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THE ANALYTIC PRINCIPLE OF THE LARGE SIEVE 

BY HUGH L. MONTGOMERY 

E. Bombieri [12] has written at length concerning applications of the large 
sieve to number theory. Our intent here is to complement his exposition by 
devoting our attention to the analytic principle of the large sieve; we describe 
only briefly how applications to number theory are made. The large sieve was 
studied intensively during the decade 1965-1975, with the result that the 
subject has lost its mystery: We now possess a variety of simple ideas which 
provide very precise results and a host of variants. While the large sieve can 
no longer be considered deep, it nevertheless gives powerful estimates in 
many different settings. 

1. Historical background. The large sieve originates in a short paper of Ju. 
V. Linnik [51]. Linnik [52] made a simple application to the distribution of 
quadratic nonresidues, but it was A. Rényi [72]-[81] who systematically 
studied the large sieve, and who first made an important application to 
number theory: Using the large sieve, Rényi [72], [73] was the first to show 
that every large even number In can be expressed in the form In = p + Pk9 

where p is prime and Pk has at most k prime factors. (Rényi did not 
determine a value for k, but M. B. Barban [2], [3] showed that one can take 
k * 4. The mean value theorem of Bombieri enables one to take k = 3, and 
Chen [17], [18] (see also [36], [84]) has obtained k * 2. In all of these 
arguments the large sieve is a major tool.) The large sieve remained the 
province of a few specialists, until the appearance in 1965 of a fundamental 
paper of K. F. Roth [86], followed immediately by a major contribution of 
Bombieri [7]. As we consider it here, the large sieve was first reduced to its 
basic analytic principle by H. Davenport and H. Halberstam [21]. 

2. The nature of the large sieve. For M + 1 < n < M + AT we let an be 
arbitrary complex numbers, and we form the trigonometric polynomial 

M+N 
S (a) - 2 ane(na); 

here e(9) = e2™e, so that S (a) has period 1. Let a„ . . . , aR be points which 
are well spaced (mod 1) in the sense that 
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i k - «Jl > s (i) 
for r T̂  s; here \\9\\ denotes the distance to the nearest integer, 

IMI-minJ*-*! . 
The large sieve is an inequality of the form 

R M+N 
S \S(ar)\

2< A 2 fcP, (2) 

where A = A(iV, 8). The parameter M is irrelevant, for if T(a) = 
Sfi+HÎj^-^Çna) then 7(a) = e(Ka)S(a)9 and hence |T(a)| = \S(a)\. We 
are interested in determining how A depends on N and 8. We find, for 
example, that we can take A = N + 8 ~ ', but before considering admissible A 
we observe that A can not be too small. 

Suppose that an = e(—na{). Then 

|5(«,)|2=iv2 = i v 2 k l 2 ; 
thus A > N. In fact we can take A = N when R = 1, for by Cauchy's 
inequality 

|S(«)|2 < iV2 KP. (3) 
If the a, are equally spaced then we may regard R ~]2 |S(«0|2 as a Riemann 
sum approximating to fQ\S(a)\2 da. This prompts us to note that 

ƒ' 2 |5K + «)|2<**= *ƒ' |s(«)p^= *2 kp. 
Hence for some value of a, 

and thus A > [8~!] > 8~! - 1. 
The power of the large sieve may be attributed to the fact that we need not 

take A to be much larger than is necessitated by the elementary considera­
tions above. In taking A = N + 8~! we see that A does not depend very 
heavily on 8 as long as N8 is large. 

3. An elementary inequality of the Sobolev type, P. X. Gallagher [29] has 
given a very simple derivation of the large sieve, based on the idea that 
|S(a)f is approximately 8 ~lf%± V/l\ S(P)\2 dfi, to within an amount depend­
ing on the size of S (ft) and S"(/0- F° r o u r purposes the following simple 
inequality is sufficient. 

Lemma 1. Suppose/ G Cl[0, 1]. Then for 0 < x < 1, 

l/MI < ƒ' (l/l + l/U 
and 

lAOKjf'd/l+il/i). 
•'o 

PROOF. We easily verify that 
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ƒ(*) = fl /(«) d»+ f "A") du+ C (U ~ WW du' J0 J0 Jx 

The multiplier of ƒ'(w) has modulus not exceeding 1, and if x = | then it has 
modulus < ^. Thus the lemma is immediate. 

In Lemma 1 we find a simple representative of a large class of inequalities, 
studied by Sobolev (see [1], [92]), in which a norm of ƒ is bounded in terms of 
other norms o f /and/ . 

