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I. A history. The original proof of the transcendental nature of the number 
e by Hermite in 1873 was based on a delicate scheme of rational approxima­
tions which seemed to be applicable only to the exponential function. In this 
light one may view with a sympathetic eye Hermite's pessimism toward the 
problem of the transcendental nature of IT, as he openly states in a letter to 
Borchardt (Crelle, vol. 76, p. 342): "Que d'autres tentent l'entreprise, nul ne 
sera plus heureux que moi de leur succès, mais croyez-m'en, mon cher ami, il 
ne laissera pas que de leur en coûter quelques efforts." A few years later in 
1882 Hermite would be amazed by the remarkable simplicity of Lindemann's 
proof of the transcendentality of m based on Euler's identity e™ = — 1 and 
on Hermite's earlier ideas. This episode marks the exalting birth of the theory 
of transcendental numbers and was to represent the only significant contribu­
tion for some time. What followed in the next quarter of a century was no 
more than a generalization of ideas and a simplification of methods, first in 
the hand of Weierstrass who saw that the method of Hermite and Lindemann 
could be made to yield a proof of the algebraic independence of the values of 
the exponential function at distinct algebraic points; this was followed by 
technical simplifications by Gordan, Hilbert and Hurwitz. 

By the end of the nineteenth century it was generally believed that the main 
arithmetical properties of the exponential function were well understood; 
there were good reasons for this. For one, the work of Kummer on cyclo-
tomic extensions had been around for more than half a century, even though 
his methods were beginning to be forgotten; the work of Kronnecker on 
complex multiplication was being brought to completion. One knew well that 
the values taken by the exponential function e2™ at the rational points on the 
projective line Pl(Q) were values at special points, i.e. they generate abelian 
extensions of the rationals and all such extensions arose in this way. One may 
surmise that in 1900 Hilbert, being thoroughly familiar with these properties 
of the exponential function after the manner of his Bericht, would have 
present in the back of his mind these results when formulating his Seventh 
Problem on the arithmetical nature of numbers of the form a^ and in 
particular of 2 , and in his Twelfth Problem concerning the search for 
automorphic forms whose values at special points of certain moduli varieties 
would generate algebraic extensions of number fields with special Galois 
properties. 
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By including a major question of transcendental number theory among his 
famous list of 23 problems, Hubert, whose authoritative standing in the 
mathematical world was not small in comparison to that of the influential F. 
Klein, would provide the theory with a vitality which it was lacking after the 
work of Hermite and Lindemann and would at the same time indicate 
avenues for future work. The only obstacle which seemed to blear Hubert's 
prophetic vision was his pessimism; which unlike that of Hermite, could only 
be justified by his ignorance of the inherent difficulties involved with some of 
his problems; in fact, as Siegel recounts [3, p. 243]: Hubert thought (circa 
1919) that he would live to see the Riemann hypothesis proved but that the 
establishment of the transcendence of 2 ^ would be beyond the then rising 
generation of mathematicians. 

Not more than ten years would pass when in 1929 Gel'fond and indepen­
dently Siegel would develop methods strong enough to establish the transcen-
dentality of 2 2 . The degree of generality of SiegePs methods made them 
more attractive since they were also applicable to the study of numbers 
which, like 

z - r1 dx 

2 Jo VT^? ' 
are the periods of differentials of curves defined by equations with algebraic 
coefficients. The schools of Siegel in Germany and of Gel'fond in Russia 
made, from about 1930 to the early sixties, significant contributions by 
extending the range of applicability of these methods, by simplifying some 
technical points, and by bringing to the surface problems which appeared to 
be intractable by the traditional tools. 

In the decade of the sixties, A. Baker introduced and exploited his many 
variables interpolation techniques. Almost single handed he developed ap­
plications of his methods to a circle of ideas as wide ranging as the theory of 
diophantine equations, class number problems, linear forms of logarithms. In 
1970, when A. Baker was awarded the Fields Medal,the protean face of 
transcendental number theory was no longer what it had been before the 
sixties. 

