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1. Introduction. The theory of trigonometric (sometimes called exponential) 
sums is so intimately associated with I. M. Vinogradov that a book by this 
master is a noteworthy event. 

The book under review is a translation from the Russian edition of 1970 
which, in its turn, is described as a revised edition of Vinogradov's 1947 book 
of the same title. "Revised edition", however, is a misnomer, since a 
comparison with the 1947 edition shows that the present work is a complete 
rewriting and incorporates new refinements and improvements-results mostly 
due to the author himself. 

Trigonometric sums have been used in one form or another in number 
theory since Gauss's solution of the cyclotomic equation in which he 
introduced "Gaussian" sums. These led to a highly interesting and somewhat 
unexpected proof of the quadratic law of reciprocity. There are many other 
examples and applications. The applications given in this book deal with the 
Waring problem, the distribution of the fractional parts of polynomials and 
with the Waring-Goldbach problem. Reference is also made to the 
applications to the zeta function. 

2. The problem of trigonometric sums. The integers are naturally embedded 
in the complex numbers but a useful point of view for number theory-
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-especially additive number theory-is to look at the character group of Z(4-), 
the group of integers under addition. For the benefit of readers not acquain­
ted with analytic number theory, we make the following observations: if X is 
a character of Z(+) , then it is well known that there exists a real number a 
(0 < a < 1) such that if n E Z; 

X(n) « <?2™", 

further if da is the measure on the character group, then 

Let X be such a character, P > 0 a real number, and ƒ: Z - > Z a function 
and 

S - 5 ( J f , / , P ) - 2 J T ( / ( n ) ) . 

We should like to evaluate S but such an objective is unreasonable and we 
must rest content with estimates. It is clear at the outset that |5 | < P and this 
leads to the 

Basic problem. Can we give conditions on X, ƒ, P so that 

S=0(PQ) 
where Q -> 0 as P -* oo? 

The problem is made more complicated by the fact that in applications we 
may need to specify the rate at which Q -* 0. Moreover, we may have more 
than one character or function or range. And finally, we may, and do 
frequently require an estimate which holds uniformly for a large class of 
characters. Three cases arise naturally 

(i) The character is of orderp-a, prime; 
(ii) The character is of finite order; 
(iii) The character is of infinite order 

and different techniques are used to get the best results in each case. 
In case (i) A. Weil, using methods of algebraic geometry gave a complete 

and spectacular solution for a large class of functions. These beautiful results 
have, in recent years, been obtained with a minimal use of algebraic geometry 
in work initiated by S. A. Stepanoff. 

In the third case H. Weyl was the first to develop a method for handling 
the problem and deduce significant results. By a simple and ingenious 
argument, he showed that if f(x) = <xnXn + • • • + axx then for every a 

2 e2™f{n) = o(x) 

and in fact gave an explicit rate at which the ratio tends to zero. 
He then concluded via a reduction to trigonometric sums that the 

fractional values of f(x) were uniformly distributed mod 1. [We have dropped 
the language of characters since it is not particularly useful.] To honor the 
author of this outstanding paper, Vinogradov named the sums in case (iii) 
"Weyl sums." [We would observe parenthetically that the translator of this 
book confuses Weil and Weyl. It is a fortuitous situation where, I feel, neither 
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would object to being mistaken for the other!] 
Vinogradov's contributions to estimations of trigonometric sums date from 

about 1934. His methods are characterized by great ingenuity and, at times, 
extreme intricacy. This, however, appears to be in the nature of the problem. 
To get a nontrivial estimate, some cancellation must occur and there is no 
reason, a priori, to expect this to happen in general-on the contrary, there are 
easily formulated instances when the terms reinforce each other. Roughly 
speaking, there will be cancellation if there is some "regularity" in the 
distribution of the values of ƒ(«). It is a tribute to Vinogradov that, by giving 
about 1937 a suitably nontrivial estimate of the sum 

the sum taken over primes, he achieved one of his triumphs-a solution of the 
ternary Goldbach problem. There is a price to be paid however. The argu­
ment necessitates pages of delicate and intricate arguments whose motivation 
is decidely clouded. The effect on a newcomer to the subject is that he does 
not know where he is going until long after he has been there. Moreover, the 
research worker in this area often works with a variety of parameters which 
are chosen only after the work has been completed. But when stating the 
theorem, the path to the choice of parameters has been obliterated. Hence the 
mysterious looking hypotheses that frequently occur. This, however, is a 
minor hazard when compared with the intricacy of the arguments. 

