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ERGODIC THEOREMS IN DEMOGRAPHY 

BY JOEL E. COHEN1 

ABSTRACT. The ergodic theorems of demography describe the properties of a 
product of certain nonnegative matrices, in the limit as the number of 
matrix factors in the product becomes large. This paper reviews these 
theorems and, where possible, their empirical usefulness. The strong ergodic 
theorem of demography assumes fixed age-specific birth and death rates. An 
approach to a stable age structure and to an exponentially changing total 
population size, predicted by the Perron-Frobenius theorem, is observed in 
at least some human populations. The weak ergodic theorem of demography 
assumes a deterministic sequence of changing birth and death rates, and 
predicts that two populations with initially different age structures will have 
age structures which differ by less and less. Strong and weak stochastic 
ergodic theorems assume that the birth and death rates are chosen by 
time-homogeneous or time-inhomogeneous Markov chains and describe the 
probability distribution of age structure and measures of the growth of total 
population size. These stochastic models and theorems suggest a scheme for 
incorporating historical human data into a new method of population 
projection. The empirical merit of this scheme in competition with existing 
methods of projection remains to be determined. Most analytical results 
developed for products of random matrices in demography apply to a 
variety of other fields where products of random matrices are a useful 
model. 

1. Introduction. According to his autobiography, Ulam [1976, p. 6] once 
introduced himself as a pure mathematician who had sunk so low that his 
latest paper contained numbers with decimal points. This paper will sink-if 
possible-even lower, to pictures of numbers with decimal points. The reasons 
are that I make no pretense of being a pure mathematician (although some of 
my best friends are) and that I will describe a young, not a mature, field of 
science. This field is still very close to its empirical roots. Consequently, even 
the mathematical parts of this paper will be framed in concrete language. 
Many of the assumptions made here can be weakened, at the cost of more 
technicalities. 

The ergodic theorems of demography describe the properties of a product 
of certain nonnegative matrices, in the limit as the number of matrix factors 
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in the product becomes large. We review the historical motivation and 
applications of these theorems. We present some properties, perhaps surpris
ing, of these products when successive factors are chosen from a set of 
possible matrices by a Markov chain. We assume elementary knowledge of 
linear algebra and stochastic processes, but no previous exposure to demogra
phy. We give some references to extensions and generalizations and indicate 
some unanswered questions which may require more mathematical power. 

An age-structured population is a set, with membership possibly changing 
in time, of individuals identified by age. These individuals may be people, 
other animals or plants, cells, or items of equipment such as railroad ties, light 
bulbs, and aircraft engines. We will restrict our attention to human popula
tions. 

UNITED STATES SUMMARY 

GENERAL POPULATION CHARACTERISTICS 

Population by Age: 1970 and 1960 
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FIGURE 1. United States population in 1970 and 1960; number in millions in five-year age 
groups. Source: U. S. Bureau of the Census, 1970 U. S. Census of Population, vol. 1, pt. 1, sec. 1, 
p. 259. 
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The age structure of a population is of interest for both scientific and 
practical reasons. Censuses show that the proportions of individuals of 
various ages in national populations vary substantially in time and from place 
to place. Figure 1 compares the number of individuals of each age in the 
United States censuses of 1960 and 1970. The leftmost panels of Figure 2 
compare the age structure, grossly distorted by war and depression, of East 
Germany in 1957 (above) with that of the rapidly growing population of 
Thailand in 1955 (below). These observations raise the scientific question of 
accounting in quantitative detail for such variation. 

From a practical point of view, it is desirable to predict the number of 
schools which will be needed (as well as the number of teachers and 
professors in them, of course), the size of the labor force, and the number of 
people over 65 who may be drawing Social Security benefits. In each of these 
examples, the quantity of immediate interest, the number of students, work
ing people, or pensioners, depends both on the number of people in the 
appropriate age class and the proportion of such people who go to school, 
work, or are retired. So the demography of age-structured populations pro
vides only part of the answers to these practical questions. In other cases, 
such as a mosquito population divided into larval, pupal, and adult stages, it 
is safe to assume that every adult female will seek a blood meal. The 
proportion of adults is of direct interest. 

Even if one has no direct interest in the age structure of a population, but 
would like to improve predictions of total population size, one might plausi
bly divide a population into homogeneous age classes and apply age-specific 
birth and death rates to each such class. The overall, or crude, birth and 
death rates will clearly vary with the proportions of different age classes in 
the population, because the chance that an individual will have a child or will 
die in the next year depends on the age of the individual. 

By focusing attention on the causes and effects of age structure, we do not 
intend to ignore the obvious, that birth and death rates depend on many 
factors besides the age of individuals. Many demographers now believe that 
one reason for the very limited predictive ability of demography is precisely 
that it has not paid attention to nondemographic factors which influence 
demographic variables. Still, it is helpful to start with an understanding of age 
structure. 

