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topology in the first place. A large number of exercises add considerably to 
the usefulness of the book as a text. 

The book appears to be well designed for research purposes. One could 
read the first two chapters and then proceed to the chapter of particular 
interest. So one could learn the "state of the art" in hyperspace theory with 
respect to the topics previously mentioned. He would also acquire a statement 
of the research problems of current interest in this area. This makes the book 
"a must" for researchers in the field. 
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A skew field, or division ring, is an associative ring with 1 in which every 
nonzero element is invertible. Why do we study such objects? 

A natural answer is that they generalize fields, which are so important in 
commutative ring theory. But this analogy is not as strong as it seems. Skew 
fields generalize fields as characterized by the property that every nonzero 
element is invertible. But commutative fields have a number of other impor­
tant characterizations. They are, for instance, the simple commutative rings. A 
consequence is that every nonzero commutative ring R has homomorphisms 
into fields, and the class of such homomorphisms (up to an obvious equiva­
lence) gives a basic framework for studying R: It is (with a few extra 
trimmings) the "prime spectrum" Spec R of algebraic geometry. 

It is similarly true that every nonzero associative ring has maps into simple 
associative rings, but these form a wider class than the skew fields. Two 
examples are the ring of n X n matrices over a field, and the algebra of 
operators on a polynomial ring k[x] (k a field of characteristic 0) generated 
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by p — multiplication by x and q = d/dx. (This is the Weyl algebra, which 
has the presentation k(p, q\qp — pq = 1>.) 

Commutative fields are also characterizable as commutative rings which 
have faithful simple modules. Associative rings with this property are called 
primitive, and form a larger class than the simple rings. The fact that any 
finitely generated module has simple homomorphic images again gives us a 
large class of maps of any ring R into primitive rings, and in particular yields 
the important technical result that if we write J (R) for the intersection of the 
kernels of such maps (the Jacobsoû radical of R) then any finitely generated 
right i?-module M such that M = MJ(R) must be zero. This is Nakayama's 
Lemma; in the commutative theory it adds to the importance of fields; but in 
the noncommutative theory it lends the same importance to primitive rings. 

Commutative fields are also those commutative rings, not decomposable as 
direct products, whose module theory has the neat property that any element 
of a free module generates a submodule which is a direct summand. In 
general, rings with this property are the direct-product-indecomposable von 
Neumann regular rings, and they form a thoroughly unruly menagerie. 

Finally, commutative fields are easy to construct. Whenever we have 
commutative ring without zero-divisors, we can form its field of fractions. A 
noncommutative ring R without zero-divisors, on the other hand, may not be 
embeddable in any skew field, or may be embeddable in skew fields in many 
essentially different ways; and the construction of such skew fields from R 
when they exist may not be easy at all. 

Again, some examples. For any integers n > m > 1, one may construct by 
generators and relations a ring R with a universal example of an « X m 
matrix X and an m X n matrix Y such that 

XY=In, YX = Im. (1) 

One can show that the resulting ring is nonzero, and in fact has no zero-divi­
sors. Now the existence of matrices satisfying (1) means that as right R-
modules, 

Rm a R". (2) 
If there existed any homomorphism ƒ from R to a skew field D, then the 

(entrywise) images of X and Y under ƒ would be matrices over D satisfying 
(1), hence we would have an isomorphism of right D-vector-spaces Dm a Dn. 
But vector-spaces, whether over commutative fields or skew fields, have 
unique dimension, so no such homomorphism/can exist. 

Rather than giving the details of two essentially different ways a ring can 
be embedded in skew fields, let me give an analogous example for the 
embedding of semigroups in groups. Let n be a positive integer, and consider 
the two affine maps of the real line into itself, 

**(>) - t/n, yn(t) = (/ + \)/n. 

The semigroup S(ri) generated by xn and >>„ is free on this pair of generators. 
This can be seen by noting that if W is any nontrivial composition of x„'s and 
yn

9s, the last factor in this product can be determined by checking whether 
the image of the unit interval, W([0, 1]), lies in [0, l/n] or [l/n, 2/n]; hence 
by induction the full expression for W in terms of xn and yn may be 
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recovered. Hence the semigroups S(n) are isomorphic for all values of n. But 
the groups G(n) which they generate are not: for each n one has the group 
relation x~xyn = (ynx~l)n

9 which is not satisfied by xm, ym for any m ¥" n. 
(From this example one can in fact get an example of a ring with 
nonisomorphic skew-field embeddings, by a trick using formal power series 
over ordered groups.) 

