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3w/3/ = Z)Aw + ƒ(*, /, «, V w), u = (w„ . . . , um), (1.1) 

or generalizations made by replacing the Laplace operator by linear or 
quasilinear elliptic operators. Here the "diffusion matrix" D has nonnegative 
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elements, and in most applications is diagonal. 
My object here is to survey our knowledge of the "ultimate" or "steady 

state" behavior of solutions of (1.1), as opposed to their transient behavior 
(steady state does not mean time-independent; the word "stationary" will be 
reserved for the latter). Roughly speaking, what this means is that we will be 
seeking special solutions which are approached by many other solutions as 
/ -> oo. This idea will be made clearer in §2, where we speak of stable 
asymptotic states. 

But first, an indication of the importance of equations of this type. They 
occur widely as models for the dynamics of large multispecies populations 
whose individuals are capable of random spatial migration. In this context x 
represents position in space (A is the Laplacian in x), t is time, and at least 
some of the components of u represent spatial densities of the various species. 
In the prototypical example of this modeling, the species are chemical species, 
and the individuals of the population are molecules. Their random migration 
through the chemically reacting medium is called diffusion. 

Of course (1.1) also appears as a model for problems outside of population 
or chemical dynamics, one important example being the nerve conduction 
models discussed in §7. 

For population problems, the term Z)Aw is a convenient approximation, 
justifiable under various circumstances, for the rate of change of the popula­
tion u at any given position and time, due to random spatial migration. The 
term ƒ measures the rate of change due to "reaction processes" in the medium, 
such as chemical reactions, reproduction processes or deaths in a biological 
population, and material transfer across a membrane. 

I shall occasionally touch upon the contexts in which the equations are 
studied; the reader can learn more about this by consulting the works listed 
in the bibliography. But my emphasis will be on properties of the solutions. 

Attention will generally be confined to solutions defined for all x E R". In 
applications, however, one often seeks solutions of (1.1) in a bounded 
x-domain (the "medium"), and conditions them by processes assumed to 
occur on the boundary of this domain. Then the ultimate behavior of 
solutions will be affected by the boundary conditions as well as the internal 
processes, described by the equations (1.1) themselves. When the size of the 
medium is large or the diffusion matrix D is small, then the behavior in the 
interior of the medium is typically little affected by the boundary conditions, 
and the determination of that behavior can be simplified by assuming the 
medium to occupy all space, as we do. For example, the effect of the 
boundary on a stationary solution is often confined to a boundary layer; and 
wave trains and pulses, though strictly defined only for an infinite medium, 
still reflect actually occurring phenomena in bounded ones. This, plus the 
finite length of this talk, will be my justification for ignoring boundary 
influences. 

Reaction-diffusion systems (1.1) include two very important extreme cases: 
(1) D = 0; ƒ independent of x and of Vu: 

du/dt=f(t,u). (1.2) 

This is called the system of "kinetic equations" associated with (1.1). 
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(2)m = 1,/=0,Z) > 0 : 

du/dt = DAu (u scalar). 

This is the well-known scalar diffusion, or heat, equation. 
To say that ordinary differential equations and diffusion equations have 

each been studied extensively in their own rights would be an understate­
ment. Though both represent evolution processes, the two theories have 
relatively little in common. In some sense the theory of reaction-diffusion 
equations attempts to bridge the gap between them. (A thorough account of 
aspects of the theory of reaction-diffusion equations different from those 
emphasized here can be found in Henry (1978).) In pursuing this subject, an 
interesting question to keep in mind is, how does the presence of diffusion 
effects modify the rich dynamical theory available for the kinetic equations 
(1.2)? This point of view is relevant in studying wave fronts, which connect 
two rest states of (1.2), and wave trains, some of which modify periodic 
solutions of (1.2). 

Even when D is not 0, (1.2) serves as the equation satisfied by x-indepen-
dent solutions of (1.1) (still assuming ƒ independent of Vw). For this reason, 
the dynamics, and in particular the asymptotic states, of (1.1) include those of 
(1.2). Despite the rich theory behind (1.2), we shall call ^-independent 
dynamics "trivial" and concentrate on contrary cases-asymptotic states in 
which diffusion is important. 

It might be well to summarize the restrictions under which we shall operate. 
(1) We consider solutions defined for all xGR". 
(2) Most often, we treat only a single spatial coordinate, n = 1. When this 

restriction is made, the reason is not so much for simplicity of exposition as it 
is because in those contexts, not much is known for n > 1. 

(3) ƒ independent of x, t, and Vw, so ƒ = ƒ(«). Work has been done on 
extending some of the results listed here to inhomogeneous media (for 
example, see Ortoleva and Ross (1974)). 

(4) We exclude consideration of asymptotic states independent of x. 
Under the heading "asymptotic behavior of solutions," two questions 

naturally arise: 
(1) What are the possible long-time behaviors of solutions? 
(2) Given the initial data u(x, 0) of a particular solution, what is its 

long-time behavior? 
This talk will be mainly concerned with only the first of these difficult 

questions. With the exception of scalar equations, known results under the 
second category mainly relate to ^-independent asymptotic states in bounded 
domains, which I have decided not to discuss. The most definitive results here 
are probably those of Conway, Hoff, and Smoller (1978). 

The first question can be answered relatively completely in the case of a 
scalar nonlinear diffusion equation. The situation for this case is outlined in 
§3. §§4-8 describe most of the presently known results bearing on this same 
question, for systems with m > 1. A far greater variety of asymptotic states is 
possible for m > 1, though it is by no means true that anything is possible. At 
the same time, a complete asymptotic state theory for systems is nowhere in 
sight, and so the existing results, varied though they may be, are still relatively 
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meager. Rigorous results are truly meager. For example, the only known 
proofs of C0-stability of nontrivial asymptotic states for systems with m > 1 
are the one for stationary peaks referred to in §4(b), and the one for pulse 
solutions of a piecewise linear nerve conduction equation discussed in §7. (In 
addition, linear stability criteria have been verified rigorously for some types 
of wave trains-see §5(b).) 

Asymptotic states in various categories are treated in §§4-8: stationary 
states, wave trains, wave fronts, pulses, centers, and other forms. 

In modeling natural phenomena, various researchers have devised evolu­
tion equations which are not partial differential equations, but whose solu­
tions have the essential features of those of reaction-diffusion systems. These 
equations are deserving of mathematical theories, and some results have been 
established. In §9 a few of these models will be reviewed briefly. 

The survey nature of the talk means, of course, that I shall feel free to omit 
details at will. In fact, most often I shall be content with merely stating a 
result and giving a bare indication of the method behind it. When the results 
and procedures are not so easily available in the literature, however, I shall 
often expand on them. 

Other aspects of nonlinear diffusion, as well as more details concerning 
some topics covered here, can be found in the readable monograph compiled 
by Diekmann and Temme (1976). 

2. Asymptotic states. Considering functions ƒ which depend only on u9 we 
rewrite (1.1) as 

du/dt = DAu +ƒ(«). (2.1) 

We shall be concerned with those solutions of (2.1) which exist for all t > t^ 
for some finite t^ and this property of solutions will be assumed without 
further mention. Initial value problems, say with bounded piecewise con-
tinous initial data, always have local solutions, and criteria on the equation 
and the initial data have been given by various people under which a global 
solution is assured. The most complete results of this sort are probably those 
of Amann(1978). 

Given a particular reaction-diffusion system or class of systems, a natural 
goal is to determine all possible stable long-time behaviors of its solutions. At 
present this is a realistic goal only for restrictive examples, such as scalar 
equations (§3), À - <o systems (§5), and piecewise linear systems, such as 
McKean's simplification of the nerve conduction equations (§7), all of this in 
one space variable. Nevertheless, continual progress in this direction is being 
achieved for more general classes of systems as well, as I hope to bring out in 
this paper. 

We need to say what is meant by long-term behavior, and we shall define it 
as an equivalence class of solutions which are comparable in a certain sense 
as t->oo. In comparing solutions, it really should not matter if one is 
displaced from another in space or time. More generally, let G be the group 
of transformations on (x, /) generated by rigid motions and reflections in x, 
and translations in t. Clearly these transformations leave the set of solutions 
of (2.1) invariant. If T E G, we note by Tu the solution obtained from u by 
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operating on (x, t) by the transformation T. We shall consider u and Tu to be 
equivalent. For particular systems (2.1) with added symmetry properties, the 
group G can be extended, perhaps, to act on the vector u as well. In such 
cases, it may be desirable to use the larger group in defining equivalence. On 
the other hand for problems in which ƒ depends on Vu, G may have to be 
reduced to the group of (x, ^-translations. 

DEFINITION. Let u{, u2 be two solutions of (2.1) for all x and for large 
enough t. They are asymptotically equivalent if, for some TEG, 

lim sup \u{(x, t) — Tu2(x, t)\ = 0. 
t-+CQ X 

DEFINITION. An asymptotic state for (2.1) is an (asymptotic) equivalence 
class of solutions. 

The class asymptotically equivalent to a given u is denoted by [u]. If <f> is a 
bounded continuous function of x, we denote by u^ the solution of the initial 
value problem with initial data </>. 

We take the stance that the stable asymptotic states (SAS's) are the 
important ones, as they are the ones generally seen in applied contexts. The 
symbol C^R") will denote the space of continuous functions of x E Rn with 
norm ||<J>|| - supj$(x)|. 

DEFINITION. An asymptotic state [u] is stable if the set 

{*:«, e[«]} 
is open in C^Rn). 

In the following, we call this C0-stability. 
Implicit in this definition is that for </> in this set, u^ exists globally. This set 

is nonempty; in fact it contains the functions u(-,t) for all large enough t. 
SAS's may be represented by solutions which can be perturbed by a uni­
formly small function without destroying their longtime behavior. 