To investigate age structure mathematically, we simplify. We treat age and 
time as discrete. We define age as the number of completed time units since 
the birth of an individual. We assume, since no one lives forever, a finite 
number k of age categories. We consider a closed population subject to birth 
and death only, without immigration or emigration. We consider one sex 
only. It might appear at first glance that studying populations without sex 
could hardly be fun, and certainly not useful; but that is not so. Our study of 
a single sex does not ignore the existence of two sexes in human populations 
(and of many more than two sexes in, for example, fungal species). We simply 
assume that there are enough individuals of the other sex (or sexes) not to 
alter the birth or death rates, as a function of age, of the sex we are studying. 
In order to avoid repeating the phrase, "birth and death rates," we shall refer 
to such rates as "vital" rates. We assume that age-specific vital rates apply 
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uniformly and equally to all individuals in an age class. Finally, we restrict 
our attention to large populations in which it is sufficient to study expected 
numbers of births and deaths, conditional on given vital rates. (Schweder 
[1971] argues for this simplification.) For such large populations, it is reason
able to let the number of individuals in an age class be a continuous 
nonnegative variable, not restricted to the integers. 

Mathematical models of age-structured populations based on a variety of 
alternatives to these simplifying assumptions have been constructed 
(Hoppensteadt [1975]; Keyfitz [1977]). 

For concreteness, we shall speak in terms of human females. We will use 
years or multiples of years as our unit of time and age. 

2. Censuses, projections, and ergodic theorems. By an age census at time t 
we mean a nonnegative /ovector Y(t), where k > 2 is the number of age 
classes and the Zth element Yt(t) > 0 is the number of females at time / who 
will be i years old at their next birthday. We adopt the square-block norm 
|| Y|| = 17,| + . . . +17^1. By the age structure y{i) of a census Y(t) we mean 
the normalized vectory(t) = Y(t)/\\ Y(t)\\. Clearly \\y(t)\\ = 1. 

To describe the action of vital rates in transforming an age census at one 
time into an age census at the next time, we let x(t) be a sequence of 
operators, / = 1, 2 , . . . , mapping the nonnegative A:-vectors into the non-
negative ^-vectors. The basic model we shall consider is given by 

Y(t + 1) = x(t + 1)7(0, t = 0, 1, 2 , . . . . (1) 

Particular models of age-structured populations specify the form of x(i) and 
the choice of the sequence x{\\ x(2),.... 

Ergodic theorems in demography have the following form: given assump
tions about {x(t)}> describe the long run behavior of population size || Y(t)\\ 
and of age structure y(t) and show that the behavior of these quantities is 
independent of initial conditions, over at least some range of initial condi-
tions/'Ergodic" refers here to behavior which is independent of initial condi
tions, and not, as in statistical mechanics, to the equality of time averages 
with ensemble averages. For the reader who came this far in the by now 
disappointed hope of learning about classical ergodic theory, I recommend the 
lucid introduction, at a high level, by Mackey [1974]. The ergodic theorems 
which we shall describe are also not to be confused with the development, 
due to Demetrius ([1974], [1977] and elsewhere), of analogies in population 
biology to the ergodic theory of statistical mechanics. 

We consider three ergodic theorems or classes of theorems. The strong 
ergodic theorem assumes that x(t) is constant in time t. The weak ergodic 
theorem assumes that {x(t)} is a determinate sequence. Stochastic ergodic 
theorems assume that {x(t, co)} is a sample path of a stochastic process which 
chooses x(t) from a set of possible operators X. As in the deterministic case, 
strong stochastic ergodic theorems assume that the stochastic process de
termining x(t) is stationary. Weak stochastic ergodic theorems assume the 
stochastic process may be nonstationary. 

As a further (enormous!) simplification we shall assume that each x(t) is a 
linear operator, represented by a A: X A: projection matrix of the form 
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Here bt(i) > 0 is the effective fertility per unit time of age class /. The 
qualification "effective" is necessary because we are assuming that the 
number of females in age class 1 at t + 1 born between / and t + 1 to females 
in age class i at t is bt(t + 1)7,(0- Thus we count only the females born in the 
interval from / to t + 1 who survive to t + 1. The newborn females who do 
not survive to t + 1 are not included in the effective fertility rates. The total 
number of individuals in age class 1 at t + 1 is the sum of the contributions 
from each age class at /: 

r,('+ O = i U ( ' + i) *)(')• (3) 
In the projection matrix st(t) > 0 is the survival proportion per unit time, 
S;(t) < 1. Thus the number of females in age class / + 1 at t + 1 is 

Yi+l(t + 1) - sê(t + 1)7,(0, 1 - 1, 2, . . . , * - 1. (4) 

Equations (2), (3), and (4) specify the details of and are consistent with the 
basic model (1) if the action of the operator x(t + 1) is now viewed simply as 
matrix multiplication. Population projections based on specific numerical 
assumptions for the effective fertility rates and survival proportions were 
carried out by an English economist Cannan [1895], and by demographers 
(Bowley [1924]; Whelpton [1936]) long before it was recognized (during 
World War II by Bernadelli, Lewis, and Leslie; see Keyfitz [1968] for 
references) that the process could be conveniently formulated in matrix terms. 