Using Lemma 1 we shall obtain 

THEOREM 1 (GALLAGHER). The inequality (2) holds with A = 8 ~x + TTN. 

This bound is asymptotically correct when N8 is small, but the secondary 
term is larger than it need be. Bombieri and Davenport [15] have shown that 
when NS < l9 the optimal A satisfies the bounds 

8~l(l +11O/VS)3) < A(N,8) < 8~l(l +270(N8f). 

PROOF. We change variables in Lemma 1 in order to treat the interval 
[ar - \8,ar + \8]; we find that 

|/K)| < ô - / ^ / 2 | / ( / 8) | 43+ 1 ^ \fm\ w. 
Jar-8/2 * Jar-8/2 

Taking/(a) = S (a)2, we deduce that 

|5(ar)|2 < S"» f^+S/2 \S(P)\2 d(i+\a'+S/2 \S(/i)S'({i)\ * 
J a,-8/2 Jar-8/2 

The intervals (ar — 15, ar + 18) are nonoverlapping (mod 1). Hence 

£ | 5 ( a f ) | 2 < 5 - 1 / 1 | 5 ( i 8 ) p ^ + r , | 5 ( i 8 ) S ' ( i 8 ) | ^ . 

Here by ParsevaFs identity the first term on the right is = 8~l*2\an\2. By 
Cauchy's inequality and ParsevaFs identity the second term on the right is 

< (/; m)"*(/; \ST)"2- (Skiais \2^\f2 

«*( , „»«„„ M)2W-
We have already observed that A(N, 5) is independent of M ; thus we may 
assume that M = - [̂ (JV + 1)]. Then max|«| <jN, and we obtain the 
desired bound, 

2 |5(af)|
2<(8-« + ^ ) 2 k | 2 . 

4. Duality. If A' and Y are two Banach spaces and the linear operator A 
maps X to y, then we define the norm of A to be 

\\A\\ = sup M*||/||*||. 

If X* and Y* denote the dual spaces of X and Y, then the adjoint operator 
adj A maps Y* to X*, and as a general principle 
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\\*djA\\ = \\A\\. (4) 

l/p+ l/q=l, p>hq>lf (5) 

then lp is dual to lq. Hence if A is a matrix, A : lPl-+lP2 then adj A : lq2~* lqi; 
we now derive (4) in this special setting. Our interest is confined to the special 
case px * p2 = 2; we prove more than we require in order to emphasize the 
generality of this duality principle. 

LEMMA 2. For i = 1, 2 let p( and qf be fixed numbers satisfying (5), and let 
[cnr] be a fixed N X R matrix. Then the following three assertions concerning 
the constant D are equivalent! 

(i) For any xn, 

(ii) For any x„, y„ 

12 w,|< *>(| W')1/#1(? M*)''* 
(iiï) For any yr9 

(| |2 v,f),/ft< *(2 wf2. 
PROOF. We may assume that 1 < pir < oo, as the limiting cases follow by 

continuity, (i) implies (ii). By Holder's inequality, 

2d CnrXnyr\ = \ Zu .VriL CnrXn\ 
ntr 

(? ̂ rt? ii w r 
We use (i) to bound the second factor on the right to obtain (ii). 

(ii) implies (i). Put L, * S*^**, and take>v * \Lr\
P2"2Lr. By (ii), 

<*(2fcr0,/*(swfc),/* 
But \yr\

q2 = | A.|ft, so the above gives 

(s w)""*< »(s kr)"". 
which is (i). 

The equivalence of (ii) and (iii) is the same. 
The most direct approach to bounding S^S^a,,))2 would involve multiply­

ing out the square and taking the sum over r inside: 
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2 \S(oLr)\
2 =-= 2 <*mam 2 e((m - n)ar). 

r m,n r 

The problem with this is that our weak information concerning the ar does 
not permit us to evaluate or estimate the inner sum. However, by duality the 
inequality (2) is equivalent to having 

for all >>r. Here the left-hand side is 
M+N 

r,s M+\ 

« N 2 l>v|2+ 2 yre(Tar) ys e ( - Ta,) Kr f , 

where r - M + JV + | . Taking wr * ^r^(7ar), we see that we may take 
A * N + C, provided that 

— sunrJV(ar - a,) 
Z UrUs ~ 7 T* 

r¥>s sm 7r(ar - as) 
< C2 M2. (6) 

In §6 we shall show that this holds with C * 8 ~!, but first we note that our 
problem can be made easier by introducing weights. 

