## RESEARCH ANNOUNCEMENTS

## CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS OF \$1(2, C)

BY RICHARD E. BLOCK

Let  $\mathfrak g$  be a nonabelian Lie algebra over an algebraically closed field K of characteristic 0. One is interested in the (algebraically) irreducible representations of  $\mathfrak g$  acting on a vector space which is allowed to be infinite dimensional. The subject of enveloping algebras is largely concerned with these, but even in the simplest nonabelian case, with  $\mathfrak g=\mathfrak h$  the 3-dimensional (nilpotent) Heisenberg algebra, as Dixmier remarks in discussing the situation when  $K=\mathbb C$  in the preface to [2], "a deeper study reveals the existence of an enormous number of irreducible representations of  $\mathfrak h$ ... It seems that these representations defy classification. A similar phenomenon exists for  $\mathfrak g=\mathfrak gl(2)$ , and most certainly for all noncommutative Lie algebras."

However, as we shall see, the situation for  $\mathfrak{h}$  and for  $\mathfrak{Sl}(2)$  turns out to be far nicer than hoped for. Indeed we announce here a determination and classification of all irreducible representations of  $\mathfrak{h}$ , of  $\mathfrak{Sl}(2)$ , and of the 2-dimensional nonabelian Lie algebra, and thus of the prototypes respectively of nilpotent, simple, and solvable Lie algebras. As a guide to the meaning of "classification" and because our results use the same invariants, consider a classical situation of an (associative) algebra for which the irreducible representations have long been classified, namely, the algebra B of formal linear differential operators with rational function coefficients, i.e., B = K(q)[p], the (noncommutative) polynomials in an indeterminate p where multiplication is determined by the relation pq - qp = 1. Then B is a left principal ideal domain. Therefore [3] a B-module M is simple if and only if  $M \cong B/Bb$  for some  $b \in B$  which is irreducible (i.e., b = ac implies a or c is a unit); and  $B/Bb \cong B/Ba$  if and only if a and b are similar, i.e., there exists  $c \in B$  such that  $a \in B$  and a = ac in the principal ideal domain.

Received by the editors August 14, 1978.

AMS (MOS) subject classifications (1970). Primary 17B10, 17B35, 16A64; Secondary 16A04, 16A08, 16A18.

<sup>&</sup>lt;sup>1</sup>Research supported in part by grant NSF MCS 76-11413.

248 R. E. BLOCK

right g.c.d. and [b, c] a left l.c.m. (which always exist) (similar is the noncommutative generalization of associate).

The subalgebra K[q][p] of B generated by p, q is the Weyl algebra  $A_1$ . Since  $A_1 \cong U\mathfrak{h}/U\mathfrak{h}(z-\alpha)$  for  $0 \neq z \in$  center  $\mathfrak{h}$  and  $0 \neq \alpha \in K$ , the problems of finding the irreducible representations for  $A_1$  and for  $\mathfrak{h}$  are equivalent. Our solution for this problem as well as for  $\mathfrak{El}(2)$  involves the new notion of preserving, defined in terms of certain polynomials which we now introduce. For  $\alpha \in K$  let  $\mu_{\alpha}$  denote the valuation of K(q) determined by the prime  $q-\alpha$  of K[q], and extend  $\mu_{\alpha}$  to a function (also denoted  $\mu_{\alpha}$ ) on B by setting  $\mu_{\alpha}(\Sigma_j b_j(q)p^j) = \min\{\mu_{\alpha}(b_j(q)) - j\mathfrak{h} \geqslant 0\}$ . Then define  $\theta_{\alpha,b}(\lambda) \in K[\lambda]$  ( $\alpha \in K$ ,  $b = \Sigma_j b_j(q)p^j \in B$ ) by

$$\theta_{\alpha,b}(\lambda) = \sum_{j} \{((q-\alpha)^{-\mu_{\alpha}b-j}b_{j}(q))(\alpha)\}(-1)^{j}\lambda(\lambda+1)\cdot\cdot\cdot(\lambda+j-1).$$