We shall assume that every projection matrix x of the form (2) in the set X 
of projection matrices satisfies the further requirements: sx > 0 , . . . , sk_x > 
0; bk_x > 0, bk > 0; and the ratio of the smallest positive element of x to the 
largest element of x is not less than R > 0. A consequence of these assump
tions is that X is an ergodic set of matrices (Hajnal [1976]). Every element of 
xk is positive and every product of any k matrices from X is positive. (We say 
a matrix is positive if each of its elements is positive; nonnegative, if each 
element is nonnegative.) 

The restrictions we have placed on the elements of each x in X in order to 
guarantee that the product of any k of them is positive are by far not the 
weakest sufficient for that conclusion (see Sykes [1969a]; Pollard [1973]). 
What is important about the restrictions is that they are satisfied by real 
human populations. If you think I believe that 99- and 100-year-old women 
are still giving birth (so that b99 > 0 and bl00 > 0), fear not. For projections, 
it is possible to truncate the age structure after the last age with positive 
effective fertility. When the birth sequence has been projected as far as 
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required, the survivors to all ages can be filled in; females who survive past 
the last age with positive effective fertility have, according to the assumptions 
of this model, no effect on future fertility. (Thus there lies hidden in this 
model the sociological assumption that the availability of grandmothers as 
babysitters or as competitors for housing has no effect on fertility. Innocuous 
mathematics may be strong sociology.) 

3. The strong ergodic theorem. First we will examine the mathematical 
consequences of assuming that an age-structured population is repeatedly 
subject to age-specific vital rates which are constant in time. Then we will 
briefly review the empirical usefulness of such an assumption. 

The strong ergodic theorem is a corollary of the Perron-Frobenius theorem 
(Seneta [1973]), a beautiful theorem which is worth knowing because of its 
wide usefulness in economics, ecology, genetics, and the theory of Markov 
chains, in addition to demography: 

Let x be a k X k nonnegative matrix which is primitive (some power of x is 
positive). Then 

(1) The eigenvalue X of x which is largest in modulus has algebraic 
multiplicity 1. (This means that X is a simple root of the characteristic 
equation |AJT — JC| = 0.) 

(2) X has geometric multiplicity 1. (This means that for any two column 
/^-vectors V and V\ if xV = XV and xV' = XV', then there exists a nonzero 
constant c such that V' = cV. Similarly for any two row A>vectors WT and 
W'T, if WTx = XWT and W,Tx = XWT

9 then there exists a nonzero c' such 
that W" = c'W) 

(3) X is real and positive. 
(4) The right and left eigenvectors V and W corresponding to x are positive 

(elementwise). 
(5) lim,.^ x ' /X' = B = VWT > 0 where W and V are scaled so that 

WTV= 1. 
X is called the spectral radius or dominant eigenvalue or Perron-Frobenius 

root of JC, and is written X = p(x). 
The strong ergodic theorem of demography follows from the observation 

that every matrix x in the set X of projection matrices is primitive: 
For all/ - 1, 2 , . . . , let x(t) = x G X. Let 7(0), Y'(0) ¥> 0, 7(0) ^ 7'(0) 

be two nonnegative nonzero and different initial age censuses (A>vectors), and 
let 7(0 = x'7(0), Y\i) = x'7'(0). Then lim^oo7(0/X / = V(WTY(0)). X is 
called the stable growth rate per unit of (discrete) time, and log X is often 
called the Malthusian parameter or intrinsic rate of natural increase. More
over, lim^oçy{t) = l i m ^ ^ / e ) = v = K/||K||. v is called the stable age 
structure. 

Thus 7(0 and 7'(0 eventually grow at the same rate X per unit time and 
the corresponding age structures eventually approach the same limiting age 
structure v. WTY(0) is called the stable equivalent of || 7(0)||, which is the 
initial total population size of the age census 7(0), because if a population 
with age structure v and total initial population size WTY(0) grew geometri
cally at the rate X per unit time, that population would eventually come 
arbitrarily close in total size and age structure to 7(0-
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Because of the particularly simple form of a projection matrix (2), it is easy 
to calculate explicitly the stable age structure in terms of the elements of x 
and the stable growth rate X (Pollard [1973, p. 43]). 

If X » 1, the population is called stationary. Ultimately such a population 
must cease either to grow or to contract. However, if the initial age structure 
is not the stable age structure v9 then the total population size may very well 
change as it approaches the stationary limit. A simple expression for the 
change in population size between the initial age census and the stationary 
limit has been found for a continuous-time model (Keyfitz [1971b]) and for 
the discrete model (2) (Lange in press). If X exceeds or is less than 1 the 
population will ultimately grow or contract exponentially. 

Figure 2 illustrates how two different initial age structures subjected to the 
same projection matrix converge to the same age structure. 

Time 
FIGURE 3. Distribution over time of births in a sequence of generations. The curve on the 

vertical panel at the rear indicates the total number of births to all generations present at a given 
time. Source: Lotka 1939, p. 80. 