Suppose that bn > 0 for all n9 that bH > 0 for M + ! < n < M + N9 and 
consider the inequality 

\M+N | 2 

2 0»*("«r) 
3/+1 

< B 2 k l V . 
A/+1 

(7) 

By changing variables we see that this is equivalent to the inequality 
.2 

M+N 
2 a„by2e(nar) 

M+\ 

M+N 

< * 2 fcP. 
M+\ 

which by duality is equivalent to 
M+N , ,2 

2 K\2 yre{n«r)\ < B?, \yr\\ 
M+\ I ' I ' 

This in turn is implied by the inequality 
+ 00 

2 KYZyAna,) <*2bvP-
— oo I r I r 

By squaring out on the left and taking the sum over n inside, we see that this 
may be written 

(8) 

where 
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— oo 

If bn = 1 for M + 1 < n < M + N, bn = 0 otherwise then we arrive again at 
(6). If bn > 1 for M + 1 < n < M + AT then (7) gives (2) with A = B; in §7 
we discuss the problem of finding such bn for which we can estabhsh (8) with 
a reasonably small value of B. 

Matthews [54], [55], [56], Kobayashi [48], [49] and Elliott [24] were the first 
to consider the large sieve via duality. Earlier, Rényi had based his arguments 
on generalizations of Bessel's inequality. We now formulate such an inequal­
ity, which provides a second method of reducing the large sieve to (6) or (8). 
However, we see ultimately that the generalized Bessel inequality is equiv­
alent to the case/?! = p2 = 2 of Lemma 2. 

5. Bessel's inequality. Let £, q>„ . . . , q>R be vectors in an inner product 
space. If the <pr are orthonormal then Bessel's inequality asserts that 

i i(£«p,)i2<iia2. 

In order to have an inequality of this sort it is not necessary to assume that 
the q>r are orthonormal; we have 

LEMMA 3 (BOAS [6]). Let q>l9..., <pR be vectors in an inner product space. 
Then the following two assertions concerning the number B are equivalent: 

(iv) For any £ 

r - l 

(v)Foranyyr9 

2yrJs(<Pr><Ps)42yr4<B2\yr\2> 
r,s Ij r || r 

Note that if the <pr are orthonormal then we clearly have B = 1 in (v), so 
that (iv) gives Bessel's inequality. 

PROOF, (iv) implies (v). Take £ = 2 yr<pr- Then by Cauchy's inequality and 
(iv), 

illll2 = 2 Jr (è9v)<(2 N2)1/2(2 l(è^)l2)1/2 

<B^m[^\y^)l/2. 
This gives (v). 

(v) implies (iv). For any yr9 

2 

-|||||2-2re2 ^ ( 6 » ) + | 2 J I « | -
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Then by (v), 

( 2 r e ? y,&<Pr)< IISIÏ + * 2 b,l2). 

Taking^ = B ~ !(£ <pr), we see that this is (iv). 
The bilinear form in (v) is positive definite and Hermitian, so the best 

constant B is precisely the largest eigenvalue of the inner product matrix 
[(<pr, <&)]. If we take £ = {*„}, <pr = {cnr} then the equivalence of (iv) and (v) 
becomes that of (i) and (iii) in the case/?j = p2 = 2. Conversely, by taking an 
orthonormal basis for span (<p„ . . . , q>R) then we find that we can derive 
Lemma 3 from this case of Lemma 2. If we take f = {anb~x/2}, q>F = 
{by2e(— n(ar))}9 then (iv) becomes (7) and (v) becomes (8). 

Having shown that the best constant in (iv) is the same as that in (v), it 
would be helpful to have a way of bounding the bilinear form in (v). This 
generally a tricky business, but as a first step in this direction we have 

LEMMA 4. Let C = [crs] be an arbitrary Hermitian matrix, and let fq, , K̂  

be positive numbers. If 

2 Ks\crs\< BK, (\<r<R) 

then for arbitrary yri 

2 ^r.yJ< 52 brP-

In particulary we can take B = maxr 2 5 |cr5|. 

(9) 

(10) 

PROOF. From the inequality |a/?| < j\a\2 + | | /8 | 2 with a -yrK~\ fi 
= ys KS \ we find that 

Cr*Vr̂ |<2 k,fc«J J 2V 
K, 4 2k 

K» 

= 2 \yr\\ ' 2 K*\ca\-
r s 

An appeal to (9) now gives the desired bound. For the last assertion we take 
Kr = 1 for all r. 