3. The topics. Although Vinogradov does not treat the ternary Goldbach 
problem in this book (he does in the earlier edition), it is an excellent setting 
in which to show how trigonometric sums intervene in additive number 
theory. The method is a general one, was initiated by Hardy and Littlewood, 
and goes under the name of the "circle method" for reasons given below. In 
its original form, and in the modifications introduced by Vinogradov, it has 
proven to be an exceedingly fruitful idea and has led to the solution of 
numerous problems in number theory. In particular, Hardy and Littlewood 
gave a new solution of the Waring problem going further than Hubert by 
giving an asymptotic formula for the number of solutions. They also gave a 
provisional solution of the ternary Goldbach problem subject to a weakened 
form of the generalized Riemann hypothesis. 

Suppose then that we wish to show that every odd integer is the sum of 
three primes, i.e., that if n is odd, the diophantine equation 
(1) n = px + p2 + Pi 
is always solvable. We consider the sum 

(2) * ( « ) = 2 e2«<" 
2<p<n 

the summation being over primes only, and denote by r(n) the number of 
solutions of 3.1, that is, we replace the original problem by the seemingly 
more difficult one of counting the number of solutions and showing that 
r(n) > 0. We give the barest sketch omitting large numbers of steps. We hope 
specialists will not consider the sketch misleading. Using 1.1, it is readily seen 
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that 

(3) r(n) = I=-±- flS3 (a)e-2™n da. 

Hardy and Littlewood originally used power series, and integrated around a 
circle inside the unit circle using Cauchy's theorem. It was Vinogradov who 
observed that it is technically much simpler to work with finite sums. We 
hasten to add, however, that this change by no means eliminates the difficul-
ty-that lies much deeper. To evaluate the integral, we first write a in the form 

a = — + z, (a, q) = 1 (a, q E Z) 

and z is a parameter which is a function of n. The interval [0, 1] (or properly 
speaking a certain translation of it) is divided into classes of nonoverlapping 
intervals. In class M, we put all intervals with 0 < q < s, \z\ < t, s, t being 
parameters which depend on n. In m, we put the rest of the unit interval. [In 
Hardy and Littlewood's original work, the intervals were arcs of circles 
determined by Farey fractions-the "Farey dissection"-hence the name "circle 
method".] 

We get I = IM + Im. If a = a/q + z and q is "small", then it is possible to 
approximate S (a) by S (a/q) with a controllable error. By a sequence of 
estimations, and invoking a deep theorem of C. L. Siegel, Vinogradov obtains 
the principal term 

(4) 7 ^ = ^ ^ ® ( , Z ) + e iTOr ' 

where <S(n), the so-called singular series, is a kind of measure of the local 
number of solutions of 3.1 and is shown to be > 0 if n is odd. 

It remains to prove that Im = o(w2/log3 n). While the previous step is 
difficult, the principal obstacle lies here. Note that the parameters s, t are at 
our disposal-the more we put in M the larger will be the error in 3.4 and 
indeed may dominate the principal term, but then the easier will Im be to 
handle. We have a delicate balancing act-to minimize the estimate for Im and 
minimize the error in 3.4. It is at this stage that Vinogradov invokes his 
nontrivial estimate of S (a) to achieve the famous result. This general proce­
dure with appropriate modifications naturally, is fairly typical. 

We turn now to some of the results in Vinogradov's book. As we have seen, 
to deal with problems in number theory by this method (as well as 
innumerable other applications), we must have suitable estimates for 
trigonometric sums. In Chapter 5, Vinogradov proves the following re­
markable and general result on Weyl sums. 