In the case of stationary or plane wave solutions, another definition for 
stability is in terms of the L^ spectrum of the linearization of the right side of 
(2.1) about the solution in question (the problem should be cast in a moving 
coordinate frame in the case of plane waves). The criterion is that except for a 
simple eigenvalue at the origin (which always exists), the spectrum is in the 
left half plane and bounded away from the imaginary axis. Sattinger (1977a, 
b; 1977a) proved that in typical cases, stability in this sense implies C0-stabil-
ity. 

When looking for SAS's for particular systems (2.1), it is natural to focus 
attention on special classes of them. One particular class consists of those 
independent of x, hence solutions of the corresponding kinetic equation; we 
have called them "trivial." Those which depend on x may be called "dissipa-
tive structures," a term introduced by Prigogine and coworkers (Prigogine 
and Nicolis (1967)). 

Another important class of asymptotic states are those of permanent type, 
meaning that some representative exists, as a solution of (2.1) for all t E R, 
not just for large enough t. Subclasses of asymptotic states are those with a 
representative in one of the following categories: 

Stationary (/-independent) solutions, 
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Solutions periodic in t9 

Traveling waves: u(x91) = V(x - ci) for some velocity vector c, 
Plane waves: traveling waves with V(z)— U(z • v) for some vector v (i.e., 

u * U(x- v — c/), c a scalar), 

Wave trains ([/periodic), 
Wave fronts ( l / ( - oo) and C/(co) exist and are unequal), 
Pulses (U(± oo) exist and are equal; (/ not constant). 

Other forms which have been studied are target patterns (w(x, t) = 
U(\x\y t), U periodic in /), rotating spiral patterns (n =• 2, x = (r cos 0, r 
sin 0), w(x, /) « t/(r, 0 - c/), U periodic in second argument), and expand­
ing circular or spherical fronts. The latter are not of permanent type. 

Problem. Determine the nontrivial SAS's of the above types. 
The aim of the paper is to outline most of the known partial solutions to 

this problem. 

3. The scalar case: Fisher's equation. The scalar nonlinear differential 
equation 

ut = uxx+f(u) (3.1) 

arises in many applications. The particular case when ƒ = mu{\ - u) (the 
logistic equation with diffusion added) was introduced by Fisher (1937) in 
connection with "genetic waves." These are simply wave front solutions; and 
since fronts generally exist when ƒ has two or more zeros, equation (3.1) with 
this property is sometimes referred to as "Fisher's nonlinear diffusion equa­
tion." 

The corresponding kinetic equation 

«'=ƒ(") (3.2) 
has very simple dynamics; they are determined by the zeros of ƒ and its signs 
in the intervening intervals. The zeros and signs of ƒ also determine the 
possible stable asymptotic states of (3.1). 

First, we examine the case when ƒ has exactly one zero, at u * w0, and it is 
stable with reference to (3.2). This means f(uQ) x 0> f(u) > 0 for u < UQ, 
f(u) < 0 for u > UQ. Then (3.2) trivially has only a single SAS [w0]. As it turns 
out, (3.1) likewise has [w0] as its only bounded SAS. This latter is proved by a 
simple comparison argument, using the fact that every bounded solution of 
(3.1) has solutions of (3.2) as sub- and super-solutions (see, for example, 
Aronson and Weinberger (1975)). 

Suppose now that ƒ has a single zero, WQ, and it is unstable, so that ƒ 
changes sign from negative to positive as u increases through t/0. It can be 
shown that (3.1) has an infinite number of bounded stationary solutions, all 
of them periodic in x. It further turns out that all of them are unstable (Fife 
(1977a)). The proof of this fact is again based on a comparison principle 
given by Aronson and Weinberger (1975). 

CONJECTURE. If ƒ has a single zero and it is an unstable rest state of (3.2), 
then (3.1) has no bounded stable asymptotic states. 

The instability result mentioned above shows that it has no bounded stable 
stationary states; the conjecture claims the nonexistence of time-dependent 
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ones as well. The claim should be within range of a proof; in fact the 
corresponding result for a bounded ^-interval with no-flux boundary condi­
tions may be proved with the aid of a Lyapunov function technique. 

Next, consider the case when ƒ has exactly two zeros, each of them simple. 
Then as rest states of (3.2), one of the zeros will be stable and the other 
unstable. The former will also be a (trivial) SAS of (3.1), and our conjecture is 
that it is the only bounded one. 

But now there are other asymptotic states which, though unstable in our 
sense, nevertheless are significant in some contexts. Suppose the two zeros of ƒ 
are 0 and 1 with, for example, ƒ > 0 for u E (0, 1). Then 0 is an unstable rest 
state of both (3.1) and (3.2), whereas 1 is a stable rest state of them both. If 
/'(O) > 0, f (I) < 0, there exist wave front solutions u = U(x - ct\ with 
t/(-oo) = 1, £/(oo) =•= 0. In fact (Kolmogorov, Petrovskiï and Piskunov 
(1937); Aronson and Weinberger (1978)) there is a number c* > 0 such that 
for every value of the velocity c > c*, a unique such wave front exists. Since 
these fronts have been studied extensively, it may be worthwhile mentioning 
their conceptual connection with population problems. For particular kinds 
of f unctions ƒ having the given properties, (3.1) has been used as a model in 
population genetics (Fisher (1937); Kolmogorov, Petrovskiï and Piskunov 
(1937); Aronson and Weinberger (1975); plus many more papers in which ƒ 
depends on x). In these models, u represents the frequency of an advan­
tageous allele in a population, so should be restricted to the interval [0, 1]. 
The model is highly idealized, but if we assume it may be qualitatively 
significant, the wave front of minimal speed c* would correspond to the later 
stages of the following "take-over" process. Imagine a population with none 
of the advantageous alleles present: then u = 0. Suppose that at some instant 
of time, some individuals with the advantageous gene are introduced at one 
locality, either by mutation or from an outside source. The "zero" state being 
unstable, u will increase and approach 1 uniformly on bounded x-intervals. 
Ultimately, the "one" state will presumably take over by means of a pair of 
fronts moving in opposite directions, each approaching in profile the front 
with speed c*, and each with speed approaching c*. This configuration is 
unstable in the sense we have defined it, but in the framework of population 
genetics may be meaningful, because the type of perturbation (mutation, 
introduction of foreign elements) needed to change it would be very rare. 
Furthermore, it is possible that these waves arc stable in certain weighted L^ 
norms (Sattinger (1976b, 1977a)). The results of Rothc (1975, 1978), 
Hoppensteadt (1975), Stokes (1976), Kametaka (1976), Uchiyama (1977), and 
McKean (1970) are also relevant here. 

It should also be mentioned that most contemporary population genetic 
modeling with Fisher-type equations is in connection with the analysis of 
clines (nonconstant stationary solutions) when ƒ is allowed to depend on x. 
This is another story, which we shall not touch upon. 

The final case we consider is when ƒ has exactly three zeros, the two outer 
ones stable, the inner one unstable, and all three simple. This also occurs as a 
population genetic model, as well as in the study of transmission lines, 
combustion theory, and some degenerate cases of nerve signal propagation. 
Assume the two stable zeros are at u = 0 and 1, and the unstable one lies in 
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between, as shown in Figure 1 below. 

FIGURE 1 
Clearly, the kinetic equation (3.2) and the original equation (3.1) have [0] 

and [1] as trivial stable asymptotic states. Now, for the first time, we find 
there are others as well. In fact, there turn out to be an infinite number of 
nontrivial stable asymptotic states, only two of which are interesting: 

(1) There is a wave front (Kanel' (1962); Aronson and Weinberger (1975, 
1978)) which can be thought of as connecting the two trivial stable rest states: 

W,(JC, /) = U{x - ct\ U(-oo) = 0, U(oo) « 1. 

It has a unique velocity c, and except for translation, a unique wave form as 
well. Its global stability was proved by Fife and McLeod (1977); see also 
Sattinger (1976b, 1977a) for local stability, and Chueh (1975) for a related 
result. 

Reflection in x yields a wave front traveling in the opposite direction: 
w , ( - ^ 0 = U( — x — ci)9 which by our definition is equivalent to the 
former. 

(2) If c ¥= 0, a combination of ux and its reflection yields a second stable 
asymptotic state in the form of a diverging structure, as shown in Figure 2. 

FIGURE 2 

This asymptotic state may be represented by the function 

ux(x, t), ex > 0, 
H>(X, 0 = w,( —x, /), ex < 0, 

even though w itself is not an exact solution of (3.1). Its global stability was 
proved by Fife and McLeod (1977). Note that [w] is not of permanent type, 
whereas [«,] is. 

So we have two (one, if c = 0) SAS's, [u{] and [H>], the first of permanent 
type. Other, rather artificial, SAS's can be constructed at will by combining 
an infinite number of wave fronts like the above, spaced at ever increasing 
distances apart. 
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It should also be noted that there is an infinite number of unstable 
asymptotic states of (3.1) in this case, namely the periodic and other non-
monotone stationary ones (Fife (1977a)). 

The following conjectures are probably true, and within range of proofs. If 
they can be proved, then one could say with a bit of justification that the 
C0-asymptotic theory of Fisher's equation in one space dimension with three 
or fewer zeros is fairly complete: 

CONJECTURE 1. [ux] is the only nontrivial stable asymptotic state of perma­
nent type. 

Let a E (0, 1) be the intermediate (unstable) zero of/. 
CONJECTURE 2. If 0 < <t> < 1 and <j> is bounded away from a for large \x\9 

then UQ E [0], [1], [ux]9 [w], or an unstable asymptotic state. 
The asymptotic theory for Fisher's equation is quite simple when ƒ has 

fewer than three zeros, and more interesting but not too complex when the 
number is three, as above. If the number is more than three, then it is not too 
hard to envisage possible asymptotic states built by combining elementary 
wave fronts of the above type (elementary ones being those whose ranges 
span exactly three zeros of ƒ). Some discussion of this was given by Fife and 
McLeod (1977). Probably all the stable ones can be found this way. 