Figure 3 shows on the rear panel the number of births per year in a 
hypothetical population consisting initially only of newborn babies and 
subject to constant vital rates. At first there are no births. Once the females 
reach reproductive age there is a wave of births. There is a second but 
damped wave as the offspring of those births reach reproductive age. The 
damped waves eventually approach exponential growth. In human popula
tions, the period of these waves is very close to 2m/b where X2

 = a + ib is 
the eigenvalue of x next largest in modulus after X (Keyfitz [1972b]). Invari
ably b > 0 for human populations, since children don't have babies. The plot 
in the foreground of Figure 3 gives annual births according to the number of 
generations since the initial birth cohort. 
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A model of such charming simplicity lends itself to analytical investigations 
which have occupied (and some would say, preoccupied) mathematical de
mographers for decades. For example, one can investigate quantitatively and 
qualitatively the behavior of the stable growth rate X under perturbations of 
elements of x due to changes in age-specific vital rates (Demetrius [1969]; 
Goodman [1971]; Keyfitz [1971a]; Boyce [1977]; Cohen [1978a]; Cohen, 
submitted). Kato [1976] gives much more general techniques for studying 
such perturbations. One could investigate the rate of convergence of an age 
structure to the stable age structure and the convergence of the rate of growth 
of total population size to exponential growth (Coale [1972]; Keyfitz [1972b]). 
The rate of convergence depends on the ratio jA Î/A. The convergence of 
Y(t)/X' to 2*7(0) is exponential and complete (Cohen [1979]), in the sense 
that 

t-\ 
lim 2 (xmY(0)/Xm - BY(0)) « (Z - B)Y(0) < oo, 

where Z = (I + B - x/X)~l and 

t-\ 
lim 2 \xmY(0)/Xm - BY(0)\ < oo. 

A closed form for the series on the left seems to be unknown. 
The history of the strong ergodic theorem illustrates how long it may take 

for different parts of mathematics and science to become connected in ways 
that, retrospectively, seem obvious. The Perron-Frobenius theorem was 
proved in stages between 1907 and 1912. Simultaneously, between 1907 and 
1911, Lotka and Sharpe gave the first modern development of the theory of 
stable populations. They used a model with continuous time and age, in 
which the characteristic equation for the stable growth rate is an integral 
equation rather than an algebraic polynomial. (Euler's much earher discovery 
of some of the same equations has only recently been recognized. Reprints of 
the early papers of Euler, Lotka and Sharpe are now readily available; see 
Weiss and Ballonoff [1975], Smith and Keyfitz [1977].) The relevance of the 
Perron-Frobenius theorem to the theory of stable populations in discrete age 
and time did not become apparent until the matrix formulation of population 
projection during World War II. The full reconciliation of the matrix ap
proach, the integral equation approach of Lotka and Sharpe, and some other 
equivalent formulations of stable population theory did not come for another 
score of years after World War II (Keyfitz [1968]). 

Aside from its aesthetic virtues, the strong ergodic theorem has retained the 
interest of demographers for so long because it has considerable practical use. 
Given a projection matrix x based on current birth and death rates, the long 
run rate of growth X and the stable age structure v indicate what would 
happen if the vital rates in x were maintained indefinitely. A speedometer on 
a car serves the same function: if it registers 90 kilometers per hour, that is 
not necessarily a prediction that the car will be 90 kilometers distant after one 
hour, but is an indicator of the present velocity. 
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FIGURE 4. Female age distribution in England and Wales, by five-year intervals, as recorded in 
the census of 1881 (dotted line) and as approximated by a stable population (solid line) 
constructed on the basis of the intercensal (1871-1881) rate of natural increase and the official 
English life table for the same period, both for females. Source: Coale and Demeny 1969, p. 13. 

The earliest papers of Lotka and Sharpe include a numerical comparison of 
the calculated stable age structure with an observed age structure in England 
and Wales. Figure 4 compares the observed proportions of females by age in 
1881 with the predicted proportions in a stable population having the death 
rates and intercensal rate of increase observed between 1871 and 1881 in 
England and Wales. This population has computed its own dominant eigen
vector and acted accordingly. If you are suspicious about how far this 
example may be generalized, it is only fair to admit that these data were 
chosen to illustrate agreement between stable and observed age structures, 
although they are not the only such data. While many current populations 
have age structures that are not very close to their stable limit, there are 
enough populations that are nearly stable, particularly among those that are 
rapidly growing, to make the strong ergodic theorem the basis of very useful 
procedures for estimating demographic parameters from incomplete data 
(Coale and Demeny [1969]). For example, if a country has reasonable 
estimates of an age census, of age-specific death rates, and an overall rate of 
population growth, the strong ergodic theorem can be used to estimate 
age-specific fertility rates. There are many other such examples (Bourgeois-
Pichat[1968]). 
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Births Per 1,000 Females at Specified Ages 
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FIGURE 5. United States births per 1,000 females in specified five-year age groups, 1940-1965. 