Finally, as an example where an analog of a field of fractions exists, but 
was not at all easy to find, we mention the problem which was outstanding 
for many years, of whether there existed a reasonable noncommutative 
analog of the field of rational functions in n variables. This should clearly be 
some sort of "skew field of fractions" of the free associative algebra in n 
indeterminates. Various ways were found over the years of embedding free 
associative algebras in division algebras D, but it was not until 1966 that S. A. 
Amitsur showed that there existed one such D having a universal property 
that justified thinking of it as the noncommutative "rational function" field. 
A large part of the difficulty of constructing such a skew field of fractions 
arises from the fact that there is no uniform simple form like 

(numerator)(denominator) " l 

to which a rational expression in noncommuting elements can be reduced. An 
expression like 

(x~l + y~l + (xy -yx)~l - l ) " 1 + (JC - y ) ' x (3) 

can be transformed in various ways, but not really put into any simple or 
canonical form. 

From the above discussion it should be clear that skew fields can never 
play the enormously powerful role in noncommutative ring theory that fields 
do in the commutative theory. What, now, is to be said in their favor? 

First, they are still the simplest possible rings to look at from the point of 
view of basic linear algebra. As far as the results that allow us to construct 
and extend bases, linear maps, etc. are concerned, a right (or left) vector 
space over a skew field behaves exactly like a vector space over a field. 

Second, though we saw that a simple module M over a ring R does not 
generally look like a 1-dimensional vector-space over a skew-field factor-ring 
of R, as would be true in the commutative case, nevertheless the study of such 
modules does lead to skew fields. The endomorphism ring End^(M) is a skew 
field £>, and the factor-ring of R by the kernel I of its action on M is a dense 
subring (in an appropriate topology) of the ring of all endomorphisms of M 
as a (possibly infinite-dimensional) Z)-vector-space. In the important case of a 
ring R with polynomial identity-the theory of rings with polynomial identity 
being a sort of border-country between commutative and noncommutative 
ring theory-/?// will in fact be a matrix ring Mn(D). 

Finally, though the problem of embedding rings in "natural" ways into 
skew fields is certainly not as trivial as in the commutative theory, it is not as 
hopeless as it once seemed. To make things more comparable, let us make the 
commutative problem a little harder! Instead of taking a commutative 
integral domain and asking how it can be embedded in a field, let us be given 
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an arbitrary commutative ring R, and ask how to describe all fields generated 
by homomorphic images of R. 

The answer is still clear from standard commutative ring theory. Such 
fields will be precisely the fields of fractions of the factor-rings R/p as p 
ranges over the prime ideals of R. In other words, the structure of a field k 
generated by a homomorphic image of R is determined if we know what set p 
of elements of R go to zero in k. In particular, if we write r for the image in k 
of r EL ƒ?, then every element of k can be written as a quotient a~lb9 such a 
quotient will define an element of k if and only if a £ p, and we can write 
down a rule for when two such expressions represent the same element of k. 

The major breakthrough in the study of the noncommutative situation was 
P. M. Cohn's discovery in 1970 that a skew field D generated by a 
homomorphic image of a ring R, though not generally determined by the set 
of elements of R which go to zero in D (we have noted that D may not be 
unique when this set is {0}) is determined, up to natural isomorphism, by the 
set of square matrices (of all sizes) over R which become singular over D ! The 
key idea, which was borrowed from work on rational noncommuting formal 
power series by M. Schützenberger, M. Nivat et al.9 who in turn borrowed it 
from the theory of differential equations, is that of transforming a single 
complicated equation into a system of linear equations in a larger number of 
variables. For instance one finds that a complicated expression like (3) can be 
described as the first component of the solution u of an equation Au = b, 
where A is a certain square matrix and b a certain column vector over R; and 
(3) will in fact be defined in the skew field D if and only if the image of A in 
D is nonsingular. 

From this point on I will adopt Cohn's convention of dropping the 
adjective "skew", so that "fields" are now not necessarily commutative. An 
R-field will mean a field D given with a homomorphism R -» D. If D is an 
ü-field, then the set of square matrices over R whose images over D are 
singular is called the singular kernel of D. Cohn has found fairly simple 
conditions on a set 5J5 of square matrices over a ring R which are necessary 
and sufficient for $ to be the singular kernel of an ü-field D, If a set % 
satisfies these conditions he calls % a prime matrix ideal of R, and has given a 
construction for the /Wield D having $ as its singular kernel. 