More difficult than the problem of finding the SAS's is the problem of 
determining their domains of attraction. In the case of Fisher's equation, 
partial characterizations of domains of attraction of the trivial stable states 
were given in Kanel' (1964), Chafee (1974), and Aronson and Weinberger 
(1975). The same was done for wave fronts in Kanel' (1962) and Fife and 
McLeod (1977). (See also the bibliography in the latter paper for results 
characterizing initial data which evolve to unstable wave fronts.) 

An interesting generalization of the wave front problem for (3.1) was 
obtained by Larson (1977b). He considered the equation ut * uxx + Uyy + 
f(u) in a strip 0 < y < 1 with zero Dirichlet conditions, and looked for 
traveling front solutions u(x9y, i) = U(x - ct9y). Such fronts were obtained 
when f(u) =* mu{\ — u) or is of a similar type. 

4. Systems: stationary solutions. Existing work on nontrivial stable asymp­
totic states for systems gives ample evidence that they exist in great profusion 
and variety. Proved results in this direction, however, are relatively scarce; 
and at least for this reason, it is important to pay attention not only to results 
that have been established rigorously, but also to those obtained by heuristic, 
asymptotic, and computational methods. In this section, we survey most of 
what is known concerning nontrivial stable stationary solutions of systems. 
Most, but not all, of this body of knowledge concerns the case of one space 
variable. Therefore, we concentrate attention on the system 

"/ * Duxx + ƒ (w), u - (K„ . . . , « J , (4.1) 

at times commenting on possible extensions to multidimensional problems. 
First recall, from the previous section, that in the scalar case m * 1 there 

are essentially no bounded stable stationary solutions, despite the fact that a 
great many unstable ones (mostly periodic in x) exist when ƒ has an unstable 
zero. Similar negative results hold for particular types of systems (Bardos and 
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Smollcr, (1978)). But in general, the situation is considerably different for 
systems, as we shall see. 

(a) Small amplitude stationary solutions. Suppose ƒ vanishes at some value of 
w, which we take to be 0: /(O) = 0. Then in addition to the trivial solution 
u = 0, it is sometimes possible to prove the existence of small amplitude 
solutions periodic in x. (Rigorous results of this type for problems on a finite 
interval were obtained by Auchmuty and Nicolis; see the survey by Auch-
muty (1978).) The techniques are those of bifurcation theory. In this proce­
dure, it is convenient to suppose an explicit dependence of the system (4.1) on 
a real parameter. In actual practice, models in the form of such systems 
practically always contain many adjustable parameters; for simplicity, we 
focus attention on a single one of them, denoted by X. Typically, small 
amplitude nontrivial solutions may be constructed for X on a half-line 
(X > XQ). On the basis of more standard bifurcation results, we again expect 
that in many cases some of the small amplitude nontrivial solutions near a 
critical point XQ will be stable, provided the trivial solution loses stability as X 
crosses \* Thus the zero solution's stability may be transferred to a different 
type of solution. If the trivial solution is unstable for X in a full neighborhood 
of X^ then generally any bifurcating solution will also be unstable. (Segel and 
Jackson (1972) give an ecological interpretation.) 

We explore the bifurcation of nontrivial solutions in the case when only the 
linear part off depends on X: 

f(u,\) = (A+\B)u + g(u% (4.2) 

g(u) = O (| ti|2) as |M|~»0, Our results are mainly on the existence and 
multiplicity of such solutions; the question of transfer of stability has yet to 
be fully investigated. 

The stability of constant solutions is most often tested by the "linearized 
criterion9* described below, as it is easy to apply and rather intuitive. (To 
establish rigorously that the linearized criterion gives the correct answer for 
stability as we defined it in §2 is a difficult matter, but has been done. The 
most complete results in this and related directions are those by Kielhöfer 
(1976).) 

Consider the linearized system 

ii, = Duxx + (A + \B)u> (4.3) 

For arbitrary real k9 it has solutions of the form u = Qe1***1* for any 
eigenvalue p of the matrix H(k\ X) •» - k2D + A + XJ3, with associated 
eigenvector <&. If, for all k9 all eigenvalues /* have negative real part, then the 
zero solution is stable (linearized criterion); but if there is one with positive 
real part, for some k, it is unstable (l.c). The remaining case is that of 
marginal stability. 

Assumption A. Let ^{k1, X) = o(k\ X) + iw(fc2, X) denote an eigenvalue of 
H(k2

9 X) with maximal real part a. Assume that for (X, k) in some rectangle K 
with positive area, \iv is algebraically simple, hence differentiable in (X, k), 
and is either real and unique or nonreal and unique except for its complex 
conjugate jï, (which must also be an eigenvalue since H is real). Assume there 
is some (Xo, fc0) in the interior of K with the properties 
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(i)a(*0
2,Ao) = 0, 

(Ü) a(k\ Xo)< 0, for all \k\ * \k0\, 
(iii)9a(A:^X0)/aA>0. 
Let co0 = u(k%, Ao). There are two cases which can occur: 
(l)co0 = 0. 
(II)coo^0. 

It is easily seen that each case is generic. In this section we consider only case 
(I), reserving (II) for §5. 

THEOREM In case (I) there exists a two-parameter family (u(x; e, k), X(a, k)) 
of solutions of 

Duxx+f(u,\) = 0 (4.4) 

defined and continuous in (x, c, k)for small e and \k — k0], such that 
(i) u(x; e, k) is even and (when k ^ 0) periodic in x with wave number k; 
(ii) Max||w(x; e, X)|| = £; 
(iii) \(0, k0) = AQ, and the range of the function X(e, k) includes at least a 

half-neighborhood of the point \ ) . 

Thus, small solutions of arbitrary wave length close to In/k^ are obtained. 
If k0 = 0, then we obtain small solutions of sufficiently large wave length. 
The proof of this result is considerably more involved in the case k0 * 0 than 
it is in the case k0 ^ 0. In the latter case, it is sketched in Fife (1977a). The 
solution to lowest order is sinusoidal in x. 

In the case k0 * 0, the solution to lowest order takes the form u œ e$ak(x), 
where $ is a constant vector (the eigenvector of H (0, XQ)) and ak is a scalar 
periodic function with long wave length 2n/k9 which is not sinusoidal. In the 
limit as k ~» 0, ak approaches an even function with maximum or minimum at 
the origin, and a limit approached as x -» ± oo. In addition, corresponding to 
k = 0, there are constant bifurcating solutions. These are obtained by drop­
ping the diffusion term Duxx in (4.1), and applying simple bifurcation tech­
niques. 

We now come to the question of stability. It is as yet unclear which of the 
bifurcating periodic solutions mentioned are stable. The proper formulation 
of the linearized stability criterion for periodic stationary solutions was given 
by Kopell and Howard (1973) (in the context of wave trains, but certainly 
applicable here), but the linearized criterion is not easy to check. In the case 
of the bifurcating constant solutions alluded to last in the above paragraph, 
standard bifurcation theory tells us which are stable to perturbations indepen­
dent of x. Possibly in the case k0 = 0, these are stable to small bounded 
x-dependent perturbations as well, and they are the only ones so stable. This 
is an attractive conjecture to make, since the constant solutions are singled 
out from the others as being special, and because such a result holds in the 
case of a scalar equation. Yet besides these, there appear to be no good a 
priori reasons to think that they are the stable ones. In the case k0 =£ 0, 
certain special periodic solutions also appear to be singled out: those with 
maximum amplitude as k is varied, for fixed X. The same remark holds here 
as well. 

It should be noted that the whole question of the appearance of small 



704 P. C. FIFE 

amplitude solutions of (4.1) is analogous to the Benard problem and other 
bifurcation problems in fluid dynamics, posed in an infinite domain. The 
latter problems, allowing refined experimental investigation, have in addition 
been the subject of a considerable body of theoretical knowledge (for a good 
overview emphasizing stability questions, see Joseph (1976)). Most of the 
techniques used in studying infinite-domain bifurcation problems in fluid 
dynamics can be applied to reaction-diffusion equations as well, and we can 
therefore expect that at least some heuristic stability results can be obtained 
for the bifurcating periodic solutions we have found. 

For the same reason, it is to be expected that two- or three-dimensional 
bifurcation patterns can be constructed. This is a subject for further investiga­
tion. Particularly suggestive here are the group theoretical techniques found 
in Sattinger (1978b, c) and elsewhere. 

(b) Larger amplitude solutions: peaks. Systems (4.1) admitting larger ampli­
tude stationary solutions are easy to devise. Linear systems with constant 
coefficients, for example, admit exponential solutions, and it is a simple 
matter to arrange the coefficients so that solutions sinusoidal in x and 
independent of / exist. Alternatively, one can take m = 1 and produce 
periodic and peaked solutions of the resulting nonlinear scalar equations, as 
in §3. Unfortunately, the latter type of stationary solution is always unstable, 
as we have shown. The former situation is that treated in §4(a), with g (in 
(4.2)) identically zero. The solution in question is u = $eikoX

9 where $ is the 
nullvector of H(ICQ, XQ). (We actually get two linearly independent solutions 
by taking the real and imaginary parts.) a small deviation of X away from A0 

in one direction or another will usually replace the stationary solutions with 
solutions which grow exponentially in time, so the former will be a structur­
ally unstable phenomenon. Structurally stable patterns exist only for nonlin­
ear systems; and for this reason we omit any further consideration of linear 
ones. 

So we concentrate our search within the class of truly nonlinear systems of 
more than one equation. First, we mention that reaction-diffusion systems 
have been proposed by various researchers to model, on a primitive level, 
pattern formation in biological contexts. These include the famous "Brus-
selator" equations (with diffusion added) and other models of the group in 
Brussels. Their extensive work has been reported in Herschkowitz-Kaufmann 
and Nicolis (1972), Nicolis (1974), and elsewhere. Also in this category are the 
activator-inhibitor equations of the group in Tubingen (Gierer and Meinhardt 
(1972), (1974), and other papers). In both cases, computer simulations have 
produced apparently stable large-amplitude stationary structures. These 
models have involved systems of two equations. 