Source: Spiegelman 1968, p. 264. 
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But populations do not grow exponentially forever. The strong ergodic 
theorem cannot provide an accurate long term prediction of total population 
size for the many human populations in which the current stable growth rate 
X exceeds 1. Contrary to the assumptions of the strong ergodic theorem, for 
some populations neither age-specific birth rates (Figure 5) nor age-specific 
death rates (Figure 6) are constant over time. What can be said about 
age-structured populations in which vital rates do vary in time? 

4. The weak ergodic theorem. In 1957, Coale conjectured that two different 
initial age censuses subjected to the same sequence of vital rates have age 
structures that gradually become increasingly like each other, though they 
may both continue to change in time. In 1961, his student Lopez proved the 
weak ergodic theorem, using concepts developed by Hajnal for inhomoge-
neous Markov chains: 

If x(l), x(2),... are projection matrices (with repetitions possible) from 
the set X, Y(0) and Y (0) are two different initial nonzero age censuses, 
Y(t) « x(t) • • • JC(1)7(0), Y\t) = x{t) • • • x(\)Y'{% then l i m ^ J M O -

ƒ'(Oil == 0- Thus age structures forget their remote past. 
Without going through the details of a proof, one can see why this is so by 

considering the sequences {Yx(t)} and {^'(0} which approximate the 
sequences of births in the two populations. In any population, current births 
are an average of births in previous years, weighted by the proportions 
surviving and the effective fertility of those who survive. Thus 

YM _ bx(t)Yx(t - 1) + b2(t)sx(t - \)Yx{t - 2) + . . . 
Y[{t) bx{t) Y[(t - 1) + b2(t)sx(t - 1) Y[{t - 2) + . . . ' W 

Since the same coefficients (which approximate the so-called net maternity 
function) are used to compute the average in the numerator and denominator 
of (5), it is not surprising that Yx{i) and Y{(t) eventually become propor
tional; and then the remaining elements of age censuses Y(t) and Y\t) must 
also become proportional. 

The weak ergodic theorem makes a science of age structures possible. If in 
order to explain the current age structure of a population it were necessary to 
know its prior age structures indefinitely far into the past, the task would be 
hopeless. The weak ergodic theorem provides assurance that, regardless of the 
age structure of a population some number of years ago, the vital rates since 
then completely determine the current age structure. To determine how far 
into the past it is necessary to know vital rates in order to explain a current 
age structure is an empirical question. According to numerical experiments 
with 10 X 10 projection matrices for women in 5-year age groups, the most 
recent 15 to 20 matrices (representing 75 to 100 years of vital rates) determine 
the current age structure for all practical purposes (Kim and Sykes [1976]). 
These numerical experiments have uncovered empirical regularities which 
invite theoretical explanation. 

Part of the results of Kim and Sykes [1976] may be explained by the recent 
demonstration (Hajnal [1976], based on earlier results of Birkhoff [1967] and 
Golubitsky et al. [1975]) that the convergence of age structures is exponential, 
regardless of the sequence x(t), in the Hubert projective pseudometric defined 
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by 

d(Y(t),Y'(t)) = In max,(r,(0/r;(0) 
min,.(^.(0/>7(')) 

for strictly positive vectors Y(t), Y'(t). (Clearly if Y(t) and Y'(i) are propor
tional then d(Y(t), Y'(t)) = 0.) The rate of convergence is given by 

d(Y{t)9Y'(t))<d(Y(0)9Y'(0)) 
k \\t/k] 

Here [a] is the greatest integer less than or equal to a, and 5 > 0 is the ratio 
of R, used above to define X> to k. 

An immediate consequence of the weak ergodic theorem, which Coale 
noted in 1970 and many have reproved since then, is that if the sequence of 
projection matrices is periodic with period T, then so is the sequence of age 
structures, with period not exceeding T. Some interesting biological parables 
can be drawn from this simple example (MacArthur [1968]). 

Valuable though the weak ergodic theorem be for interpreting the past and 
the present, it is a weak guide for projections. As Niels Bohr reportedly said 
(Ulam [1976, p. 286]), "It is very hard to predict, especially the future." 
Figure 7 shows the official projections of births for the United Kingdom 
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FIGURE 7. England and Wales actual births 1945-1965 (solid line) and births officially 
projected in 1953,1958, and 1963 (dashed lines); number in thousands. Source: Cox 1970, p. 438. 

prepared in 1953, 1958, and 1963. The startling variation among projections 
and their deviations from reality suggest that the choice of projection 
matrices for prediction remains an art. (Dorn [1950]; Hajnal [1955]; Grauman 
[1967]; Keyfitz [1972a] discuss the problems of population prediction.) 

5. Stochastic ergodic theorems. It is worth studying models of age-struc
tured populations with randomly varying vital rates for three reasons: in 
order to recognize what appears to be random variation in past vital rates 
(e.g. Figures 5 and 6), in order to improve projections of the future, and in 
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order to associate with each projection some probability distribution (or 
confidence interval, in statistical language) to indicate an anticipated range of 
variation. 

The empirical usefulness of the stochastic models we will now describe has 
not yet been demonstrated. At least these models are formulated so that they 
are empirically testable. 