In 1970 there was reason again to be optimistic that the new methods 
would elucidate certain difficult diophantine questions. It had been known 
for some time that the work of Siegel and Schneider on the transcendental 
nature of the periods of differentials of algebraic curves had applications to 
the study of rational and integral points on such curves. The simplest case, 
that of elliptic curves, had been treated successfully by Schneider who had 
shown that if coj and <o2 are a pair of fundamental periods for an elliptic curve 
with algebraic invariants, then the ration r = ux/u>2 would be a special point 
in P'CC), i.e. the value of they-invariant at T generates an abelian extension of 
an imaginary quadratic extension of Q, if and only if the elliptic curve had 
complex multiplication. Baker was the first to apply the newly discovered 
methods to obtain a complement to Schneider's theorem by now involving 
two arbitrary elliptic curves; he proved that if o)x and <o2 are respectively the 
periods of two elliptic curves with algebraic invariants, then a linear combina-
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tion acox + /8<o2 with a and /? algebraic would be either 0 or transcendental. 
Since 1970 the school of Baker, consisting mostly of Coates and Masser have 
made important contributions to this area of research which is perhaps 
considered one of the most difficult parts of number theory. The monograph 
of Masser, which we now proceed to review, contains an up to date presenta­
tion of their developments. 

II. The state of affairs as of 1975. Let E: y2 = 4x3 - g2x - g3 be an elliptic 
curve with algebraic invariants g2, gy Let co, and <o2 be two basic periods. Let 
H\E) be the space of differentials on E of the second kind modulo the exact 
differentials. A basis for H\E) is <o = dx/y and i) = xdx/y, where x =5p(z), 
y =$'(z) a n d $(z) is the Weierstrass /7-function which uniformizes E with 
periods coj and co2. The quasiperiods of E are 77, = JQ'TJ, i = 1,2. The height of 
an algebraic number a is defined to be the maximum of the absolute values of 
the relatively prime integral coefficients of the irreducible equation satisfied 
by a. As usual one says that E has complex multiplication if T = co2/co, is a 
complex quadratic irrationality. A complex number u E C is called an 
algebraic point of E if its image under the Weierstrass uniformization map 

C/A -• E, fi = Zco, © Z<o2, 

has algebraic coordinates. 
Chapter I deals exclusively with elliptic curves without complex multiplica­

tion. The main result established is a measure of how far away T = o)2/co\ is 
from being algebraic. In fact it is shown (Theorem I) that the distance of r 
from an algebraic point of height H is effectively bounded from below by a 
multiple of c(c)exp(-(log //)3 + e) for any e > 0. 

Chapters II and III deal with the vector space spanned by the six numbers 
1, w,, <o2, TJ„ TJ2, 2m over the field of algebraic numbers. It is shown (Theorem 
II) that in the case of no complex multiplication the dimension of the vector 
space is six and in the case of complex multiplication (Theorem III) the 
dimension is four. An explanation for the drop in dimension in the latter case 
is to be found in the classical Legendre relation TJ,<O2 — TJ2<O, = 2<ni and in the 
rather unexpected fact (Lemma 3.1) that in the case of complex multiplication 
the three numbers 77,, T72 and w2 are linearly dependent over the algebraic 
numbers. As a corollary it is shown that the ratio of the quasiperiods is 
transcendental if and only if neither of the algebraic invariants g2 and g3 

vanish. This is perhaps not an isolated fact, since these are precisely the 
special points that play a singular role in the complex projective line when 
viewed as a parameter space for the isomorphism classes of generalized 
elliptic curves. 

An interesting development in recent years of the theory of elliptic curves 
has been Serre's generalization of the classical theory of complex multiplica­
tion. One of the main results is the fact that for an elliptic with rational 
invariants and without complex multiplication, the coordinates of the /-divi­
sion points generate a Galois extension of the rationals which has a group of 
order as large as it could possibly be, in other words the elliptic curve behaves 
as if it were a specialization of the generic fibre, whose /-division points 
generate extensions with well-known Galois groups. 