In the case of the equations developed by Gierer and Meinhardt, a 
heuristic argument was given to indicate why stable peaks and patterns may 
be expected. They characterized their two reacting and diffusing substances 
as a short-range activator and a long-range inhibitor. We may interpret 
lengths of ranges as being measured by the size of the respective diffusion 
coefficients. Recently Keener (1978) has provided an asymptotic analysis of 
these equations on a bounded spatial interval, based on the largeness of one 
of the diffusion coefficients. Stability was not considered. 
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As far as rigorous stability proofs for large-amplitude stationary solutions 
are concerned, only the following example is known. Consider the problem of 
finding a reaction-diffusion system which has a given function of x as stable 
stationary solution. This inverse approach has been successful to an extent, as 
shown by the following result (Fife (1977b)). 

THEOREM. Let <J>: R-*R be a bounded nonconstant function such that 
<>" = F(<l>)for some C2 function F. (Then from symmetry considerations, <j> will 
be periodic, peaked-with a single maximum or minimum and limit as \x\ -> 
oo-or monotone.) Let ty satisfy </> = cx\^ + c2, cx > 0. Let k > 1. Then there 
exist functions f(u, v), g(u, v) such that (<ƒ>, \p) is a marginally stable (lin. crit.) 
stationary solution of 

ut « uxx + f(u, v), vt « kvxx + g(u, v). 

In the cases when <j> is peaked or monotone and F'(<f>i) > 0 f° r anY limit <fo 
of </> as x -> ± oo, then (<£, \p) is strictly stable in the sense of §2. 

The functions ƒ and g can be given explicitly; and u and v can be 
interpreted as an "activator" and "inhibitor", in the sense that 

fu(<t>, *)>0, &(fc*)>0, 
with the opposite inequalities holding forfv and gv. Furthermore the fact that 
k > 1 (which is an essential hypothesis) means that the inhibitor v has "larger 
range" than that of the activator u. The activator-inhibitor properties of the 
Gierer-Meinhardt system, in fact, were the guiding principle behind the above 
construction. 

In the proof of the above result, a stability criterion of Sattinger (1976a) is 
used. Briefly paraphrased, the criterion is that the operator obtained by 
linearizing the right-hand side of (4.1) about the given solution have spectrum 
to the left of, and bounded away from, the imaginary axis, except for a simple 
eigenvalue at the origin (which must always exist, because of the autonomous 
nature of the system and the infinite domain). Certain other reasonable 
conditions on the spectrum are also required. The stability criterion applies to 
traveling waves in general. But to my knowledge, this is the first application 
of Sattinger's theorem to a system of more than one equation. The required 
properties of the linearized operator are established by using known spectral 
properties of the second order operator Lw = w" - F'(<f>)w. 

(c) Larger amplitude solutions: asymptotic methods. The methods of 
asymptotic analysis open a rich field of opportunities for the construction, on 
a formal basis, of stationary solutions of (4.1) (the same is true of traveling 
wave solutions, as we shall see). These methods are sometimes applicable 
when small or large parameters appear in the matrix D or function ƒ. Their 
purpose is to reduce the analysis of a given system (4.1) to the analysis of a 
lower order one, possibly with the additional complication that solutions of 
the lower order system may have to be patched in some manner. Such a 
reduction, which exploits the smallness of the parameter, is generally only 
formal and approximate. However in some cases (Fife (1976a), for example) it 
can be justified, in the sense that an exact solution which is close (distance 
related to the small parameter) to the formal solution can be proved to exist. 

The procedure can best be seen by considering a pair of equations, one of 
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them with small diffusion coefficient e2. Looking for stationary solutions, we 
drop the time derivative: 

e2au+f(u,v) = 0, (4.5a) 

At; + g(u, v) - 0. (4.5b) 

As a first approximation, we look for a pair (u^x), v^x)) satisfying, for all x, 
this pair of equations with e « 0: 

ƒ K v0) * 0 (4.6a) 

At>0 + g(uo, v0) « 0. (4.6b) 

If the first equation may be solved for UQ, say u0 = h(vQ), then this latter 
problem reduces to a single equation 

and we can seek patterned solutions of the latter. But they are unstable within 
the confines of that single equation, as we have seen in §3. 

A more promising situation occurs when (4.5a) has more than one solution, 
u0 * A,(t>0)> i' x h 2. Then the possibility exists of using the function hx (say) 
to obtain a first approximation for some values of x, and h2 for others. Thus, 
for two subsets <$>, and % of Rrt, 

At>o + g(hi(v0)9v0) « 0 ia% (4.7) 

This idea is explained for the case of one space variable in Fife (1977a). 
There, 6D, and <3)2

 a r c infinite collections of intervals alternating one with 
another. The lengths of the intervals may not be chosen arbitrarily, as we 
shall see. Since u0 * h;(v0) and v0 is continuous, this first approximation 
shows u0 to be discontinuous in passing from one interval to adjacent ones. 

The actual solution is not discontinuous, of course, but rather exhibits a 
layer effect (an abrupt transition in an interval of width 0(e)) at these 
transition points. Further information can be obtained by matched asymp­
totic analysis. This technique proceeds by recognizing that the solution has 
two natural length scales: one is the original length scale used in setting up 
the problem, and the other measures length in units smaller, by a factor c, 
than the original units. The solution u in the transition layers is found by 
using the smaller length scale. This is done by defining £ * (JC — x0)/e, where 
x0 is the location of any transition point from an interval of <3), to one of )̂2» 
and rewriting (4.5a) in terms of |: 

% + / ( " > t $ ) « 0 . (4.8) 

Here v is the value of v at the transition point. Now v^x) is a solution of (4.7) 
and is therefore continuous with its first derivative, even though the nonlinear 
term in the equation is discontinuous. Therefore v is well defined. 

In standard parlance, "matching" conditions must be imposed on the 
solution of (4.8). They constitute boundary conditions at £ = ± oo, and are 
(if the transition is from <3), on the left to ^ 2

 o n ̂ e right, say) 

lim « ( Ö = A,(Ü), lim u(t) = A2(t3). (4.9) 
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It turns out that (4.8), (4.9) has a solution if and only if the following 
condition is satisfied: 

(h2Mf(u9v)du=0. 

This condition will, in the simplest cases, be satisfied for only one value of v, 
and will therefore serve to determine the value of v0 at the transition points. 

The problem for the first approximation t>0 has now been reduced to the 
following: Solve (4.7), subject to the condition v0 = v on the boundaries 
between % and %. Of course, the sets eÙi are to be determined in the 
process. 

An alternate formulation is possible, if the functions G^v) = g(A,(t>)> v) are 
each of a single sign, the sign being opposite for i = 1 and 2. Suppose, for 
example, that Gx{v) < 0 < G2(v) for all v. Then the maximum principle 
implies that any solution of Av0 + G,(t>0) = 0 in <*D,, v0 = v on 3^)„ must 
satisfy vQ(x) < v in the interior of fyx. Similarly v0 > v in <>D2. Thus our 
problem becomes 

At;0+ G(%) = 0 inR", (4.10) 

where 

[ G2 (v), v > v. 

In Fife (1977a) conditions were given under which it is reasonable to expect 
the existence of a one-parameter family of periodic solutions of this problem, 
in one space dimension. Moreover, further conditions were given under 
which, according to a heuristic argument, the resulting patterns will be stable 
with reference to the original system (4.1). 

It seems reasonable to expect that doubly periodic solutions exist when 
n = 2. A special example is the case when v * 0, G{(v) = 1, G2(v) = — 1. 
Let S be any square in the (x„ x2) plane. Solve the Dirichlet problem 
Au0 * - 1 in 5, v0 = 0 on 35. Then continue v0 as an odd function with 
respect to each of the four sides of S. In adjacent squares, the continued 
function will satisfy At>0 * 1 » — G2(v0). Continuing in this way, we obtain a 
checkerboard pattern with u0 alternately h^v^ and /̂ (̂ o) o n the squares (see 
Figure 3). Such a solution is possible for any size of square. 

Now let us perturb the problem by having G{(v) = 1 + c, with G2 remain­
ing — 1, and conjecture about the fate of the original pattern. The symmetry 
is destroyed, and such a rectilinear checkerboard pattern is no longer possi­
ble. But it is plausible that patterns with curvilinear sides appear, as shown by 
the dotted lines in Figure 3. The effect of the curves will be to reduce the size 
of those "squares" wherein At>0 = - Gï9 relative to the others. Such a 
reduction is necessary, for the following reason. The pattern is constructed by 
periodically repeating the basic configuration of four adjacent "squares." Call 
this block of four the domain T. By periodicity, 0 = /arC^o/^) &> where 
dv0/dv is the outward normal derivative. But this line integral is equal to 

ƒ ƒ àv0 dx= - ƒ ƒ G(v0) dx= - ƒ ƒ (1 + e) dx + ƒ ƒ dx, 
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where 7} is the diagonal pair of "squares" in the block where G - Gê. Thus 

which means that the "squares" in T, must be smaller in area than those of 
T2, by a factor 1/(1 + e). 

^4 
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FIGURE 3 

5. Plane wave trains. Plane wave trains are defined as solutions of (4.1) of 
the form u(x, t) = ü(x • v — ci), where it is a periodic function of the single 
variable x- v — ct, c is the velocity, and v is a unit vector (the direction of 
propagation). It clearly suffices to pose the problem in one space dimension 
(distances measured in the direction of v), and we shall do so. Letting k equal 
the wave number (k = 27r/wave length) and setting cô = — kc, we have that 
wave trains are 277-periodic functions of the variable z = kx + cot. Here w is 
the frequency of oscillation at any fixed value of x. Setting u * U(z), we see 
that (4.1) becomes 

k2DU" -uV' +ƒ(£/) = 0, (5.1) 

The frequency to is conceptually distinct from to = Im \kx defined previously 
in §4(a). 