The exclusion of nondemographic factors from these models is not a 
denial that such factors are important. It will undoubtedly be essential to 
incorporate economic, social and technological factors in future models. 

The framework of these stochastic ergodic theorems, except for some 
modifications, is described by Furstenberg and Kesten [I960]. Mark Kac 
brought Kesten's attention to the model in connection with a physical 
problem arising at Bell Telephone Laboratories. 

As before, X = {x(i)}i(El is a (not necessarily countable) ergodic set 
(Hajnal [1976]) of projection matrices. x(t) is chosen from X by a random 
matrix-valued process x(t, <S) = x(t), t = 1, 2 , . . . . Here co is a point in an 
underlying probability space. JC(1, co) = JC(1), x(2, co) = JC(2), . . . is one reali
zation or sample path of the process specifying the vital rates. The age 
censuses at each time t are random vectors specified by Y(t9 co) = 
x(t, co) • • • JC(1, to) 7(0, co). The corresponding age structures are y(t, co) = 
7(>,co)/||7(/,co)||,/ = 0 , 1 , 2 , . . . . 

Furstenberg and Kesten [1960] assume that the process generating JC(/, co) is 
a strictly stationary metrically transitive process. We shall assume that the 
process is Markovian but not necessarily time-homogeneous. By Markovian, 
we mean that, if A is a measurable subset of X, then P[x(t, co) E A\ 
x(t - 1, co), x(t — 2, co), — ] = P[x(/, co) E A\x(t - 1, <c)]. We shall denote 

this transition probability function by Pt-X(x(t - 1), A). We shall speak of 
Y(t)9 suppressing the co, as the age census of a population in a Markovian 
environment. We interpret each matrix x(i) in X as, or as corresponding to, 
one environment. x(t, •) could be the expected value matrix of a multitype 
branching process in a Markovian environment (Smith [1968], Smith and 
Wilkinson [1971], Athreya and Karlin [1971]). Since y(t + 1) -
x(t + l)y(t)/\\x(t + 1M0II depends on x(t + 1) andj<0, and x(t + 1, oi) 

depends only on x(t, co) if x(t9 •) is Markovian, it follows that (x(t + 1, co), 
y(t + 1, (S)) depends only on (x(t9 u>),y(t, co)). Therefore the bivariate process 
z(/, •) = (x(t, -),y(t, •)) is Markovian if x(t, •) is. 

To determine the transition probabilities for z(t), let A, as before, be a 
measurable set of matrices x in X, and let B be a measurable set of age 
structures (^-vectors)>> > 0 satisfying \\y\\ = 1. Then clearly 

P[x(t + 1) E A,y(t + 1) E B\x{t\y{t)} 

= P[x(f + 1) E A n [x: xy{t) E B}\x(t)]. 

We denote this transition probability function of z(t) by G£x(t)9 y(t), A, B) 
and observe that the transition probability function on x(t, •) determines Gt 

in a simple way. 
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Let Ft{A, B) = P[JC(0 G A,y(t) G B]. Then 

Fl+i(A,B) = [ f F,(dx,<fy)G,(x,y,A,B). (6) 
JxŒX Jy>0 

IMI=i 
In words, the probability that x(t + 1) is in A and y(t + 1) is in B is just the 
integral over all possible values of x and y at time t of the probability density 
Ft(dx9 dy) of x and y at time t multiplied by the conditional probability Gt of 
the transition from (x9y) into (A, B). 

If the Markov process on X is suitably ergodic or mixing, so that it forgets 
its initial distribution as t->oo, and if X is an ergodic set, so that long 
products of operators from X become increasingly close to matrices of rank 1, 
then the two kinds of forgetting can be spliced together so that as t -» oo, Ft 

becomes independent of F,. 
If one assumes that the Markovian environments are homogeneous, so that 

G, = G9 then l im^^ Ft = F where 

F(A, B) - ƒ ƒ F(dx, dy)G(x9y9 A9 B). (7) 

This linear integral equation is the fundamental renewal equation for age-
structured populations in homogeneous Markovian environments, analogous 
to the characteristic equation for age-structured populations with fixed vital 
rates. In cases of practical interest, (7) can be approximated by a large system 
of linear algebraic equations. A computer can solve these linear equations to 
give an arbitrarily good approximation to F. A detailed numerical example, 
with a picture of the resulting F9 is given in Cohen [1977b]. 

When the Markov chain on X is homogeneous, ergodic, and stationary 
(started at its equilibrium distribution), then the stochastic process governing 
the vital rates is a special case of the processes studied by Furstenberg and 
Kesten [I960]. They proved that there exists an almost sure limiting growth 
rate of total population size || Y(t9 u>)\\ and that the probability distribution of 
age structure y(t, <o) approaches a limiting probability distribution. They did 
not specify how to calculate the almost sure limiting growth rate and the limit 
probability distribution of y in any concrete cases. We see from (7) that in our 
special case, the limit law or probability distribution of age structure y is 
obtained from the bivariate limit law F as the marginal distribution obtained 
when A is replaced by X. 