THEOREM. Let f(x) = anx
n + an_xx

n~l + • • • + axx, a, real, P E Z, P 
> 1 ; let 7rn denote a hypercube of unit side and unit volume. Let 

T= r ( a w , . . . , a 1 ) = 2 e2™m 

0<x<P 

and let at = ajqt + z,; (af, ft) = 1, l.c.m. qt = Q < Pl/n. 
The points of mn are divided into two classes. In the first class, we put the 

points for which \z-\ < p-**1/». 
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In the second class we put points not in the first class. Then, for points of the 
second class, we have T = O (Pl ~l/*) where 

e = in2(log n + ~ log log n + s). 

An inequality is given for points of the first class but it turns out that these 
points comprise a "negligible" fraction of vn. This is a remarkable achieve­
ment since it shows that for a "large" proportion of characters, there is a 
cancellation. This result has the following implications to Waring's problem. 
If r(N) is the number of solutions of N = ** + • • • + *ƒ, and k > 12, then 
the asymptotic formula 

r(N)~f(s,k)N''k-1 

holds if 

(5) s > 2[n2(2 log n + log log n + 3)]. 

Here ƒ (J, k) is a certain function of s and k. 
In the previous edition, we have 5 > [10n2 log n], although (5) is given in 

the latest edition of L.-K. Hua's book. The method can also be applied to 
sums in which a polynomial is replaced by a differentiable function with 
suitably bounded derivatives. It leads to an estimate for S » ^e2viFin} where 
F(u) « - / log U/2TT. 

Specialists will recognize the importance of such estimates to the Riemann 
zeta function and will be interested to know that Vinogradov asserts that his 
result implies that if 

TT(N) = Li(N) + R(N) 

then 

(6) R(N) = OiNe-*00**?"). 

Other writers, in particular A. Walfisz, have observed that they are able to 
deduce only that 

R(N) ~ 0(jVe-c(k)g'f)3/5(logIO8/,r,/5). 

Meanwhile nonspecialists will politely suppress a smile as they ponder the 
problem of dancing elves. 

It would be impossible to convey here any but the vaguest idea of 
Vinogradov's methods. Suffice it to say that the problem of estimating S is 
reduced to the problem of estimating a multiple integral which in its turn 
reduces to the purely arithmetic problem of counting the number of solutions 
of a system of diophantine equations. This oversimplification scarcely does 
justice to the extreme ingenuity and insight needed to effect the result. It is a 
noteworthy fact that Vinogradov's estimates have scarcely ever been im­
proved upon except by Vinogradov himself. 

In Chapter 7, Vinogradov considers the problem of estimating sums of the 
type 1,p<pe2™mfip) where the summation is over primes/? only. Once again the 
result is quite general and supercedes previous ones. It is highly interesting to 
note that, despite the different range of summation, the result differs but little 
from that given above. 
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An application is made in Chapter 9 to the Goldbach-Waring problem, i.e., 
to the representation of an integer in the form N = />* + •• • + ƒ>ƒ where 
the summands are primes and k > 12. The asymptotic formula is shown to 
hold for 

s > 2[n2(\og n + log log n + 3)]. 

The investigation of this problem is due originally to L.-K. Hua and is also 
worked out in detail in his book including the case n < 12. Vinogradov's 
estimates are, however, relied upon. 

In Chapters 5 and 8, applications are made to the problem of the 
distribution of the fractional points of a polynomial when the argument 
ranges over all integers or primes only. 

This together with an introduction and preliminary results comprise the 
content of the book. It is, unfortunately, difficult to read and is not for the 
fainthearted. It does not benefit, as the earlier edition did, from the very 
helpful comments of the translators. It is relentless, and must be read "avec la 
plume dans la main." But it will certainly be rewarding to students of number 
theory who, in the words of Gauss, "ont le courage de l'approfondir." 