Chemical concentration wave trains have been observed (Zaikin and 
Zhabotinsky (1970)) in solutions supporting the Belousov reaction, one of the 
better known "exotic" chemical reactions capable of producing oscillations 
and other effects. The observed patterns were circular rather than planar, but 
it is clear that plane wave trains approximate the observed ones at large 
distances from the center. 

The mathematical analysis of plane wave trains is due principally to Kopell 
and Howard (1973). (Gmitro and Scriven (1966) had much earlier observed 
that a linearized analysis of reaction-diffusion equations suggests the possibil­
ity of small amplitude wave trains.) Kopell and Howard proved the existence 
of families of small amplitude ones under certain circumstances, and also the 
existence of long wave-length trains under the assumption that the kinetic 
equations 
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du/dt=f(u) (5.2) 

have a stable limit cycle. Ortoleva and Ross (1974) also studied these two 
types of wave trains in their treatment of chemical wave phenomena. 

In both of these references, the authors point out that the small amplitude 
wave trains constructed are necessarily unstable. The reason for this can be 
seen by reference to the framework in our §4. Consider the linear equation 
(4.3) and the eigenvalue ti{(k

2, X) defined therefrom. The assumptions made 
by the above authors differ from our Assumption A in that (ii) is replaced by 
the condition that 3a (k$, X^/dk2 ^ 0, so that there are values of k near k0 

for which a > 0. This implies that every bounded solution of the linearized 
version (4.3) is unstable, because an exponentially growing solution with an 
unstable wave number k can always be added to it. Likewise, every small 
bounded solution of the nonlinear equation (4.1), (4.2) will be unstable for X 
near X& for by continuity, the spectrum of the operator linearized about it will 
also contain points in the unstable half-plane. 

Nevertheless, it is undoubtedly true that stable small amplitude wave trains 
do sometimes exist, and that they can be obtained as bifurcating solutions 
when Assumption A holds, with <o0 ^ 0. We explore this in §5(a). 

§5(b) will involve the question of wave trains obtained from a limit cycle; 
we follow Ortoleva and Ross in calling them "wave extensions from homoge­
neous oscillations." In §§5(c), (d), we point out that wave trains have been 
shown to exist for special equations: those of nerve impulse propagation and 
those of predator-prey dynamics. 

(a) Small amplitude wave trains. The function ƒ is taken to depend on a real 
parameter X as in (4.2). We make Assumption A, and also suppose co0 =£ 0. 

The problem is to find a family of 27r-periodic solutions of (5.1), allowing 
the possibility that in this family, relations may be necessary between the 
parameters cö, À, and the "amplitude" e. Actually, we shall also allow k to 
vary. In the treatment given by Kopell and Howard (1973), X did not enter 
into the problem in the first place, so in our context would be held fixed, and 
the relations were such that k and tô depended on 6. Then specific conditions 
on D and A were given under which a bifurcation of wave trains takes place. 
In our treatment, X and <ô will depend on the two independent parameters e 
and k (e and k — k0 restricted to be small enough). 

If the matrix k\D is nonsingular, then (5.1) may be written as a system of 
2m first order equations, and the existence of the required solutions proven as 
in Kopell and Howard (1973) through use of the Hopf bifurcation theorem. It 
is practically as easy, however, to show that at least one proof of the Hopf 
result goes through when suitably modified to handle (5.1) directly, rather 
than a system of first order equations. We shall sketch how this proceeds, 
using an argument along the lines of that of Crandall and Rabinowitz (1978). 

As stated, we operate under Assumption A with <o0 ^ 0. We take A0 = 0, 
k0 7* 0. Thus, the matrix H0 = - k\D + A has algebraically simple eigenval­
ues ± /<o0, and H(k2, 0) = - k2D + A has no other purely imaginary eigen­
values for any value of k. Let $ be a suitably normalized eigenvector of HQ, 
associated with /<o0. In the space of real continuous 27r-periodic functions of z 
(call it CJ), the operator 
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LU = k\DU" - u0U' + AU 

has a two-dimensional nullspace spanned by 

<f>i = ï ( ^ t ó + i<r /2) = Re $e* 
and 

It can also easily be shown (Crandall and Rabinowitz (1978)) that the 
adjoint operator L*U = k\D*U" + w0U' + A*Uhàs nullvectors \px(z) and 
\p2(z) ™ ^i(z) with the properties 

(*/>*) = **, (5-3) 
where the expression on the left is the scalar product in £2(0, 2TT). 

We look for a 27r-periodic solution of (5.1) in the form 

U = £(</>, + w), (5.4) 

where w is orthogonal to span{$l9 <f>2}
 x nullspace of L. This is analogous to 

the procedure outlined in §4(a). The results are also analogous to a certain 
extent, but are actually simpler because in the present case there is an extra 
adjustable parameter, in the form of the frequency to (of course, we pay for 
this because the presence of the first derivative term in the equation destroys 
a reflection symmetry the equation originally had). 

We substitute (5.4) into (5.1), and at the same time set k2 = k\ + q, 
w ~ <o0 + £, and h(u, e) » g(eu)/e2, where g is from (4.2). Thus 

Lw - £(<*>! + w') + A5(<J>, + w) + qD(tf + w") + ehfa + w,c) = 0. 
(5.5) 

Let Pt (1 * 1, 2) denote the orthogonal (in the sense of £2(0, lir)) projection 
onto span{^}, and Q =* I - Px - P2. Then (5.5) may be decomposed into 
three components, obtained by applying, in turn, the three projections Q, P„ 
and P2. The operator L, being Fredholm, satisfies PtL * 0, QL = L. We 
therefore obtain (setting <j> * <£,) 

Lw + Q { -£(<*>' + M/) 4- A5(4> + H>) 

+ ?£>(</>" + w") + cAfa + w, c)} - 0, (5.6a) 

- J W + M W * 1̂ {$y - Mïw - ?£(<*>" + H>") - cA}, (5.6b) 

~£P2*' + AP22?</>-P2 { . . . } . (5.6c) 

Let us be a little more precise about the domains of the above operators. 
We let Cf be the space of functions on R, continuous with their derivatives to 
order j , and 27r-periodic. The usual Cy norm is used. Let X denote the 
£2(0, 277)-orthocomplement of span {</>„ <J>2} in C£, and Y « gCJ. We inter­
pret L as an operator from X to Y. If D is nonsingular, which we assume, 
then it is known that L has a bounded inverse. 

Now (5.6a) may be solved for w as a function of the four small parameters 
f, X, q and c. This can be done by the implicit function theorem, using the 
invertibility of L. 
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With w so determined, we solve (5.6b), (5.6c) for f and X as functions of e 
and q, again by the implicit function theorem. This is a triviality, once one 
realizes that (5.3) implies Px<$> = 0, Ptf>' i* 0, and that condition (iii) of 
Assumption A implies PXB$ =£ 0 (Fife (1977a)). 

With this, the following theorem is obtained. 

THEOREM. Under Assumption A and the additional assumption that co0 *£ 0, 
k0 ^ 0, and D is nonsingular, there exists a two-parameter family (U(z; e, k\ 
X(c, k), <ô(e, k)) of solutions of (5.1), defined and continuous in (e, k)for small e 
and \k - k0\, such that 

(i) U is In-periodic in z, 
(ii)Maxz|£/| **,_ 
(iii) A(0, k0) * XQ, CÖ(0, k0) - <o0. 

If we now allow that k0 « 0 and/or D be singular, then a formal solution 
can still be found in powers of e and q, though its existence has not yet been 
proved. 

The stability of the wave trains so constructed has yet to be investigated in 
detail, but there appears to be little doubt that some of them will be stable. As 
mentioned in the preceding section, the correct approach for a linearized 
stability analysis of them was given in Kopell and Howard (1973). 

(b) Wave extensions from homogeneous oscillations. We now suppose that 
the kinetic equations 

du/dt=f(u) (5.7) 

have a limit cycle, u = u^t), with some minimal period T ~ 2TT/<O0. We 
assume it to be stable, in the sense that the Floquet matrix of the linearized 
system 

dy/dt-f(u0(t))y 

has 1 as a simple eigenvalue, and all other eigenvalues X have |\| < 1. 
Again, we seek 277-periodic solutions of (5.1). There turns out to be a 

family (Uk9 û>k) of such solutions, parameterized by the wave number k, and 
defined for small k (hence large wave length). As k -» 0, Zik -» <o0 and Uk 

approaches the originally given periodic solution, U^tf) = u^t). At the 
same time, their velocity c « û/k -* oo. 

The existence of these rapid long wave-length wave trains has been estab­
lished by a variety of methods, two of them found in Kopell and Howard 
(1973) (K-H). Ortoleva and Ross (1974) (O-R) indicate that the question can 
be formulated as a singular perturbation problem for which the hypotheses of 
an existence theorem of Wasow (1965) can be verified. The existence then 
follows from that theorem. These authors also give an asymptotic method for 
the construction of approximations, based on the smallness of k. 

As expected, a simple stability criterion has not been given, except in the 
special case of X — <o systems (see below). The analysis of this case tells us 
that the wave extensions of stable limit cycles are often, but not always, stable 
for all small values of k. 

Kopell and Howard (1973) introduced a special class of systems of reac­
tion-diffusion equations, called "X — <o systems." They have proved very 
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ƒ(«) 

instructive, because on the one hand, they exhibit much of the rich variety of 
phenomena one expects from more general systems with m > 1, and yet on 
the other hand, important solutions of special types (wave trains, target 
patterns, homogeneous oscillations) admit a far more complete analysis than 
is generally the case in systems with m > 1. 

This type of system has m = 2 in (2.1), and 

X(r), -<o(r) 

<*(r)> Kr) \[U2 

where r2 « |w|2, and X and co are any given functions of r. 
As regards wave train solutions, global families (not just families with small 

amplitude or large wave length) can be exhibited (K-H, O-R), and their 
stability analyzed (K-H). 