Let p(C) denote the maximum modulus of the eigenvalues of a square 
matrix C. Perron proved that p(C) < B for arbitrary C, if B satisfies (9). But 
||C|| = p(C) for Hermitian C, so the above is a consequence of Perron's 
theorem. Our criterion (9) depends only on \c„\9 and as such it is best 
possible: If the cn are nonnegative then p(C) is an eigenvalue whose eigen­
vector has positive coordinates. Taking the Kr to be these coordinates, we see 
that we may take B = p(C) in (9). Unfortunately, if the cn vary greatly in 
sign or argument then the bound provided by Lemma 4 is usually rather 
weak. 

Combining Lemmas 3 and 4 we obtain an inequality of Bombieri [10]: 

2 |(è^)i2<IIIII2max 2 l ( ç m ) | . ( " ) 
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Similarly we can derive a bound of Selberg (see Bombieri [10]), 

2l(£9,)l2(2!(^%)l) 1<U\\2 

Boas [6] and Bellman [5] have given another generalization of Bessel's 
inequality, which also follows by combining Lemma 3 with a simple upper 
bound for the bilinear form in (v). 

6. Hubert's inequality. Hubert showed that 

r^s r — s 
<c2 WJ (12) 

r¥=s r - s 

with c = 2TT. Schur [90] was the first to obtain the best constant c « TT, and 
Toeplitz gave the following elegant proof: Let W(a) * 2wre(m), K(a) = 
2 k^Jc ~ xe(ka). Then 

C \W(a)\2K(a)da 

< (ess sup |^ | ) J ! \W(a)\2 da. 

But K(0) =* 0 and K{a) - ?r - lira for 0 < a < 1, so we have (12) with 
c * ess sup|A |̂ =•= 77. In fact (12) holds with strict inequality. 

With the aim of establishing (6), we generalize Hilbert's inequality as 
follows. 

THEOREM 2 (MONTGOMERY AND VAUGHAN [63]). Suppose that \{ < X2 

< • • • < \R, and that \+l —\ > 8 for 1 < r < R. Then for any wn 

r^s K ~" K <«*- f2kf 
PROOF. By Cauchy's inequality the above is 

2 ^ 2 s K •" K 
s¥*r 

(? wf w. 
5 \ - \ 

1/2 

Thus it suffices to show that 

w. 
s \ ~ ~ \ 

< *2s-22 H2 , (13) 

as is also evident by Lemma 2. We multiply out the square on the left and 
take the sum over r inside to see that the left-hand side is 
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= 2 ^swt 2 (K-KVl(h-Wl-
r¥=s 
r*t 
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Writing the diagonal terms separately we see that this is 

- S k i 2 2 <K-\r2 

r*s 

2 (\-\rl-(\-\) - ! 

Call the first term Si- The second term we write as the difference of two 
terms in which the inner summands are (\ — Xs)~

l and (\ — \)~l
9 respec­

tively. In the first of these we introduce the new term for r * /, and similarly 
for the second. Thus the second term above is 

5 # l \ - \ 2(\-\) - l 

r 
r*s 

9¥.t K - \ 
2 <A>-\r!+2 2 
r*t 

9*t (K - \) 

say. Thus far we have followed Schur's proof of (12); at this point Schur uses 
his assumption that \ = r to show that the inner sums in 2 2 and 2 3 telescope 
and hence 2 2 = 2 3 = 0. Since this does not succeed for us, we introduce a 
new idea: We may assume that the wr are extremal Since our coefficient 
matrix is skew-Hermitian, the extremal wr are the coordinates of an eigenvec­
tor. Hence there is a real /x such that 

2 wr(K - \ r ! - 'M 0< s < R). 
r 

Taking the sum over / inside in 22> and using the above, we find that 

2 2 - - / M 2 N 2 2 <K-\rl. 
r 

Making the same simplification in 2 3 we find that 2 2 * 2 3 for those extremal 
wr. Thus we have 

.2 

2 WM{\-\Y 
s 

< Si + 224. 

We use the inequality \wswt\ < f |w,|2 + ||w,|2 in 24 , as in the proof of 
Lemma 4, and then see that 2 4 < 2i- Thus to prove (13) it suffices to show 
that 

2 <\-\r2<±fft~2. 
r 

r*3 
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But |\. - \\ > ô\r - s\, so the above sum is 

1 < 2 8-2(r-sr2<28-2y2 k-2=\<n28-\ 
ri, k"1 

We now deduce 

COROLLARY 1. For any wr, 

r¥:s sin 7r(ar - as) 
<«- f2KI2. (14) 

We could prove this by the method employed above, but the following 
simple argument now suffices. We appeal to Theorem 2 with a doubly-index­
ed set of RK variables wrm, 1 < r < R, 1 < m < K, and well-spaced con­
stants K„. Then 

(Km ~" Kn) 