4. Quo vadis? Does this book represent the end of a chapter or the 
beginning of a new one? The reviewer does not feel competent to speculate 
on the future but some observations may be pertinent. 

In the case of the Waring problem, the conjectured value for the range of 
validity of the asymptotic formula is s > 4k. This contrasts with the best 
value given above currently available by these methods. 

In the case of the binary Goldbach problem, the methods fail but do yield 
results in which prime numbers enter linearly. The most spectacular result in 
this connection is the beautiful and profound asymptotic formula of Linnik 
for the number of representations of an integer in the form N = p + x2 + 
y2-a result which had been conjectured by Hardy and Littlewood. It is worth 
observing that the frequency of the set of integers of the form x2 + y2 is given 
by the asymptotic value cn/ylogn while that of the primes by «/logn. By 
contrast, applications of the deepest sieve methods of A. Selberg have enabled 
C.-J. Chen to prove that every even integer is the sum of a prime and an 
integer containing at most two prime factors. 

In the case of the zeta function and its application to the distribution of 
primes we note the following: 

R(N) = 0(Ne-c(lo&Ny'2) de la Vallée Poussin, 1895; 

R(N) = 0(Ne-cilo*Nlozlo&N>l/2) H. Weyl, 1919; 

R(N) = 0(Ne-€{Xo*Nf/5) Vinogradov, 1966. 

These are to be contrasted with the result obtainable on the assumption of the 
Riemann hypothesis 

R(N) = 0(Nl/2logN). 

The above results are not even of the form R(N) = 0(JV!~e)- It might 
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appear to some that years of herculean effort have yielded limited progress, 
but after all the antagonist is a formidable foe. 
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The Selberg trace formula for PSL (2, R), Volume I, by Dennis A. Hejhal, 
Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New 
York, 1976, iv + 516 pp., $ 15.20. 

For the last twenty-five years or so the Selberg trace formula has had, in 
the general mathematical community, an aura of mystery which is only slowly 
dissipating. This circumstance makes it necessary for us to look a little at the 
history and nature of this formula in order to understand properly the 
position of this new book. 

First of all, the Selberg trace formula has precedents some of which are 
very old indeed. The underlying technical ideas have been in common 
currency amongst applied mathematicians since the turn of the century; these 
arose in the study of Laplace's equation and we would now associate them 
with groups like O (3, R). Furthermore, various versions are to be found in 
earlier investigations concerning automorphic forms. These were mostly 
number-theoretical and hinged around the class-number formulae discovered 
by Kronecker and studied further by Fricke, Mordell, Hecke and Eichler. But 
also from the differential-geometric point of view both J. Delsarte and H. 
Huber came very close to an explicit trace formula (for PSL(2, R)). 

Yet, nevertheless, Selberg's discovery of this formula in the early 1950's was 
a revolutionary event and its impact is far from spent. This lies in the nature 
of the formula. Although I have continually referred to it as a formula it is 
much more a method; a method, that is, for probing more deeply into the 
nature of discontinuous groups and their function theory. In broad terms, the 
Selberg trace formula arises when one learns to think functional-analytically 
about automorphic functions and forms. This has been the pons asinorum; it 
forces one to shed preferences for complex-analytic functions and prejudices 
against 'soft analysis'. Once this has been done a new land, full of promise, 
opens up. 

There are two approaches to the trace formula; that due to Selberg which 
uses differential and integral operators-and in fact the differential operators 
can be eliminated-and that due to Gelfand and his collaborators which uses 
representation theory. The latter is now almost indispensable for general, 
especially number-theoretic questions, whereas for the study of Fuchsian 
groups the former is more flexible. It is this that is used in this book and we 
shall first look at it a little more closely. 

The basic idea is the following. Let S be a 'good' topological space and m a 
measure on S. Let A be a commutative family of compact integral operators 
on L2(S, m) and we suppose that the adjoint of any operator in A is also in A. 
Then, from spectral theory, we know that A can be 'diagonalised' and under 
our assumptions there exists a countable orthonormal basis {vn; n EN} of 