Results of Serre had been previously used by Coates to show that under the 
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assumption that the elliptic curve has no complex multiplication, the numbers 
co,, co2 and 2m are linearly independent over the field of algebraic numbers. 
In Chapter IV the author gives an effective proof of Coates' theorem which 
avoids the use of Serre's theorem. 

In Chapter V one finds a transcendence measure for the linear form 

A = a0 + a ^ , + a2o>2 + £,7?, + fi2r)2 + y • 2m, 

where a0, ax, <x2, /?„ j82 and y are algebraic numbers of heights at most H and 
degrees at most d. It is shown (Theorem IV) that for any e > 0 there is a 
constant c depending only on <o,, <o2, d and e such that 

|A |>cexp( - log t f ( log#) 7 + e ) . 

(If a2 = ft = (S2 ~ 0> then the exponent can be replaced by 4 + e.) Among 
other things this gives a transcendence measure for TT + <0j. 

Chapter VI develops various estimates for the coefficients of the /-division 
equation of $(z); it also contains a generalization, which appears to be of 
independent interest, of Kronnecker's theorem on diophantine approximation 
applied to the lattice of periods. 

Chapter VII may be considered the climax of the whole development. It is 
assumed here that the Weierstrass/?-function 5p(z) admits complex multiplica­
tion over the imaginary quadratic number field K and that ux, u2,..., un are 
n algebraic points of ^5(z), i.e. (^(t/,), $[$'("/)> 1) E P2(A), which are linearly 
independent over K. The main result proved (Theorem V) states that for any 
positive e > 0 and any positive integer d there is an effectively computable 
constant c = c(g2, g3, w„ . . . , un, d, e) such that 

\axux + • • • + anun\> c e x p ( - # e ) , 

for all algebraic numbers au . . . , an not all zero with degrees at most d and 
heights at most H. The proof of this theorem involves a delicate argument by 
induction on the number of algebraic points ul9..., un and the author does 
not hesitate to use all the arsenal at his disposal: notably the construction of 
auxiliary functions à la Baker. 

Masser's monograph ends with four appendices. In the first of these the 
values of a certain real-analytic modular function which is connected with the 
numbers TJ„ TJ2, <O2 is studied with the help of the well-known theory of the 
multiplication equation. The second appendix contains an application of a 
result of Lelong in the theory of holomorphic functions of several complex 
variables to give an estimate for the degree of real separation of the zero 
regions of a polynomial in several complex variables. Such results provide 
estimates for the size of the coefficients in terms of the values of the 
polynomial on certain tubular neighborhoods of a real ball. In the third 
appendix the previous ideas are elaborated to give a proof of the fact that any 
linear combination of algebraic points with algebraic coefficients is either 
zero or transcendental. The last appendix contains a proof of a partial 
refinement of SiegeFs theorem on the finiteness of the number of integral 
points on an elliptic curve. It is shown that if E is an elliptic curve with 
complex multiplication, then for any e > 0 and any rational point (x, y) E 
E(Q) whose denominator is at most q one has \x\ < exp((log q)% where the 
implied constant depends only on E and e and is ineffective. 
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III. Looking ahead. Although the body of knowledge concerning the 
arithmetic nature of the periods of elliptic curves has been steadily increasing 
since the appearance of SiegePs first paper on the subject, as may be observed 
in Masser's monograph, it may fairly be said that only its surface has been 
touched. It would appear that present techniques should be capable of 
throwing light on Grothendieck's question [2, p. 101] concerning the algebraic 
nature of the 4g periods and quasiperiods of an algebraic curve of genus g 
associated with the cohomology group Hl(X) of differentials of the second 
kind modulo exact differentials. In another direction, the recent work of 
Shimura and Deligne [1] on Hubert's Twelfth Problem and their theory of 
special points on certain moduli varieties which arise as homogeneous 
quotients of adelized reductive groups defined over number fields suggests 
that there may be relations between the coordinates of the special points, the 
periods and quasiperiods of the fibres over the special points, and the values 
at integral points of certain Euler products connected with global zeta 
functions of the fibres. Despite a strong belief in the pre-established harmony 
of mathematics, the situation beyond curves and over field extensions of the 
rationals baffles the imagination (of the reviewer), perhaps in accordance with 
Vico's Principle. 