Now put wrm = wr(- l)w, \rm = ar + m. Then 

2 (-l)m-"w,wM(h-\ + m-n) 
(r,/w) ¥=(s,n) 

- 1 <xw 1 2 kl2-

As 2r|wr|
2 '2m=£n(~-l)m~n(m - n)~l = 0, we may replace the condition 

(r, m) =̂= (s, n) by the simpler condition r =£ s. We also put k = m — n and 
divide by A' to see that 

2 w,w, 2 ( i - | * | / *x - i ) *< \ - \ + *) - 1 <**-'2 kl2. OS) 

But for a £ Z, 

and hence 

(sin ra)"1- w ^ S (-1)*(« - *)"', 

Km 2o-i*i/^x-i)*(« + * r l - - 5 ~ . 
#f-*oo _ ^ Sm 7TOL 

Thus on allowing K to tend to infinity we see that (15) gives (13). 

COROLLARY 2. For arbitrary real t, and any ur9 

sin t(ar - a5) 
2 WrW* . / x 
r^s sm n(ar - a j 

<«^kf; 
~ i in the large sieve we may take A = N + 8 

The second assertion follows from the first by (6). To see the first, we note 
that 



ANALYTIC PRINCIPLE OF THE LARGE SIEVE 557 

urus sin t(ar - as) = j : urus eit{ar~as) - ~r uruse'it{a^as)
9 

and apply Corollary 1 twice with wr = ure
±it(Xr. 

Arguing similarly from Theorem 2, we have 

COROLLARY 3. For arbitrary ar, 

^ = ( r + 27rÖ5~,)2 k P 

for some 0,\0\ < 1. 

Weaker results of this sort have been obtained by Wiener [97], Paley and 
Wiener [70], Marcinkievic and Zygmund [53], Ingham [46], and Titchmarsh 
[94]. 

The advantage of this approach to the large sieve is that it can be used to 
obtain more delicate results. Suppose that \\ — \s\ > 8r for any s distinct 
from r. Montogomery and Vaughan [63] have shown that 

^ 1 "> rvS 

r¥,s \ - \ <|^2 HV1. 
Selberg (unpublished) has shown that 3TT/2 can be replaced by 3.2, but it is 
not known whether the above holds with the constant IT. One can derive 
analogues of the corollaries from the above; as a variant of the large sieve we 
obtain 

2 \S(ar)\
2 A r - h f v 1 < 2 kl 2 - 06) 

Useful arithmetic applications of this are found in Montgomery and Vaughan 
[62]. Corresponding to Corollary 3 we have 

f r | S a r e M 2 # » 2 \ar\
2(T+37r98-1) 

with \0\ < 1. Hence in particular, 
,2 

ƒ 2 «„«-" * - 2 \af(T+0(n)). 

7. An extremal problem. We now consider the problem of deriving the large 
sieve from (8). From (8) and Lemma 4 we see that if bn > X[M+\,M+N](n) then 
we can take 

A=max 2 \B(«r-as)\ 
r s 

in the large sieve. Here x§ denotes the characteristic function of S. If we take 
K = X[M+\,M+N](n) ^ e n l^(a)l ~ M11 ^"Na/sin ira\9 and the above is = N 
+ O (8 ~l log 8 ~!). We do better to take smoother bn, for example bn = 0 for 
« < M + l - , 4 , Z>„ = 1 - ( M + 1 - n)/A îorM+l-A<n<M+l9 

bn = 1 for M + 1 < n < M + N, bn = 1 - {n - M - N)/A f or M + N < 



558 H. L. MONTGOMERY 

n < M + N + A, bn = 0 for n > M + N + A. For integral A we then have 

\B(a)\ = |(sin <ïïAa)(sm *n(N + ^)a)(sin tfa)~2|, 

and on taking a suitable A « 8 ~! we find that A < N + 28 ~!; see Bombieri 
[10]. 

If bn > X[M+\,M+N](n) and 5(a) = 0 for ||a|| > 8 then from (8) we see that 

2 \S(ar)\
2 < 5(0)2 kP. (17) 

r 

One way to construct such bn is to construct a function £(x) such that 
*(*) > X[A/+I,A,+*](*), 6 G Ll(R), b(t) = 0 for |/| > 8. Then we put bn * 
ô(«), and see by the Poisson summation formula that 

B(a) = 2 *(">M = 2 * (* ~ «)• 

Hence 5(a) = 0 for ||a|| > 8, and 5(0) = 6(0) - ft£b(x) dx. 
As Selberg (unpublished) observed, the folllowing lemma provides a means 

of making a good choice of b(x). 