If D and E are two i?-fields, then a specialization (over R) <p: D -> E is 
defined as a homomorphism from a local subring D^ C D into £, having the 
maximal ideal of D^ as its kernel; and such that D^ contains the image of R 
in D and the map respects the jR-field structures. (For a commutative 
example, let R = Z[x, y], let D be its field of fractions Q(x, y), and let F be 
any commutative field, made an i?-ring by sending x and y to any elements £, 
7j E F. If we let Q(JC,^)<P be the set of elements that can be written 
P(x> y)/q(x> y) (P> <1 ^ R) such that #(£, tj) ^ 0 in F, then 
P(x>y)/q(x>y)H>P(£> *?)/#(£> V) defines a specialization <p: Q(x,y)-*F.) 
One now finds that given two iMields D and E, & specialization DH>E exists 
if and only if the singular kernel of D is contained in the singular kernel of E. 
(This condition can also be stated "Every rational relation satisfied in D by 
images of elements of R is also satisfied by the images of these elements in 
E" but I won't give details here on how to make this statement precise.) It 
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follows that if R has a smallest prime matrix ideal, % then the associated 
i?-field U will have the property that for any i?-field D, there exists a 
specialization £/-» D. (This specialization becomes unique when one throws 
on an auxiliary condition to exclude certain sorts of "irrelevant" extensions of 
specializations.) U is then called a universal ü-field. 

For an important class of rings R called semifirs, it is not hard to show that 
the set $ 0 of square matrices A over R which can be factored A = BC, where 
B has fewer columns than A (equivalently, C has fewer rows than A) forms a 
prime matrix ideal of R. But clearly, such matrices A have singular image 
under any homomorphism of R into any field D. Hence in this situation $P0 

does give us a smallest prime matrix ideal of R, and we get a universal 
R-field. Particular examples of semifirs are free associative algebras, and 
coproducts of fields with amalgamation of a common subfield. The universal 
field of the first gives us a concept of free field (isomorphic, by virtue of 
having the same universal property, to Amitsur's 1966 construction). The 
second gives what Cohn calls afield coproduct of the given fields. 

Let us pause to note a peculiarity of this concept of "field coproduct". If U 
is the field coproduct of Dx and D2 over a subfield D0, then we know that for 
any field E and homomorphisms Dx^> E, D2-> E agreeing on D& we get a 
specialization U-+E making the appropriate triangles commute. What we 
surely ought to be able to say is that given specializations Dx^> E, D2-+ E 
agreeing on D0 such a specialization U -» E is induced. But no one has yet 
been able to prove (or disprove) this. 

Let us now turn to the book at hand. The first three chapters consider 
"classical" topics, in particular Ore rings, which are the largest class of 
noncommutative rings for which a field of fractions consisting of elements of 
the simple form a~lb does exist, and noncommutative Galois theory. 

Chapter 4 discusses the construction of /^-fields from prime matrix ideals of 
R. These results were obtained and inserted in [2] shortly before that book 
was completed, and I had hoped that the author might have been able to 
work out a simpler and perhaps more conceptual proof of the basic existence 
theorem in the interim. However, the reader is referred to [2] for the proof of 
this result. (For a subsequent simpler construction see Malcolmson [4].) 

Chapter 5 develops the properties of coproducts that allow one to conclude 
that free algebras and coproducts of fields are semifirs, and hence have 
universal fields. With the help of free fields the author completes here a 
construction begun in Chapter 3, of a field extension L/K with finite right 
degree and infinite left degree. 

In Chapter 6 it is observed that the field coproduct construction shows that 
the class of fields has what model-theorists call the amalgamation property, 
and that this leads to the construction of existentially closed fields. Existential 
closure is the model-theoretic concept which in commutative field theory 
characterizes algebraically closed fields. In the noncommutative theory it 
resembles that concept in some ways, and differs in many others. Solvability 
and nonsolvability for word problems in certain fields are also obtained. 

Chapter 7 presents work of the reviewer on rational relations and rational 
identities in skew fields [1]. Let R be a ring and consider two i?-fields D0 and 
D{, each generated as a field ("rationally generated") by the image of R. 
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Within the direct product ring D0 X Z>„ let Sox denote the smallest subring 
containing the "diagonal" image of R, and closed under taking inverses of all 
invertible elements (elements with both coordinates nonzero) which it 
contains. What will Sox look like? There turn out to be four cases. Sox may be 
a field; this will be so if and only if D0 a Dx as /{-fields in which case Sox is 
the graph of the isomorphism. A second possibility is that Sox will be a local 
ring, which embeds in D0 and has residue field Dx. In this case it is the graph 
of a specialization map D0 -» / ) , ; this happens if and only if the singular 
kernel of D0 is strictly contained in that of Di9 i.e. every rational relation in 
elements of R satisfied in D0 holds in Dx but not vice versa. A third case 
corresponds to the above but with the roles of D0 and Dx reversed. Finally, if 
neither singular kernel contains the other, equivalently if each iî-field satisfies 
a rational relation which fails in the other, then Sox is the full direct product 
D0 X Dx. 

