral sequence whose E' terms involve matrix groups of the form

GL_p	0
0	GL_{n-p}

rather than

GL_p	*
0	GL_{n-p}

This allows us to use the Kunneth formula to reduce to lower dimensional cases and apply induction. With this in mind, we define a "split building" on a module W whose vertices are pairs (P, Q) of proper submodules such that $P \oplus Q = W$. We denote this complex by [W]. Though it is not, in the technical sense, a building, we prove that if W is a rank n projective module over a Dedekind domain, then $[W] \simeq VS^{n-2}$.

The proof of this is geometric. We begin with a contractible subcomplex

$$X_0 = \text{subcomplex of vertices} \leq a \text{ fixed vertex } (H, L),$$

and construct [W] by successively adding the remaining vertices. Adding a new vertex (P, Q) consists of attaching a cone to the link of (P, Q) with the previously constructed subcomplex. We use induction on rank W to show that this link is homotopic to VS^{n-3} so that the resulting subcomplex is homotopic to VS^{n-2} .

We next define a filtration

$$[W]_1 \subset [W]_2 \subset \cdots \subset [W]_{n-1} = [W]$$

and prove in a similar manner that $[W]_j \simeq VS^{j-1}$. The spectral sequence for this filtration gives an exact sequence of Aut(W)-modules

$$0 \leftarrow \mathbf{Z} \leftarrow H_0([W]_1) \leftarrow H_1([W]_2, [W]_1) \leftarrow \cdots$$

$$\leftarrow H_{n-2}([W]_{n-1}, [W]_{n-2}) \leftarrow H_{n-2}([W]) \leftarrow 0.$$

Denoting this sequence by $C_*(W)$ and letting $E_*\mathrm{Aut}(W)$ be a resolution of **Z** by free $\mathrm{Aut}(W)$ -modules, we show that the spectral sequence associated with the double complex $E_*\mathrm{Aut}(W)\otimes C_*(W)$ converges to 0 and has

$$E'_{p,q} = \sum H_p(\operatorname{Aut}(A) \times \operatorname{Aut}(B); H_{p-2}([A]))$$

where the sum ranges over isomorphism classes of vertices (A, B) in [W] such that rank A = p. The proof of Theorem 1 is now completed by comparing this spectral sequence with the corresponding one for $W \oplus V$. Restricting to PID's, the spectral sequence simplifies, and a similar argument gives Theorem 2. Theorem 3 follows as an immediate corollary to Theorem 2 when we observe that the hypothesis $SK_1(\Lambda) = 0$ implies that $BSL_n^+(\Lambda)$ is the universal covering space of $BGL_n^+(\Lambda)$.

REFERENCES

- 1. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272.
- 2. A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-483.
- 3. K. S. Brown, Cohomology of groups, Algebraic K-theory, Lecture Notes in Mathematics 551, Springer-Verlag, 1976.
- 4. ——, High dimensional cohomology of discrete groups, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 1795-1797.
- 5. D. Quillen, Finite generation of the groups K_i of rings of algebraic integers, Algebraic K-theory I, Lecture Notes in Mathematics 341, Springer-Verlag, 1973.

- 6. D. Quillen, M.I.T. lectures, 1974-1975.
- 7. L. Solomon, The Steinberg character of a finite group with BN-pair, Theory of Finite Groups, ed. by Brauer and Sah, Benjamin, 1969, pp. 213-221.
 - 8. C. Soulé, The cohomology of $SL_3(\mathbf{Z})$, Topology 17 (1978), 1–22.
 - 9. K. Vogtmann, Homology stability for $O_{n,n}$, Comm. Algebra (to appear).
- 10. J. B. Wagoner, Stability for homology of the general linear group of a local ring, Topology 15 (1976), 417-423.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720