LEMMA 5. Let 

F(2) . ( SLE )^f ( z . ^ - 2 + ^ {z + w )-2 + 2 z - | 

77k?w F fa entire, F(z) = O (e2,r|Im % F(x) > sgn x for real x, ÖAU/ 

f °° F(x) - sgn x dx = 1. (18) 
• ' - 0 0 

Since F £ £*(R) we can not define -F in the usual way, but the estimate for 
\F\ can be interpreted to mean that F(t) = 0 for |/| > 1. Beurling has shown 
that among such functions which majorize sgn x, the one considered here is 
the unique function which minimizes the quantity in (18). 

PROOF. The first two assertions are clear. For the third we recall that 

(W(ï<'->-)-'• 
and note that for x > 0 

00 

2 (* + /»r2<2 f+" u-tdu-x-1 

OO y.l-4-fl-H 00 

= 2 f V2rf«<2 (x + n) 
From these relations we see that F(x) > sgn x for all x. Finally 

/

+ 0 0 
F(x) — sgn x dx 

- 0 0 
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For d > 0 we now put G(x) * ±F(x) + \F(d - x). Then G(x) > 
X&4x)9 G e Ll(R), G(t) « 0 for |/| > 1, and 

G(x) - xi(Kd](x) + i (F (* ) - sgn x) + |(F(rf - x) - sgn (</ - x)), 

so that G(0) = Jt^Gix) dx =•= rf + 1. We can now take d » 8(AT - 1), and 
put 6(x) * G(SJC). Then b(x) > X[ON-\](*)> b G L!(R), and *(/) * 
8~xG(t/8). Thus £(/) - 0 for |;| > 8, '£(0) - 8" V + 1) * N - 1 + 8~ ! . 
Hence from (17) we have 

THEOREM 3 (SELBERG). The large sieve is valid with A * N - 1 + 8 _ 1 . 
NOTE ADDED IN PROOF. Paul Cohen has observed that Theorem 3 can be 

derived from Corollary 2 by means of the following trick: Let T(a) =• S(Ka% 
so that 

R K R K R 

* 2 |S(«,)f«2 2 |S(«, + * )P-2 2 \T((ar + k)/K)\>. 

The points (a, + fc)/*' are spaced by 8/K, so by Corollary 2 applied to 
7X«), the above is < (K(N - 1) + 1 + K/8)2\an\

2. We divide by K and let 
K tend to infinity to obtain Theorem 3. 

Among those G E L*(R) for which G(x)> X[o,*](*)> G(0 " ° f ? r M > h 
it can be shown that there is one for which G(0) is minimal. Since G(0) = JG 
> fX[o,d) * ^ w c write G(0) * rf + 0(rf) for this minimal G; then 0(rf) > 0. 
The construction above shows that 0(d) < 1 for all d. Our method gives 

2 |S(<0|2< (* - 1 + «-¥(*(* - l ) ) )™ kl2. (19) 

If ar = r/R + «o, 8" 1 = R~\ R\(N - 1), a,, = ae(-na0) for JR|AI, art = 0 
otherwise, then 

R 

2 
7V-1 

« - 0 

-(iv-i + a-oYkP. 
0 

so we have equality in Theorem 3 and in (19). Selberg has shown that this is 
the only situation in which equality occurs in (19); hence the same may be 
said for Theorem 3. 

8. Applications to number theory. Take the points ar to be the numbers a/q 
with (a, q) * 1, q < Q. If a/q ^ a'/q' then 

H^*l»«>->«-a_i|.|f»z£l|>,an-.>0-2. 

thus we may take S * Q "2, and we have 
q M+N 

2 2 \S(a/q)\2<(N+Q2) 2 fcp. (20) 
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Almost all applications of the large sieve to number theory proceed from (20), 
although the applications are of two different sorts. Less frequently the dual 
of (20) is useful: 

M+N 

2 2 2 \Ae(m/q) 
q<Q a=\ 

<(" + ô2)2 2 PU2-
(a,q) = l 

Let 91 be a set of Z integers in [Af + 1, M + N]9 put 5(a) = 2 w e ^ ( « a ) , 
and let Z(#, h) denote the number of members of % which are congruent to 
h (mod q). Then 

S{a/q)~ 2 * ( « » / * ) - 2 e(ah/q)Z(q,h)9 

and hence 
<7 

2 mf ) - 2 2 «(<*/«)z(*. *) 

= 2 2 z(«,*)z(«,*)i e(^-k) I a(h - fc) \ 

The innermost sum vanishes unless h = A: (mod #), in which case it is equal 
to q. Thus we find that 

(21) 2 K§) | -«2 Z(9,A)2 

The average of Z(q9 h) is Z/# , since 

(22) 2 Z{q,h) = Z. 
h-l 

Noting that Z - 5(1), we see from (21) and (22) that 

1 2 (Z(«, A) - Z/9)
2= « 2 Z(q, hf- Z2 = *2 \s( § )f. 