(It can be proved that  $\mu_{\alpha}$  is a valuation on B, and extends to a valuation on the quotient division ring whose residue field is  $K(\lambda)$ ; then with  $\varphi_{\alpha}$  the corresponding place,  $\theta_{\alpha,b}(\lambda) = \varphi_{\alpha}((q-\alpha)^{-\mu_{\alpha}b}b)$ .) Call b  $\alpha$ -preserving if  $\theta_{\alpha,b}(\lambda)$  has no positive integral root, and preserving it is  $\alpha$ -preserving for all  $\alpha \in K$ . It can be shown that b is preserving if it is  $\alpha$ -preserving for a certain finite set of  $\alpha$ 's, in particular (when b is normalized to be in  $A_1$ ) for the set of roots of the leading coefficient  $b_r(q)$ ; thus if  $K = \mathbb{C}$  the property of b being preserving is computable given the roots of  $b_r(q)$ .

The  $A_1$ -module  $(K[p], q - \alpha \text{ acts as } -d/dp)$  is simple and is precisely the simple  $A_1$ -module for which q has  $\alpha$  as an eigenvalue.

THEOREM 1. If  $a \in B$  is irreducible and preserving then the  $A_1$ -module  $A_1/A_1 \cap Ba$  is simple.

THEOREM 2. If M is a simple  $A_1$ -module then either  $M \cong (K[p], q - \alpha$  acts as -d/dp) for some  $\alpha \in K$  or  $M \cong A_1/A_1 \cap Ba$  for some a as in Theorem 1.

Since the  $A_1/A_1 \cap Ba$  above have no eigenvector for q, the following completes the classification of the simple  $A_1$ -modules.

THEOREM 3. Two simple  $A_1$ -modules  $A_1/A_1 \cap Ba$ ,  $A_1/A_1 \cap Bb$  are isomorphic if and only if a and b are similar (in B).

Now consider the case of  $\mathfrak{g}=\mathfrak{Sl}(2,K)=\mathfrak{S}$ , with canonical basis e,f,h. For  $\beta\in K$  the map  $e\to q,h\to 2qp-\beta,f\to -(qp-\beta)p$  extends to a homomorphism  $\rho_\beta$  of  $U\mathfrak{S}$  to B. The simple  $\mathfrak{S}$ -modules for which e has an eigenvector v (with eigenvalue  $\alpha$ ) are as follows: if  $\alpha=0$ , the highest weight modules  $L(\beta)$  ( $\beta\in K$ ) (with  $hv=\beta v$ ); if  $\alpha\neq 0$ , the simple Whittaker module  $\operatorname{Wh}_\beta(\alpha)$  (see [1], [4];  $\alpha=\eta(e)$ ), with basis  $t^0=v$ ,  $t^1$ , ... where  $ht^1=2t^{1+1}$ ,  $et^1=\alpha(t-1)^1$ ,  $ft^1=\alpha^{-1}(t+1)^1(-t-t^2+(\beta^2+2\beta)/4)$ . The only isomorphisms among these

are  $\operatorname{Wh}_{\beta}(\alpha) \cong \operatorname{Wh}_{\delta}(\alpha)$  whenever  $\beta^2 + 2\beta = \delta^2 + 2\delta$ . For any  $\beta \in K$  write  $\beta'$  for the other root of  $\lambda^2 + 2\lambda = \beta^2 + 2\beta$  i.e.,  $\beta' = -\beta - 2$ .

THEOREM 4. Suppose  $a \in U$ \$,  $\beta \in K$ ,  $\rho_{\beta}a$  is irreducible (in B) and  $\rho_{\beta}a$  and  $\rho_{\beta'}a$  are preserving. Then the U\$ -module  $\rho_{\beta}U$ \$  $\rho_{\beta}U$ \$  $\cap$   $B(\rho_{\beta}a)$  is simple.

THEOREM 5. If M is a simple U8-module then either  $M \cong L(\beta)$  for some  $\beta \in K$  or  $M \cong \operatorname{Wh}_{\beta}(\alpha)$  for some  $\alpha, \beta \in K$ ,  $\alpha \neq 0$ , or  $M \cong \rho_{\beta}U8 / \rho_{\beta}U8 \cap B(\rho_{\beta}a)$  for some a as in Theorem 4.

Again the following completes the classification.