There may exist wave trains with the properties both of those treated in our 
§5(a), and of those in 5(b); that is to say, with small amplitude and long wave 
length. This situation is simply that in 5(a) with the exception that k0 * 0. 
Now one looks for solutions depending on two small parameters, namely the 
wave number and the amplitude. The parameter X must also be sought as a 
function of these two parameters. This, of course, is the case when the kinetic 
equations (5.7) undergo a Hopf bifurcation at X = XQI whereas a trivial 
solution u = 0 exists for all X, other periodic solutions of (5.7) appear when 
X > Xo- A formal analysis shows rapid wave trains to exist as well. 

(c) Wave trains in excitable media. Wave train solutions of the Hodgkin-
Huxley and FitzHugh-Nagumo systems from neurophysics have been shown 
to exist. This work will be discussed in §7, along with pulse solutions of the 
same systems. 

(d) Wave trains for predator-prey equations. Consider equations of the type 

ut « auxx + uf(u, v), vt * bvxx + vg(u9 v). 

These can be interpreted as classical predator-prey equations {u being the 
prey density) with spatial diffusion added, if fv < 0 and gu > 0. Conley and 
Smoller (in preparation) have proven the existence of wave train solutions 
when certain conditions are satisfied. For example, their theorem holds when 

(1) the zero sets of ƒ and g are as shown in Figure 4 so that all orbits of the 
corresponding kinetic equations tend to a rest point on an axis (at least one 
species always goes extinct), and 

( 2 ) a » b. 
In this peculiar way, the presence of diffusion can prevent extinction. 

1 

FIGURE 4 
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6. Plane wave fronts. As with wave trains, fronts are solutions which depend 
on the single combination of variables z = x- v — et: u = U(z). But rather 
than being a periodic function of z, a front approaches distinct limits as 
z - • ± oo. As we have seen in §3, fronts and combinations of them account 
for all the known nontrivial stable asymptotic states for the scalar nonlinear 
diffusion equation. They undoubtedly form an important class of states for 
systems as well, but at present not many results are available. 

Of course, wave fronts must connect two rest states of the kinetic equations 
(5.2), in that f(U(±oo)) = 0; this can be seen by passing to the limit as 
z-+ ± oo in (5.1). Moreover, it is easy to see that for a wave front to be 
C0-stable for (4.1), it is necessary for the two rest states U(± oo) to be stable 
for (5.2). With these two necessary conditions in mind, one can now for­
mulate the converse problem: 

Problem. Given two stable rest states U_ and U+ of (5.2), find conditions 
under which there exists a wave front U(z) with U(± oo) = U±. 

To my knowledge, the following are the only (partial) answers to this 
problem, for systems of more than one equation. 

(a) Gradient systems. If the function ƒ can be written as a gradient with 
respect to u, 

/(«)-VA(«) 
for some scalar function h, or more generally if (f(u), Vh(u)) > 0 for 
Vh(u) T^ 0, and u$ and ux are local maxima of A, then under nonrestrictive 
hypotheses, Conley (1977, IV.3.2) has shown that there does exist a wave 
front connecting u^ to ux. For simplicity, we state his result for the case when 
D = d0I (d$ a scalar), though it is readily generalizable to other cases. 

THEOREM. Assume the above, where h: R" -» R1 is smooth and satisfies 
(1) A(w)-> — oo as \u\ -» oo, and there exists a {negative) constant C0 such 

that {u\h(u) > C) is convex whenever C < C0. 
We normalize so that h assumes its absolute maximum at 0 = w0, and the 

maximum is 0. 
(2) 2h(u) + (w, Vh(u)) < Ofor u^O. 
(3) h has a local maximum at uu and for some constant Cx < h(u{), the set 

{u\h{u) > C,} contains only two critical points, namely 0 and ux. 
Then (4.1) has a solution of the form u = U(x — ci) for some c > 0, with 

t / (-oo) = 0, t/(oo) = ii,. 

Conley's methods, crudely stated, are based on algebraic properties of 
flows which remain invariant under certain deformations. These methods 
have had applications in many fields. See Conley (1978) for the most 
complete account. 

(b) Small amplitude fronts. Bifurcation of wave fronts can occur in a setting 
very similar to that of bifurcation of stationary periodic solutions in 4(a), or 
bifurcation of wave trains in 5(a). We again assume a parameter dependence 
of the form (4.2), and again subscribe to Assumption A. We suppose that 
wo = ^o = 0. This means that the matrix A has 0 as an algebraically simple 
eigenvalue, with corresponding eigenvector O. Also for simplicity, assume 
that XQ = 0. This is the setting in which periodic long wave-length stationary 
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solutions may exist, as shown in §4(a). Now we show that slow wave fronts 
can also exist, provided the function g in (4.2) is cubic, rather than quadratic, 
to lowest order in u (or, satisfies (3) below, which is more general). 

Our specific assumptions, in addition to Assumption A, are as follows. 
Here we denote by ^ the unit real nullvector of A*9 the transpose of A. 

(1) a = (/>$, * ) ^ 0 , 
(2)0 ==(2*$,*) 9*0, 
(3)lim€^o€-2(g(6$),*) = 0, 
(4) T> = lime^€-3(g(e<ï>), *) * 0, 
(5) ap > 0 and fa < 0. 
The slow fronts can be constructed as functions of the variable £ = e(x — 

< *ce0> and take the form 

H ( x , 0 - e M r ) * + Ar.(O). (6-1) 
'here at is a scalar function satisfying 

lim at(n = 1 (6.2) 

(this normalization condition really serves to define e), and ($, we(£)) = 0 for 
each £. Of course, e is a small parameter and the quantities ae, we, and ce can 
be formally expanded in powers of £. At present lacking an existence proof 
toi the solution (one could probably be provided), we simply describe the 
process of obtaining the formal expansion. 

We substitute (6.1) into (4.1), using (4.2) and at the same time setting 
À - e2^ The result is the following equation for w, a, and y: 

Aw + [D(a$ + e2*)" -f yB(a$ + e2^) 

+ h(a<}> + e V e) + eca'Q + e2cw') « 0, (6.3) 

where h(v, e) = t~*g(ev). 
For the existence of a solution, the quantity in braces must be orthogonal 

to 4f at each point f. Considering the above definitions of a, /?, rç, we obtain 
tht equation 

aa" + y fa + r^a2 + e[ca'($, * ) + (3eA(«*, 0), * ) + 0(e)] - 0. (6.4) 

Setting £ = 0 we obtain an equation satisfied by our lowest order ap­
proximations a0, y0 to a and y: 

"o + Y 0 7 "o + ~ «o = 0. (6.5) 

If y0 > 0, the function 

r , v Yo/3 . Î? 3 

has zeros at a0 = 0, ± V - To/V1? • Moreover by the discussion in §3, there 
exists a solution of (6.5) with aQ(± 00) = ± V - Yo/*A • (Th*s can be 
considered a wave front solution of a scalar nonlinear diffusion equation (6.5) 
with zero velocity.) Because of our normalization condition (6.2), we must 
require 
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Yo- - Î Î / 0 > O , (6.6) 

so that a0(± oo) = ± 1. 
In addition to (6.2), we also normalize az by translating the independent 

variable £ so that 

ae(0) - 0. (6.7) 
This, applied to a0, serves to determine the latter uniquely. 

With the orthogonality condition satisfied to lowest order, the first ap­
proximation w0 to w may be obtained from (6.3) with 6 = 0. There exists a 
unique solution with (w0(f ), ^) = 0. 

To obtain higher order approximations, we imagine that 

«an - *6(f) + **i(f) + • • •. K(n = Mn + w,(r) + . . . • 
with similar expansions for c and y. 

Then from (6.4), 

Lax = aa'{ + y0/3âf, + 37jtf0(f )
2a, 

- - Ti iSflö + ^ ( < D , * ) - (a.A(iio*» 0), * ) , (6.8) 

with a,(oo) = 0, a ,(0) = 0. 
It turns out that L, as an operator in C0(-oo, oo), has a one-dimensional 

nullspace spanned by a^ and that the equation La = p, p E Q, has a 
solution if and only if 

•'«-»oo 

We may deal with (6.8) by means of the following procedure, 
(1) Choose y, so that (6.8) is satisfied when a'[ » a, * a'0 » 0, a0 « 1. This 

will guarantee that any solutions we eventually obtain will satisfy a{(oo) * 0. 
(2) Choose c0 so that the right-hand side of (6.8) is orthogonal to a'^ as 

described. This is clearly possible, since ($, ^) ^ 0 (by the algebraic simplic­
ity of the 0 eigenvalue of A). Then (6.8) will be solvable, and the solution will 
be unique up to an additive multiple of a'0. 

(3) Choose the additive multiple so that 0,(0) =•= 0. 
Higher order terms are now obtained in any orderly fashion. 
The peculiarity of this problem is that two quite distinct orthogonality 

conditions are used to effect successive reductions. The first, applied to (6.2), 
gives an ordinary differential equation (6.4). The second, applied to (6.4), 
gives us an equation for c. 

The small-amplitude wave fronts so obtained serve to join uniform rest 
states of (4.1), i.e., zeros of /(w, X) * (A + XB)u + g(u). These states can be 
obtained quite independently of the above, by standard bifurcation argu­
ments. In fact there exists, besides the trivial solution u * 0, a one-parameter 
family of rest states (we, \) (solutions of ƒ(«, A) « 0), defined for |e| < e0. 
Moreover, for each \> XQ with (A - XQ) small enough, there exist two 
numbers e±(A) with e_(A) < 0 < e+(A) and A^ = A. The wave front indi­
cated in the above theorem represents a transition from the rest state ut to 

For the wave front to be stable, we need to have these rest states stable 
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solutions of the kinetic equations (5.2). Again, bifurcation theory tells us that 
will be true if the bifurcation is "supercritical," i.e., if \(e) = e*y(e) > 0. But 
this is assured by (6.6), a consequence of our Assumption 5. This is only a 
necessary condition for the fronts' stability, and does not prove it. But it does 
lend a great deal of plausibility to the idea that they are stable. 