Here a runs over all nonzero residue classes, whereas in (20) we must restrict 
a to reduced residue classes in (20). However, if q is prime then these 
conditions coincide; hence by (20) we have 

2 P 2 (Z(P, h) - Z/pf< (N + Q2)Z. (23) 
p<Q A - l 

This is a powerful estimate, since among all sets 91 with Z elements in 
[Af + 1, M + JV], for most of them the left-hand side is » ZQ2/log Q; see 
Erdôs and Rényi [27]. 

Now let w(/0 be the number of h (mod/?) for which Z(/?, h) = 0. Then 

2 (Z(p9h)-Z/pf>o>(p)(Z/p)\ 
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and hence by (23), 

Z<(N+Q2)l 2 <»{p)/p)~\ 

At last we see the large sieve formulated as a sieve! If in particular 9 is a set 
of primes p < Nl/2 for which <o(/?) > rp, then |*P| < 2N(rZ)"1. Here the 
emphasis is on primes for which u(p) is large; hence the term large sieve. If 
we apply the above when co(p) is small then we obtain weak results. This may 
be traced to the fact that we are using (20) only for prime values of q. 
Montgomery [58] derived form (20) a sharper bound, 

z < ( " + ô 2 ) ( s M2(*)II - ^ T ) ; 

a simple proof of this has been given by Johnsen [47] and Gallagher [32] (see 
also Bombieri [13, p. 20]). The above bound is comparable to that obtained 
by Selberg's method. Indeed the above can be derived from the dual of the 
large sieve, making clear the connection with Selberg's sieve; see Halberstam 
and Richert [36, pp. 125-126], Huxley [44], Kobayashi [49], Matthews [56], 
Motohashi [69]. Letting TT(JC; q, a) denote the number of primes p < x for 
which p = a (mod q), we can easily derive the bound 

2y 
nr{x + y ; q9 a) - n(x; q9 a) < 

<p(q)logy/q M^)) for >> > q. By arguing more carefully from (16), Montgomery and Vaughan 
[62] have shown that the above is valid without the error term on the right. 

A second application of the large sieve to number theory arises in bounding 
averages of a character sum 

M+N 

T(jd- 2 anX{n), 

where x is a Dirichlet character (mod q). The <p(q) characters (mod q) are 
orthogonal, so that 

,2 

2 On 
\n=n(q) 

2inx)i2=9(<7) i 
X h = \ 

(A,4f)-1 

M+N 

<(N + q)2 k|2; 
M + l 

here x nins over all characters (mod q). If we wish to sum over q < Q as well, 
then we use the large sieve. Gallagher [29] has given a simple proof that 

rirwr*^ i Kf)f. 
X ^ a=\ I v ^ 7 | 

where the sum over x is restricted to primitive characters x (mod q). Hence 
by (20), 

2 -£r ?\T(x)\2<(N+Q2) S kP-
q<Q VW X M+l 
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This inequality is an essential tool in studying L-functions and the distribu­
tion of prime numbers. It is central to the proof of Bombieri's mean value 
theorem, which asserts that 

-0A(xQogxyA) 

provided Q < xl/2(logxyB; B = B(A). Vaughan (to appear) has given a 
very elegant proof of this estimate. Other important applications of the large 
sieve have been made by Bombieri and Davenport [13], Davenport and 
Halberstam [22], Chen [17], [18], Montgomery [60], Gallagher [31], Mont­
gomery and Vaughan [64], and Hooley [40]. Barban [4] and Bombieri [12] 
have surveyed the applications of the large sieve to number theory, 

9. Variants. We consider first variants in which we drop the condition (1) of 
well-spacing, and substitute other conditions on the ar; we have already 
formulated one such variant in (16). Suppose that Nô(a) is the number of r 
for which \\a - crr|| < 5. Then 

2 Nô(ary
l\S(ar)\

2 < (vN + 8~<)2 k P - (24) 
r 

This implies Theorem 1 ; it is easily derived (see Montgomery [61, Theorem 
2.1]) by combining the technique of §3 with the observation that 

