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SELF ADJOINT OPERATOR EXTENSIONS 

SATISFYING THE WEYL COMMUTATION RELATIONS 

BY PALLE E. T. J0RGENSEN1 

ABSTRACT. Motivated by questions concerning uniqueness of unbounded de­

rivations in commutative C *-algebras, and related problems on singular perturba­

tions, we define two mixed global and infinitesimal versions of the Weyl operator 

commutation relations (one degree of freedom and infinite multiplicity), a weak 

one and a strong one. We announce two structure theorems of a geometric 

nature which characterize the nonselfadjoint symmetric operators entering in the 

Weyl systems. Proofs are only indicated. 

Our starting point is the following variant of the Stone-von Neumann Unique­
ness Theorem [12], [4b]. Let(£/, V)be a pair of unitary one-parameter groups 
(always assumed strongly continuous) of operators on a separable Hubert space 
H, and suppose that the Weyl commutation relation 

(1) U(t)V(s) = V(s)U(t)eits (for all s, t G R) 

holds. Then it is possible to represent the system in the form SU{f)S^1f(x) = 
f(x + t), SV(s)S"1f(x) = eisxf(x), where S is an isometry of a space L2(R, M) 
of the norm-square integrable functions ƒ, with values in a separable Hubert 
space M, onto H; the dimension of M being equal to the (uniform) multiplicity of 
the spectrum of U.2 

Instead of (1) we consider the following infinitesimal Weyl relation with 
symmetric but generally nonselfadjoint generator. Let {U(f)}t^R be a unitary 
one-parameter group on H, and let g be a symmetric operator with dense do­
main V(Q) in H. The corresponding relation 

(2) W)Qf. g) = Wfif. Qi) + WfM 8) for all ƒ, g G V(Q) 

is here called the infinitesimal Weyl relation for the triple (U, Q, H ). It is clearly 
equivalent to (1) if Q is essentially selfadjoint. But in scattering theory of singu­
lar perturbations, and in recent investigations of the author concerning uniqueness 
of unbounded derivations, the relation (2) for nonselfadjoint Q plays an interesting 
role. Simple examples show that the operator Q of a given system (f/, Q, H) may 
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have nonzero defect indices [4a] which can be equal or unequal. If they are equal, 
it may or may not be possible to extend Q to a selfadjoint operator Q so that 
the one-parameter group V(s) = ets® is part of a (global) Weyl system (£/, V), 
Le. such that (1) holds. The triples ((/, Q, H) which can be extended to global 
Weyl systems are called extendable. 

In view of the negative examples alluded to above, it may be surprising that 
a certain canonical and minimal extension always exists. 

THEOREM 1. Let (U, Q, H) be an infinitesimal Weyl system. Then sym­
metric extensions Qx of Q exist such that 

V(QX) is invariant under U(t) for all t E R, and 

QxU(t)f = U(f)Qxf~tU(i)ffor all feV(QJ. 

There is a unique smallest symmetric extension Qm satisfying (3), le. Qm Q Qx 

for all symmetric extensions Qx satisfying (3). The operator closure Qm satisfies 
(3) as well and is the unique smallest symmetric and closed extension of Q satis­
fying (3). 

Here is an easy 

COROLLARY 2. If the syjtem (U, Q, H) is extendable to a global Weyl 
system (Uf V) with V(s) = é*® then Qm g Q. 

DEFINITION. We say that the system (U, Q, H) has U-indices (p, q) if the 
minimal operator Qm has defect indices (p, q). It can readily be shown that the 
{/-indices are equal whenever Q has equal defect indices, but in general the indices 
of Q may be infinite while those of Qm are finite. Theorem 4 below is a con­
verse to Corollary 2. 

THEOREM 3. Let (U, Q, H)be an infinitesimal Weyl system with at least 
one finite U-index. Then there is a Hubert space K containing H, and a global 
Weyl system (U, I/) on H such that U reduces to U on H, H is semi-invariant 
[9] for I/, and Q is contained in the infinitesimal generator for the contraction 
semigroup s —* P\\ \l(s)\^. 

A structure theory for the associated contraction semigroups, due to P. 
Muhly, will appear in a joint article with the author [2b]. 

The next result concerns the relation (3) for extendable systems. Hence 
it is stated for operators in L2 -spaces, and U(t) is translation. Vanishing con­
ditions of the Fourier transform on a set of measure zero clearly give rise to 
systems (3). The theorem is a partial converse to this statement. 

THEOREM 4. Let Qt be a symmetric and closed operator in L2(R) which 
is contained in the multiplication operator Qh(x) = xh(x). Assume that V(Q{) 
is translation invariant, and that V(QQX) is a core for Qv Then (3) holds and 
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the closed set A « {X E R|ft(X) = 0 for V/i G PCQj)} fc of zero measure. 
Moreover V(Qt) ^ {he P(ö)|/ï(X) = 0 for VX E A}, 

The core condition can be omitted in the following cases: (1) A is a 
Cantor set, or (2) Qt has finite defect In general it can be slightly weakened, 
but not omitted. In case (2) the result generalizes to arbitrary multiplicity. 

The proofs of results 1 through 3 involve general operator theory [1], in­
cluding theorems of Phillips [5] and Naïmark [3] 9 while the proof of Theorem 
4 is based on a function theoretic approach to the extension theory of [4a] made 
possible by the extendability assumption and the Stone-von Neumann Theorem, 
(The function theory is based on Wiener-Tauberian consideration.) 

Generalizations to group representations [2a], [6], [7], [8], [11] and 
field theory [10] would be of interest. The possibility of removing the finite­
ness assumption in Theorem 3 is related via the proof to a well-known conjec­
ture of Phillips [5]. We conjecture the conclusion of Theorem 4, also without 
the finiteness assumption on the (/-index, but it seems hard to settle either of the 
conjectures. It appears difficult in the general case, for two different extensions 
to establish the existence of a wave operator similarity which commutes with U. 

However the extendability question has an answer in full generality, i.e. no 
restriction on the indices. The proof uses arguments that naturally extend [4a]. 

THEOREM 5. Let (U, Q, H) be an infinitesimal Weyl system, and let P± 

denote the orthogonal projections onto the respective defect spaces V± for Qm. 
The system is extendable if and only if there exists a partial isometry S of t?+ 

onto ÎL such that P_(2[S, U(t)] - it(I + S)U(t)(I + S))P+ « 0 for all t E Rf 

Here [ •, • ] denotes the commutator bracket 
If it is assumed in addition that the spectral measure dEK of U is absolutely 

continuous, then extendability is equivalent to the validity o f the following identity 

P_(2 [S, EK] - (I + S)DK(I + S))P+ - 0 (X E R) 

for some partial isometry S of P + onto t?_. Here D^denotes the Radon-Nikodym 
derivative of dEK. 

We finally point out that Theorem 5 has a complete generalization to the 
case when the W* algebra generated by the spectral projections of U is replaced 
by an arbitrary noncommutative W*-algebra, and when the map U(t) —• it U(t) 
is replaced by a spatial derivation which is implemented by a symmetric nonself-
adjoint operator. This answers a question raised in a recent article of the author. 

The author has benefitted greatly from discussions with Professors P. Chernoff, 
W. Helton, G. Johnson, R, T. Moore, P. Muhly, and R. S. Phillips. I am pleased 
to record my gratitude. 
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