(c) Systems with small parameters. A number of types of wave fronts can be 
formally constructed by techniques of matched asymptotics, which techniques 
also yield heuristic stability arguments. These possibilities have been explored 
by Ortoleva and Ross (1976), Fife (1976b, 1977c) and Feinn and Ortoleva 
(1977). 

Moreover, in many cases, rigorous existence proofs for fronts like these 
have been obtained by Kurland (to appear) using topological methods due to 
Conley and others. 

Here we shall be content to give an intuitive description of an example 
from one category of wave fronts which can be handled. 

Consider the following system of two equations with small parameter c: 

"/ = Oijcx + £ 

+ g(u, v). 

(6.9a) 

(6.9b) 

We assume the system has stable rest states (0, (0,0)), and (1,1). Thus ƒ and g 
vanish at these two points. Let us assume the level lines ƒ » 0 and g * 0 have 
the structure shown in Figure 5. 

U> ' 

~7 

V 

if / 
if / I' / 

, 0 

./:-'' 

/fft) 
/ V ° X 

u * A. M 

U 

FIGURE 5 

We look for solutions of (6.9) of the form u = U(z, e), v = V(z9 c), where 
z = x ~ cty and where for each e, ((/, V) passes from (0,0) at z = — oo to 
(1,1) at z = + oo. 

Taking a clue from the transition layer phenomena considered in §4(c), and 
using time-honored procedures from asymptotic analysis, we proceed under 
the ansatz that U and V are describable naturally in terms of two length 
scales, the smaller one appropriate in an abrupt "transition layer" or "shock" 
region, and the other one elsewhere. 

First, we find an approximation away from the sharp layer. For this 
purpose, we substitute u = U(z)9 v * V(z) into (6.9) to obtain 

£2£Z" + ecU' + f(U, V) = 0, (6.10a) 

V" + cV' + g(U9 V) = 0, (6.10b) 
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and then set e = 0 to obtain ƒ(U, V) = 0. This means that (U, V) must lie 
approximately on the nullcurve ƒ * 0 in Figure 5. The middle, descending, 
part of that curve is a repeller for the kinetic equations ut = e~lf(u, v), vt « 
g(w, v% so we expect the solution cannot stay there in its region of slow 
variation. With the middle portion excluded, there remain the two ascending 
branches, expressible in the form u = h±(v) (as shown). The transition layer, 
with smaller length scale, provides a means for the solution to pass from one 
branch h_ to the other, h+ (as shown by the dotted line in the figure). Such a 
transition is clearly necessary if the orbit is to connect the two rest states (0,0) 
and (1,1). 

We normalize by letting z = 0 be the location of the transition layer. Thus, 
outside this small layer and for z < 0, the variables U and V are related 
approximately by f /= A_(F). Away from the layer for z > 0, however, 
approximately U = h+(V). As z -» ± oo, the rest points (0,0) and (1,1) are 
approached, as shown in Figure 5. 

As in the situation analysed in §4(c), V will not change abruptly in the 
layer, so we may speak of the value of V at the layer, say V(0) = co. The 
equation for K, then, is obtained from (6.10b) and the above expression for 
U: 

V" + cV'+ G w ( F ) - 0 (6.11) 

where 

G (V) J^A- ( K ) 'K) ' V<U 

\g{h+{V),V), V>o. 

This is the equation for a wave front solution of the scalar diffusion 
equation vt * vxx + Gw(t>), analogous to (3.1). By assumption V ** 0 and 
V = 1 are both stable rest points for Vt • GW(F), so we are in the bistable 
case. Hence there is a unique solution ( V(z), c), depending on w of course. 
Let/? denote the functional dependence of c on to: c » p(co). 

We now examine the internal structure of the transition layer by using a 
smaller length scale. For a first approximation, we set z • ej, F • w, in 
(6.10a) to obtain 

utt + cU$ + / ( ^ w) ~ °- (6-12) 
The procedure of matched asymptotics requires the boundary condition 

C/-*A±(co) as f -*±oo. 

Again, this is a scalar wave front equation with unique velocity c, depend­
ing on w: c = q{w). 

For (6.11) and (6.12) to have solutions satisfying the required boundary 
conditions, it is therefore necessary that to be chosen so that/>(<o) * q(co). In 
the situation shown in Figure 5, it is reasonable to expect that p is an 
increasing, and q à decreasing, function of w, and that both functions assume 
values of both signs. If this is indeed the case, then there will be a unique 
value of (o so determined. This completes the lowest order analysis of this 
type of wave front. 

A heuristic argument can be given affirming the stability of this and similar 



718 P. C. FIFE 

types of fronts constructed by asymptotic analysis (Fife 1976b). 
(d) A model from population genetics. Wave fronts in nonlinear diffusion 

problems were first introduced by Fisher (1937) in connection with natural 
selection in a biological population. As model, he used a scalar equation (§3). 
So it may be appropriate that we devote a brief discussion here to a rather 
special reaction-diffusion system which provides a (presumably more ac­
curate) model for natural selection with spatial diffusion, and which formally 
reduces to the Fisher equation when the selection parameter e approaches 0. 
Conley (unpublished) has shown the existence of a wave front solution of this 
model system in cases when the corresponding scalar equation is of the 
bistable category, so has a stable front. 

First, we consider a diploid population distributed continuously in space 
and time, separated into three subpopulations according to a simple genetic 
classification. We focus attention on one gene locus on a pair of chro­
mosomes, and suppose that the locus may be occupied either by allele a or by 
allele A. There result three classes of individuals (genotypes), denoted by aa, 
aAy and AA. Let */,(*, /) (1 = 1, 2, 3) be the densities of these three types, and 
w = M, + «2 + u3 the total density. For simplicity of the following argument, 
we suppose that w is constant in x and t (this constant can be thought of as 
the carrying capacity of the population, assumed independent of the composi­
tion ii,.). This assumption is not necessary, however; see remarks below. 

Our formulation of the dynamical equations for the ut is a generalization of 
that of Aronson and Weinberger (1975). With u » («„ u2, u3), we let r(u) be 
the birth rates for the population as a whole (by assumption of constant size, 
it is also the death rate), /?,(u) the fractions of the three genotypes among the 
total births, and 8y(u) the fractions among the total deaths. 

So if D is the spatial diffusivity, the three dynamical equations are 

uu - DuitXX = wr(fi, - *,), i - 1, 2, 3. (6.13) 

Dividing by w, we get similar equations for the "frequencies" t),- * ut/w. The 
frequency of allele a in the total population is given by p =•= 1;, + \ v2. For it, 
we have the equation 

p, - Dpxx * r(fit + \ P2 - 8, - \82). (6.14) 

In the absence of any natural selection, we would have Ô, * vi9 /?, = p2, 
& " 2p(l — /0, 03 x 0 "" P)2- These are the proportions resulting from 
random mating, equal fecundities, and equal death rates. But we assume weak 
selection as follows: 

8, « v,(l + ey,(v)), A * P2(l + «»,(•)), 

A - 2 J p ( l - J p ) ( l + eii2W), 

0 3 - O - / O 2 O + *Î3(v)), 

for some functions Y„ i - Necessarily 

p \ + 2p(\ - p)i}2 + (1 - p)2i)3 - U,Y, + v2y2 + v3y3 * 0. (6.15) 

Then (6.14) becomes 

P, ~ DPxx « e*(y), (6.16) 



EQUATIONS OF REACTION AND DIFFUSION 719 

and (6.13) with / =* 2 becomes (setting v * v2) 

v, - Dvxx « r(v)(2/>(l -p)-v) + ek(v), (6.17) 

where A and k are functions of v. 
Now we nondimensionalize by letting r0 be some reference rate (such as the 

maximum of r(v)), and by defining r ~ er0t, £ « yzrjD x, p(v) = r(\)/r0. 
Then (6.16, 6.17) become 

/ > , - / > « - * ( • ) , (6.18) 

«fa - % ) * P W ( 2 / > 0 -p)-v) + ek(v). (6.19) 

This is our basic system of equations. If we discard the assumption that w is 
constant, then a third equation (for w) must be added. 

As a formal approximation, we set e ~ 0 to obtain v * 2p(l - /?). It 
follows that ü, * />2, v3 = (1 - /?)2, or in other words v « \(p) (so-called 
Hardy-Weinberg proportions). Letting f(p) = h(V(p)), we obtain the single 
equation 

Pr-Ptt-f(P)' (6-20) 
This is like the equation of Fisher considered in §3 (though he used a 

special case). It can be checked that ƒ (0) — f (I) «= 0, and that ƒ may or may 
not have other zeros in (0,1), depending on the relative magnitudes of 

i?i(V(/0)-Y,(V(/0) A 7 , 3 - Y 3 
T—p , V2-y2 and —y- . 

In some cases, for example, (6.20) will have stable wave front solutions. Let 
us assume it does. It may then be asked, since (6.20) is a formal approxima­
tion to the pair of equations (6.18) and (6.19) for small e, whether the latter 
pair will then also have a wave front solution which approximates the former 
in some sense. Suppose ƒ has three simple zeros, as in §3, so that (6.20) 
supports a stable front. C. Conley's methods provide a conceptually simple 
proof of this front's existence, and have the advantage that this proof can be 
readily extended (Conley, unpublished) to yield the existence of a front 
solution of (6.18) and (6.19). 

7. Pulses. A pulse is a traveling structure whose profile approaches the 
same limit at ± oo. Thus, as distinguished from a front, the reacting medium 
returns to its original state after a pulse traverses it. Signals propagating along 
a nerve axon are very successfully modeled by pulse solutions of the Hodgkin-
Huxley (HH) or FitzHugh-Nagumo (FHN) systems of reaction-diffusion 
equations, and this, in fact, is the context within which almost all the work on 
reaction-diffusion pulses has been performed. Excellent reviews of this work 
are available (Rinzel (1978), Scott (1975), Hastings (1975), H. Cohen (1971)), 
and so my comments here will be very brief. 