2 N6(ary
l<i 

\\a-aA\<6/2 

for all a. Following an unpublished observation of Bombieri, we may use the 
ideas of §§4, 7 to show that if fi is a measure on T then for any 8 > 0 

f \S(a)\2dn(a)<(N + 28-1) max ƒ dp\ 2 k P -
0 \ « 'a ) M+\ 

The method of §3 is very flexible, and can be applied to other classes of 
functions, such as ordinary polynomials or Dirichlet polynomials; see Daven­
port [20] and Montgomery [59]. We can also consider exponents other than 2; 
see Davenport and Halberstam [21] and Forti and Viola [28]. For example, 

£ |s(«r)|«= oq((N + a-»)2kWM + V"'2) 

for real q > 2. However, this tells us little more than we know already if the 
k | are generally of the same size. To see this, suppose that k | < 1 for all n. 
Then the upper bound above is Oq((N + Ô ~l)N^1). But \S(a)\ < N, so that 
\S(a)\q < Nq-2\S(a)\2, and hence by the large sieve, 

if q > 2 and \an\ < 1 for all n. 
Let 

q<Q 
max max 
y<x a 

\*(yi4><*)-
u{y) 

<p(?) 



ANALYTIC PRINCIPLE OF THE LARGE SIEVE 563 

(M/)(a) = sup ± P*h\f(P)\dfl 
| ça + h 

h>0 M 'a-h 

be the maximal function of/. Montgomery (to appear) has shown that 
R M+N 

2 \(MS)(ar)\
2<C(N+8->) 2 fcp. 

r-1 M+\ 
Also, by Hunt's theorem on the strong [2, 2] boundedness of the maximal 
partial sum operator, 

|2 M+N 

max 2 ane(n*r) 
M+\<n<k 

<C(N + S-1) 2 kl2; 

this improves on an elementary estimate of Uchiyama [95]* 
In the dual of the large sieve we can derive a corresponding lower bound 

with the factor N + 1 - 8 ~!, but for the large sieve itself we generally have 
no such lower bound; see Boas [6]. Wolke [103] has discussed lower bound 
counterparts of (20). Lower bounds for the irregularity of the distribution of a 
set 91 of integers into arithmetic progressions have been given by Roth [85], 
Montgomery [61, Chapter 5], Huxley [45], and Montgomery and Sarkózy (to 
appear). 

The large sieve is a bound for the norm of a matrix whose coefficients are 
e(nar). Here the ar may be irregularly spaced, but the n lie in arithmetic 
progression. Selberg (unpublished) has observed that we can obtain similar 
results for the more general coefficients e(vkar): Suppose that 

T0 = «o < «i < • • ' < «A = ^o + T 
and that ar - ar„x > 8 for 1 < r < R. Suppose also that 

MQ - v0 < *>, < • • • < vK = M0 + N 

and that vk - vk_x > A for 1 < k < K. Then for any ak9 

.2 
R 

s 
r-0 

K 

*«0 
<(rts4)(IH?.Kf-

To establish this we proceed as in §3, and then appeal to Corollary 3. If we 
dualize first then we obtain the above with the factor on the right replaced by 
(irT + 1/AX1/8 + A + N). Considering the symmetry of the situation, it 
would be desirable to have a symmetric upper bound, such as (T + 1/AX̂ V 
+ !/«)• 

Let S be a set of X integers q < Q. Then we may ask for a factor 
A(iV, g, X) such that 

q M+N 
2 2 \S(a/q)\2<à(N,Q,X) 2 fcf. 

? e £ Û=1 M+Ï 

By (20) we have A(iV, g, X) < N + Q2. Alternatively, by the large sieve we 
see that 
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q ^ q M+N 

2 \S(a/q)\2<-2 \S(a/q)\2<(N + q) 2 K?\ 
a= l Ö = 1 M+1 

this can also be seen by a direct elementary argument. Summing over q E S, 
we find that A(iV, g, * ) < X(AT + Q). Hence 

A(iV, g, * ) < min(AT + Q2,XN + *(?). (25) 

Moreover, examples can be constructed to show that the above is never more 
than a constant factor from the truth. This is disappointing, since one might 
have hoped to be able to take A(iV, Q, X) = C(N + QX). For certain sets S 
one can do a little better than (25); see Wolke [99], [101], Sokolovskiï [93]. 
Burgess [16] has shown that 

2 2 \S(a/q)\ < C(QX(N + QX)^ \an\
2f2. 

This may be derived by Cauchy's inequality from (24) with 8 = ((Mf)""1, 
since it may be shown that 

2 2 Ns(a/g) = 0(QX). 

Multidimensional versions of the large sieve have been established for use 
in algebraic number fields; see Rieger [82], [83], Samandarov [88], Huxley 
[41H43], Wilson [98], Schaal [89], Hlawka [38], [39]. 
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