So far this is just another way of approaching concepts we have seen 
before. However, suppose we start with three i?-sfields Z)0, Dx and Z>2- Then 
there turn out to be more types of behavior than one would expect. For 
instance, the subrings Sy C Dt X Dj (0 < i < j < 3) may each be the full 
direct product D( X Dp yet the analogously defined subring S0X2 C D0 X Dx 

X D2 may be a semilocal ring which embeds in D0 and has two residue fields 
Dx and D2. This happens when every rational relation satisfied in D0 is 
satisfied either in Dx or in D2, but when neither Dx nor D2 accounts for all 
such rational relations. 

These concepts arose in the study of the case where D 0 , . . . , Dr were 
"generic matrix fields"-skew fields that are "free" subject to certain 
polynomial identities. This case is studied in detail. The treatment follows 
that of [1] closely. 

The last chapter discusses the solution of equations in fields, with the 
ultimate aim of setting up a noncommutative algebraic geometry. Though 
there are some nice reductions (e.g. from arbitrary equations in an unknown 
x to the problem of finding x making the matrix A + Bx singular, where A 
and B are matrices over the given field), actual results are fairly weak. The 
author's conjecture that for every square matrix A over a field, there exists an 
element a in some extension field such that A — ai is singular, remains open. 

Passing beyond the text proper, it is worth mentioning that the functions of 
bibliography and name-index are combined nicely by listing, after each 
bibliography entry, the pages (if any) of the text where the item is referred to. 
Mentions of an individual that do not refer to a particular paper are listed 
directly after the person's name. Unfortunately, the bibliography does not 
cross-reference second coauthors of papers. 

The book contains one important false theorem (6.3.6) and several 
incomplete or incorrect proofs (notably those of 3.4.3, 3.4.4 and 5.6.1), but 
these and more minor errors and omissions are corrected in a set of Corri­
genda and Addenda which may be obtained by writing the author. 

In general, the book is a useful introduction to large areas of current 
research in skew fields. It does not emphasize open problems but it should 
leave the reader prepared to read current articles at the cutting edge of the 
field, such as [3]. 
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During the thirty years which have elapsed since the publication in 
Mathematics Magazine of a justly famous paper by M. H. Stone [12], the 
Stone-Weierstrass theorem, as the contents of this article have come to be 
collectively known, has exercised a pervasive influence on the development of 
modern analysis. Aside from the effect of Stone's pioneering work with what 
can be termed an algebraic approach to analysis, the theorem itself has direct 
applications in areas ranging from spectral theory to group representations. 
Subsequent generalizations, moreover, have served to extend the power and 
utility of Stone's theorem. One striking example is the well-known extension 
due to Errett Bishop [2]; obtained in response to a question raised by Silov 
[11], Bishop's result has some of its deepest implications in the theory of 
uniform algebras (e.g., see Burckel's monograph [4]). 

Stone's generalization of the Weierstrass approximation theorem is, of 
course, primarily an assertion about the (real or complex) algebra C(X) of all 
scalar valued continuous functions on a compact Hausdorff space X, where 
C(X) comes equipped with the topology of uniform convergence on X. From 
the very outset, however, further generalizations which relax the conditions 
on X, or otherwise broaden the domain of application to include this or that 
topological algebra of scalar or vector valued continuous functions, have been 
of interest. As noted by Stone himself (op. cit.), if X is locally compact, then 
utilization of the one-point compactification of X yields a variation phrased 
in terms of the subalgebra C0(X) consisting of those ƒ G C(X) which vanish 
at infinity, where the topology on C0(X) is still that of uniform convergence. 
On the other hand, even if X is only assumed to be, say, a completely regular 
Hausdorff space, endowing C(X) with the compact-open topology also leads 
directly to an instance (cf. [9]). Then there is R. C. Buck's version for the 
strict topology on the subalgebra Cb(X) of all bounded continuous functions, 
where X is again taken to be locally compact [3], and the list could go on. But 
rather than considering each individual case as the need arises, or the whim 
may strike, it becomes natural to ask whether there isn't some way to unify 
this growing body of results and put it, so to speak, all under one roof. 