We now turn to measures of the growth rate of total population size 
\\Y(t,(*)\\-

Suppose that for each sample path <o, the total population size || 7(/, 6>)|| 
ultimately changes exponentially in time with a growth factor A(co) which may 
depend on w, so that 

lim || Y(J9 «) | | / (A(co))' - *(«), 0 < *(«) < oo. 

Furstenberg and Kesten proved that with probability 1 l im^^ t~l\&\\ Y(t9 co)|| 
exists and is independent of co; moreover this limit, which we shall denote by 
In À, \ > 0, almost surely equals l im^^ f ""̂ i? ln|| Y(t9 <o)||. By stationarity of 
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the process on X, 

ln .V-r in" 7 ^ 1 1 

In the special case where x(t, co) is a Markov chain on X, we have 

In X - f f l n ( i l f ^ ) • P[x(* + 1) = x'\x{i) - x] Jtyfc, * ) . (8) 

P[x(f + 1) = A:'|X(/) = x] has to be interpreted correctly if X is not count
able. Equations (7) and (8) do for age-structured populations in a homoge
neous Markovian environment what the Euler-Lotka equation does for age-
structured populations with constant vital rates. In cases of practical interest, 
from a knowledge of the transition function of the Markov chain with state 
space X, we can compute (with a real computer, not just in principle) F from 
(7) and then In X from (8). When X is finite, In X is bounded by 

- oo < 2 rçln cé < In A < 2 «iln c(l) < oo, (9) 
/ e / iel 

where c, is the smallest of the column sums of x(l), c(l) is the largest of the 
column sums of JC(/), and irt is the equilibrium probability of x® in the regular 
Markov chain on X (Cohen [1978b]). 

An unsolved mathematical problem is to find some nontrivial example in 
which the almost sure long run growth rate X can be studied analytically as a 
function of the members of X and the transition probability function on X. 

Those who enjoy historical coincidences may be amused to consider that 
Furstenberg and Kesten proved their lemmas concerning the contractive 
properties of positive matrices during 1958-1959 at Princeton University, in 
the old Fine Hall, former home of the Mathematics Department. At the same 
time, Alvaro Lopez, working on his doctoral thesis under Ansley Coale, was 
proving essentially the same lemmas across the street in the University's 
Office of Population Research. The connection between the work of Fursten
berg and Kesten [1960] and that of Lopez [1961] seems not to have been 
made until 15 years later (Cohen [1976]). 

As a further coincidence, I recently learned from Mark Kac of the 
independent rediscovery by Morgenstern et al. [1978] of special cases of (7) 
and (8). Their studies of an Ising model in random magnetic fields assume 
that 2 x 2 positive matrices x(t) are chosen from X independently and 
identically distributed. 

The almost sure long run growth rate X is not the only plausible measure of 
the rate of growth of the population in a Markovian environment (Boyce 
[1977]; Cohen [1977b], [1978b], submitted). Suppose that the expected total 
population size at time f, where the expectation is over all sample paths, 
ultimately changes exponentially with t as t gets large. Then l im^^ 
JÜT'£J| Y{U <o)|| « a, 0 < a < oo, implies 

ln/x = lim r ' I n E J Y(t, (o)||, /A > 0. 
t-*OQ 

Since the logarithm is concave, it is immediate that In X < In jn with strict 
inequality in general. In fact when X is finite, the expected total population 
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size does asymptotically change exponentially, and JU, is the spectral radius of 
a certain nonnegative matrix (Cohen [1977b]). 

Suppose again for simplicity that the set X of projection matrices is finite 
and that the homogeneous Markov chain on X is regular (irreducible and 
aperiodic). If successive projection matrices are independently and identically 
distributed, then /x is just the spectral radius of the average of the projection 
matrices occurring at'a given time. Other properties of /x are somewhat less 
expected. 

Suppose one is given the spectral radius \ of each jc(i), that is, the long run 
rate of growth \ of a population which experiences only the vital rates in *(,). 
Suppose one is also given the transition matrix of the Markov chain on X. 
While this information specifies a lower bound on /x, it does not in general 
specify any upper bound: /x can be arbitrarily large. Thus the average sample 
path can grow at a rate /x arbitrarily greater than max, \ , even though each 
matrix x(l) of vital rates by itself permits a known rate of growth \ . 

Now suppose that the elements of the projection matrices x(/) in X are 
determined but that the transition probability matrix of the Markov chain 
governing successive projection matrices x(t) is undetermined. Then there 
exists a transition probability matrix such that the rate of growth /x of the 
mean population size is arbitrarily close to the largest of the \ while the 
spectral radius of the average of the projection matrices is arbitrarily close to 
the smallest of the \ . The average projection matrix to which the population 
is subject is, of course, just the sum of the matrices in X weighted by the 
equilibrium probabilities TT, of the Markov chain on X. Thus sequential 
dependence of environments can give a growth rate of the mean population 
size which is near the largest of the growth rates \ of any single x(i) even 
though the average vital rates would suggest a growth rate near min, \ , the 
lowest of the growth rates of any single environment. 