Formally speaking, the HH system is a system of the type (4.1) with m = 4, 
and all elements of D zero except the upper left. The FHN system was 
devised as a simpler approximation to the HH system, and has m — 2, again 
with only one element of D nonzero. Finally, a third system, suggested by 
McKean (1970), has played an important role in modeling signal propagation. 
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It is a modification of the FHN system, in that the nonlinear function 
appearing in the latter is replaced by a piecewise linear one. This was done 
with the idea that the resulting system should (1) be tractable analytically, 
and (2) have solutions with the same qualitative properties as the FHN 
system. 

Both hopes have turned out to be justified for the McKean system; pulse 
solutions of it have been demonstrated, and their stability analyzed (Rinzel 
and Keller (1973), Rinzel (1975), Feroe (1978)). Moreover, the qualitative 
properties of the solutions, established analytically, agreed with those for the 
HH and FHN equations, which had been obtained by others numerically. 
The stability analysis in Rinzel and Keller (1973) was according to the 
linearized criterion, and shows that some of the constructed pulses (the slow 
ones) are unstable. Feroe (1978), building on the work of Evans (1972), 
(1975), has recently established rigorously the stability of other pulses (the 
fast ones). 

In addition, a family of wave trains was also constructed by Rinzel and 
Keller. Again by use of linear stability criteria, some members of the family 
were judged to be unstable, others probably stable. 

The existence of pulse solutions for the HH and/or FHN systems, under 
various restrictions on the parameters of the equations, has been proved by 
Carpenter (1976, 1977b), Hastings (1976a, b), and Conley (1975). As is the 
case for the McKean simplification, there exist two types of pulses: slow ones, 
thought to be unstable, and fast ones, thought to be stable. Establishing the 
stability properties of the pulses has proven to be a more difficult task even 
than their existence, and to date it cannot be said that a completely rigorous 
proof of stability of pulses for the HH and FHN equations has been given. 
Nevertheless, Evans (1972, 1975) has come a long way; he has reduced the 
problem to another criterion, which should be capable of verification, at least 
by use of a computer. At this point there is strong evidence in favor of 
stability for the fast pulse. 

Carpenter (1976, 1977a, 1977b), Conley (1975a, b), and Hastings (1974, 
1976) have also proved the existence of wave trains for the FHN equation, 
and Carpenter for the HH equation. In fact, Carpenter also obtained finite 
wave trains, or AT-pulse solutions. 

Bell and Cook (1977) devised, on physiological grounds, an alternate 
system of Hodgkin-Huxley type with m = 6, and proved the existence of 
pulses and wave trains using the methods of Carpenter. 

Singular perturbation techniques have been applied to the FHN system 
when one of the parameters is small by Casten, Cohen, and Lagerstrom 
(1975). They construct pulses and wave trains of "traveling plateau" type, 
with abrupt transitions at the front and back of each pulse. Another concept­
ual procedure for constructing pulse solutions of certain reaction-diffusion 
systems by a singular perturbation analysis was brought out by Feinn and 
Ortoleva (1977). Their solutions have an abrupt transition at only the leading 
edge. 

A criterion for the existence of bifurcating pulse solutions of general 
reaction-diffusion systems was given by Larson (1977a), but he determined 
that those he constructed are unstable. 
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8. Targets and spirals; slow modulation. Target patterns and spiral config­
urations for chemically reacting and diffusing media are probably the best 
documented experimentally of all the possible nontrivial SAS's (Zaikin and 
Zhabotinsky (1970), Winfree (1972)). Yet their mathematical analysis is very 
incomplete compared with that of the structures we have considered up to 
now in this survey. 

Away from their centers, these patterns appear locally as plane wave trains, 
and this suggests the need for a theory of "slowly varying waves." Such a 
theory, also capable of describing wave trains of other shapes besides circular 
and planar, was laid down and carefully developed up to a point by Howard 
and Kopell (1974, 1977). Their theory begins with an assumed knowledge of 
some one-parameter family of plane wave trains and its dispersion relation; 
out of these ingredients, by means of a formal asymptotic analysis using two 
length and time scales, solutions are constructed which look locally like plane 
wave trains, but globally can be patterned in a great variety of ways. 

Ortoleva and Ross (1974) also gave a perturbation theory, somewhat 
different from the one described above, and capable of describing target 
patterns. In fact if the derivative of the dispersion relation satisfies a certain 
inequality, their analysis will yield (formally) an entire diverging target 
pattern, including the center as well. Greenberg (1976, 1978) made a similar 
observation, and also indicated an asymptotic approach to the analysis of 
rotating spiral patterns. Howard and Kopell (1977) observed that this inequal­
ity is unrealistic for the laboratory reaction producing such patterns, so does 
not necessarily describe a phenomenon which has been observed. 

In the opposite case, when the inequality is reversed, Howard and Kopell 
analyzed the phenomenon of impinging wave trains, which are analogous to 
converging target patterns. In this case, they also have some results on the 
very difficult question of the existence of expanding target patterns for \ — <o 
systems (in preparation). 

Spiral patterns appear to be an important SAS for equations describing 
excitable media. This is evident from numerical computations performed by 
Winfree (1974), using the McKean model system (see §7) with diffusion in 
both equations. An extremely simple cellular three-state model of an excitable 
medium with interactions between neighboring cells was studied by Green-
berg and Hastings (1978), and shown to exhibit spiral patterns. See also 
(Greenberg, Hassard, and Hastings (1978)). In a model with this simplicity, 
one is also able to gain insight into the reason for the appearance of spirals.2 

"Scroll" patterns, three-dimensional versions of spirals, evidently also form 
an important class of SAS's for excitable media (Winfree (1973)), but any 
mathematical analysis of them that exists is primitive. 

A different type of slow modulation phenomenon was explored by Cohen, 
Hoppensteadt, and Miura (1977). Rather than having plane wave trains on 
short space-time scales which are modulated on larger time or space scales, 
they study homogeneous oscillations whose large-scale modulation itself is a 
plane wave. Several possible applications are mentioned. 

The existence of spiral patterns for \ - CJ systems has recently been proved by D. S. Cohen, 
J. C. Neu, and R. R. Rosales, SIAM J. Appl. Math, (to appear). 
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9. Close relatives of reaction-diffusion equations. 
(a) Discrete versions. Spatial migration and reaction processes can be 

modeled in other ways besides reaction-diffusion equations (1.1). In 
population genetics and ecology, populations are often thought of as 
compartmentalized in space, and spatial migration represented by random 
transport from one compartment or colony to nearby ones (for example, see 
Levin (1977)). Spatially compartmentalized models are also used in devel­
opmental biology. In fact, Turing (1953) spoke of cell-to-cell as well as 
continuous diffusion in his pioneering work on cell differentiation. 

These models result in high-order systems of ordinary differential equations 
in place of (1.1). But time is also often discretized. In population genetics and 
ecology, generations or seasons form natural time units for this purpose. It 
seems likely that most of the results mentioned in this paper for reaction-dif­
fusion systems have valid analogs for the corresponding evolution finite 
difference equations, in which space and/or time is discretized. 

(b) Integrodifference equations. The natural selection model referred to in 
§6(d) (see also Aronson and Weinberger (1975)) can be altered by supposing 
that migration, reproduction, and population control occur in separate yearly 
seasons. This is carried out, and the resulting model analyzed in Weinberger 
(1978). 

If one assumes that mating is random, then this alternative has the 
analytically advantageous property that Hardy-Weinberg proportions are 
maintained at all times. As a result, the system of equations for the three 
genotypes may be strictly reduced to a single equation for the frequency of 
the allele a. Since time is discrete, the migration of individuals during the 
course of a year can be represented by a convolution integral over space. The 
result is an integrodifference equation in x and t for a single dependent 
variable u. (Discrete time models such as this, but without continuous spatial 
migration, are common in population genetics.) Weinberger (1978) estab­
lished, for this equation, many of the techniques and results for Fisher's 
nonlinear diffusion equation, including an asymptotic speed of propagation 
and the existence of wave fronts. 

(c) Integrodifferential equations in neurodynamics and epidemiology. Models 
of large-scale neural activity have been formulated in recent years by Wilson 
and Cowan (1973) and others (see Cowan (1974)). A typical example is the 
pair of equations 

-~ =-= -u + F(u, Ku*u - KX2 * Ü), 

-~ - -i? + G(v, K2X*u- K22 * v), 

where "*" denotes spatial convolution, and Kip F, and G are given functions. 
(Here u and v might represent firing intensities of excitatory and inhibitory 
neurons in a cortex.) 

Numerical studies of such models reveal wavelike activity characteristic of 
reaction-diffusion equations. 

Similar models in one and two spatial dimensions have been studied by 
Ermentrout and Cowan (1977) and the existence of stationary spatial patterns 
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demonstrated by bifurcation arguments (as in §4). 
In modeling the geographical spread of a contagious disease, Kendall 

(1965) proposed a system of three integrodifferential equations for the densi­
ties of susceptible, infected, and removed individuals in the population, as 
functions of space and time. Denote these densities by u, v, and w; then the 
equations arc 

ut ~ —au(K * v), vt
 x au(K * v) — bv, wt

 x bv, 

where A' is a nonnegative averaging kernel. Wave fronts for the system have 
been studied by Atkinson and Reuter (1976) and others. The situation is 
similar to that with Fisher's original equation (§3): v = 0 is an unstable rest 
state; under certain circumstances, there exists a critical speed c* > 0 such 
that for each c > c*, a wave front exists with velocity c. Aronson (1977b) has 
shown c* to be the asymptotic speed of propagation of an infection which is 
initially introduced at one location (or more generally, is initially absent for 
x > x0). 

More recently, Diekmann (1977) proved the existence of wave fronts for an 
integrodifferential model based on an epidemic model by Kermack and 
McKendrick, predating and more general than that of Kendall. 

Kendall (1965) also approximated his model by a system of partial dif­
ferential equations, though not of reaction-diffusion type as we have defined 
it. He found that wave fronts exist for this model. See Aronson (1977a) for 
results on this system. 
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