A topic which has received much attention but which is hardly even 
mentioned in Masser's monograph concerns /?-adic analogues of the results 
proved. It may be pointed out that the age old question of the arithmetic 
nature of the values of the zeta functions at integral points appears to have a 
transcendental component, not entirely unrelated to the periods of geometric 
objects, and an arithmetical component which affords some kind of /7-adic 
interpolation. 

The overall organization of the material in Masser's monograph into small 
separate chapters makes it easy reading. The list of references contains 30 
items and is fairly comprehensive. The monograph could perhaps be used for 
a one semester topics course at the graduate level. The difficult nature of the 
analysis, which is the distinguishing mark of transcendental number theory, 
could have been smoothed out a little by the inclusion of numerical examples. 
To remedy this situation, at least for the reader of this review, we include here 
a well-known example [4]. Let / = 2g + 1 be a prime number and let Ca be 
the curveyl = xa(l - x). Let T be that part of the group (Z//Z)* consisting 
of elements of the group such that (at/l} + <///> < 1, where {x} denotes 
the fractional part of x. Let f = e2™/l, and put 

A = (r-i)*(<*//>, <'//», 
where B(x, y) is Euler's beta function. Let £ G Z[f] and let £ - > r ( 0 be the 
obvious extension of the automorphism f -» f '. Then the lattice of periods 
consists of the vectors 

g(0 = (r (>,),er, *ez[ f ] . 
The numbers pt are all transcendental and the Jacobian of the curve Ca 

admits "complex" multiplication by Z[f ]. The question of the nature of the 
quasiperiods of Ca and the relation of these quasiperiods to the values of 
certain Hecke L-functions associated with the zeta function of Ca and how 
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these things should fit into a general framework are challenges that should be 
given serious consideration by any student of transcendental number theory. 
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Combinatorial optimization: networks and matroids, by Eugene L. Lawler, 
Holt, Rinehart and Winston, New York, 1976, x + 374 pp. 

This is a well-written introduction to an attractive area of modem 
mathematics. It is highly recommended. 

Some problems in this area are: 
1. Find the shortest path through a finite network. 
2. Find the A:th shortest path through a finite network. 
3. Find the path of shortest length through all points of a finite network 

("the travelling salesman" problem or technically a Hamiltonian circuit.) 
4. How does one process m items on n machines? 
5. How does one calculate 2n with a minimum number of multiplications? 
6. How does one compute a polynomial in many variables with a minimum 

number of multiplications? 
7. How does one find m defective coins among n coins? 
The fourth, fifth, sixth, and seventh problems are not treated in this book. 

The fourth problem is very important in many industrial applications and in 
operating a computer installation. Nabeshima has written a book in Japanese 
on this problem, which he is translating into English. Many other mathema­
ticians have worked on this problem. Branch and bound techniques have 
been used by many. The fifth problem has no applications that the reviewer 
knows of. It is like many problems in number theory, simply stated and 
intractable. The sixth problem has many applications in a number of 
algorithms. In this case of polynomials of one variable, the problem is solved. 
Ostrowski treated the case of polynomials up to degree four, and the general 
case was treated by Pan. They showed that the well-known technique of 
Horner was best. 

In problem 7 the case m = 1 is a well-known puzzle which may be solved 
using many methods. The case m = 2 was treated in [1]. The case of general 
m is part of a mathematical theory of experimentation which does not yet 
exist. 

Since these are finite problems and we have a digital computer at our 