Leaving out some of the technical details, we may summarize our major 
results in a weak stochastic ergodic theorem and a strong stochastic ergodic 
theorem. 

Weak stochastic ergodic theorem: If the sequence of Leslie matrices 
applied to an age census 7(0) is a sample path of a Markov chain, then the 
joint process consisting of the current Leslie matrix x(t) and the current age 
structure vector y(t) is a Markov chain with transition function Gt which we 
have stated explicitly in terms of the transition function of x(t). If the Leslie 
matrices are chosen from an ergodic set X of Leslie matrices, and if the 
Markov chain on X is 5-uniformly ergodic in the sense of Griffeath [1975], 
then the Markov chain (x(t), y(t)) is "uniformly weakly ergodic" in the sense 
that, for every origin of time, for every e > 0, and for every measurable set A 
of Leslie matrices and every measurable set B of age structures, there exists 
an integer m0 such that for all m > m0, 

sup \P[(x(m),y(m)) G (A, B)\(x(l),y(l)) = (x,y)] 

-P[(x(m),y(m)) G (A, B)\(x(l)9y(l)) = ( x ' , / ) ] | < e ; 

that is, the joint distribution of the current Leslie matrix and current age 
structure (x(t), y(t)) becomes independent of the initial Leslie matrix and 
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initial age structure after a long time, uniformly with respect to initial 
conditions. 

Strong stochastic ergodic theorem: When the Markov chain on X is 
homogeneous (when the probabilities of transition from one Leslie matrix to 
another are constant in time), the joint distribution Ft of the current Leslie 
matrix and the current age structure (x(t), y{t)) approaches a limiting in
variant probability distribution F which is the solution of the renewal equa
tion (7). For any Borel function g of (x(t),y(t)), 

lim 2 g(x(k)9y(k))/t = ƒ g(x,y)F(dx9 dy) 

almost surely if the integral (over x and y) on the right exists. At last we have 
an ergodic theorem in the traditional sense! (The details and proofs of the 
stochastic ergodic theorems up to this point, stated in general operator-theo
retic terms without restriction to a matrix representation for members x of X, 
appear in Cohen [1977a]. The details of the remainder of the strong stochastic 
ergodic theorem below appear in Cohen [1977b].) In the simplest case, when 
X contains a finite number of Leslie matrices and the Markov chain on X is 
homogeneous and regular, the long run rate of growth JU, of the expected 
population size is the dominant eigenvalue of a certain matrix. The long run 
age structure of the expected population may be calculated from the domi
nant eigenvector of this matrix. 

Lange (in press b) reformulates and extends parts of this strong stochastic 
ergodic theorem. 

6. Some applications and extensions. These stochastic models and theorems 
suggest a scheme for incorporating historical human data into a new method 
of population projection. Arrange all the age-specific effective fertility and 
survival coefficients in a projection matrix into a vector. Fit a linear first-
order autoregressive scheme to a historically observed sequence of such 
vectors. Use the estimated parameters and an initial array of vital rates to 
project a distribution of arrays of future vital rates. Given an initial age 
structure, this distribution of future vital rates implies a distribution of 
projected subsequent age structures and population sizes. 

The empirical merit of this scheme, or of other possible parametric specifi
cations of the Markovian model, in competition with existing methods of 
projection, remains to be determined. Similar Markovian and more elaborate 
autoregressive models are now being applied to age-structured human (Lee 
[1974], [1975], Saboia [1977]) and even duck populations (Anderson [1975]). 
These are by no means all the interesting models for age-structured popula
tions which have been proposed (Goodman [1968], Sykes [1969b], Pollard 
[1973], Ludwig [1974]). The question whether some models are empirically 
better than others has been neglected, however, as each author tends to 
promote his own favorite. To evaluate the empirical merit of various popula
tion projection techniques, it would be essential to draw on the recent 
sophistication of some demographers (Henry and Gutierrez [1977]) in using 
historical data. 

On grounds of common sense, it seems likely that populations in stochastic 



ERGODIC THEOREMS IN DEMOGRAPHY 293 

environments do not grow exponentially forever, either on average or almost 
surely. It would seem desirable to investigate stochastic age-structured models 
in which the members of x are nonlinear operators dependent, perhaps, on 
the most recent age census. Recent writers on deterministic density dependent 
age-structured models (e.g. Rorres [1976]) are continuing earlier work on the 
same subject using continuous time and age (Lotka [1939]) or discrete time 
and age (Leslie [1948]). Almost everything remains to be done in the context 
of stochastic population models with density dependence. 

The stochastic models of age-structured populations described here are 
identical or similar in form to discrete multiplicative processes in random 
environments which have applications in the theory of polymer chemistry 
(Morgenstern et al. [1978]), nuclear reactors, automata, learning, and ecology 
(Cohen [1978b]). Insight gained into these models is likely to have widespread 
rewards. 

Here is an opportunity to put to work Kingman's [1977] maxim: 
" . . . mathematicians should direct their attention to questions to which 
someone, somewhere, wants to know the answers." 
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