THEOREM 6. Two simple U8-modules  $\rho_{\beta}U8/\rho_{\beta}U8 \cap B(\rho_{\beta}a)$ ,  $\rho_{\delta}U8/\rho_{\delta}U8 \cap B(\rho_{\delta}b)$  are isomorphic if and only if  $\beta^2 + 2\beta = \delta^2 + 2\delta$  and  $\rho_{\beta}a$  and  $\rho_{\beta}b$  are similar (in B).

Analogous results hold for the 2-dimensional nonabelian Lie algebra, realized say as the subalgebra  $\mathfrak{b}=Kh+Ke$  of  $\mathfrak{S}$ , with the following changes: the simple  $\mathfrak{b}$ -modules for which e has an eigenvector are Wh<sub>0</sub>( $\alpha$ ) (for  $\alpha \neq 0$ ) and, for each  $\delta \in K$ ,  $Kv \subseteq L(\delta)$ ; restrict  $\beta$  to 0 and change the condition on preserving to the condition that  $\rho_0 a$  be preserving and  $\theta_{0,\rho_0 a}(\lambda) \in K$  (or equivalently,  $a=e^u(ec+\alpha)$  for some  $u\in \mathbb{N}$ ,  $c\in U\mathfrak{b}$  and  $0\neq \alpha\in K$ ).

The ring B is the localization of its subrings  $A_1$  and  $\rho_{\beta}U$ 8 with respect to the multiplicative subset  $S = K[q] - \{0\}$ .

Theorem 7. Every simple B-module N contains a unique simple  $A_1$ -submodule  $\psi N$  and, for every  $\beta \in K$ , a unique simple  $\rho_{\beta}U$  submodule  $\psi_{\beta}N$ ;  $\psi N$  (resp.  $\psi_{\beta}N$ ) is contained in every nonzero  $A_1$ - (resp.  $\rho_{\beta}U$  -) submodule of N. Also  $_BN\cong S^{-1}(\psi N)\cong S^{-1}(\psi_{\beta}N)$ , and if M is a simple S-torsionfree  $A_1$ -(resp.  $\rho_{\beta}U$  -) module then  $\psi(S^{-1}M)$  (resp.  $\psi_{\beta}(S^{-1}M))\cong M$ . Thus the map  $N\to \psi N$  (resp.  $N\to \psi_{\beta}N$ ) sets up a bijection between the set of isomorphism classes of simple B-modules and the set of isomorphism classes of S-torsionfree simple  $A_1$ -modules (resp. U\varepsilon-modules with the Casimir element  $4fe+h^2+2h$  acting as  $\beta^2+2\beta$ ).

Here is a formula involving the  $\theta_{\alpha,b}(\lambda)$  which helps to explain their relevance to modules. If  $a \in A$ , then for the action on  $(K[p], q - \alpha$  acts as -d/dp), for every positive integer s we have

(1) 
$$(q-\alpha)^{-\mu}\alpha^a a \cdot p^{s-1} = \theta_{\alpha,b}(s)p^{s-1} + \text{lower terms.}$$

Somewhat similar formulas hold for the actions of U8 on  $Wh_{\gamma}(\alpha)$  and  $L(\delta)$ . The proof of Theorem 1 begins by showing that a maximal ideal J of A properly containing  $A \cap Ba$  intersects S, and so q has an eigenvector on A/J. Then one uses  $\alpha$ -preserving and (1). Theorem 4 is similar. The remaining theorems use properties of minimal annihilators and localizations. Theorems 2, 5 and 7 also depend on the following.

250 R. E. BLOCK

LEMMA. If  $b \in B$ , there exists  $d \in S$  such that  $bd^{-1}$  is preserving.

The proof of Theorem 7 also uses Theorem 1 and 4; if N = B/Bb where b is preserving then  $\psi N = (A_1 + Bb)/Bb$ .

## REFERENCES

- D. Arnal and G. Pinczon, Sur certaines représentations de l'algèbre de Lie §[(2),
  C. R. Acad. Sci. Paris Sér. A 272 (1971), 1369-72.
- 2. J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974; English transl., Enveloping algebras, North-Holland, Amsterdam, 1977.
- 3. N. Jacobson, The theory of rings, Math. Surveys, Amer. Math. Soc., New York, 1943.
  - 4. B. Kostant, On Whittaker vectors and representation theory (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CALIFORNIA 92521