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HOMOTOPY RIGIDITY OF LINEAR ACTIONS: 
CHARACTERS TELL ALL 

BY ARUNAS LIULEVICIUS1 

Our aim is to present a striking rigidity phenomenom in unitary represen­
tations of compact groups. Let U = U(n) be a unitary group and H a closed 
subgroup of [/. The homogeneous space U/H is a smooth manifold with a 
smooth action X of U induced by left multiplication. If a: G-> U is a 
representation of the compact group G, then À ° (a X 1): G X U/H -» U/H 
is an action of G on U/H, and we denote this G-structure by {U/H, a). Such 
actions of G on U/H are called /wear actions. We shall give a complete 
description of the G-homotopy types of linear actions on U/H for a certain 
class of H. To motivate our results we shall first examine some obvious 
G-equivalences of linear actions. 

If A" is a {/-space, then the set of (/-maps MapV(U/H, X) is in one-to-one 
correspondence with elements x G X such that Ux D H, where Ux = {u E 
U\ux = *} is the isotropy group of the action at x. For example, if a E [/ 
then the element a// in U/H has isotropy group aHa~x and the [/-map ƒ: 
U/aHa~l ^ U/H given by f(uaHa~l) = uaH is a [/-equivalence. Indeed if 
H and A' are closed subgroups of U then U/H and [ / /# are [/-equivalent if 
and only if K = aHa~l for a suitable a Œ U. Suppose a, y: G-> U are 
representations such that there exists an a E U such that y(g) = ^«(g)^"1 

for all g E G (we say that y is similar to a). The map k: (U/H, a)-» 
(U/H, y) given by k(uH) = aw// is a G-equivalence. Indeed, k is the 
composition of the G-equivalence (U/H, a)-^(U/aHa~l,y) induced by 
conjugation with a in U and the [/-equivalence (hence G-equivalence!) ƒ: 
(U/aHa~l,y)^>(U/H,y). Thus similarity of representations gives us G-
equivalences of the associated linear actions on U/H. Here is another 
obvious way of obtaining G-equivalences: let c: [/-» U be conjugation by 
unitary matrices c(a) = â; then if c(H) = //, we obtain a G-equivalence c: 
(U/H, a) -^>(U/H, ô) where â = c ° a is the representation conjugate to a. 

It is too much to hope that_(U/H, a) is G-homotopy equivalent to 
(U/H, /?) if and only if /? or ft is similar to a. For example, if if is a 
subgroup of maximal rank in U and C is the center of U then C c H and C 
acts trivially on U/H, so if we let P(U) = U/C be the projective unitary 
group (with q: [/-^ P([/) the quotient map), then the standard left action X 
of [/on (//if induces an action of P(U) on U/H, and it is the similarity 
class of the projective representation q ° a: G-^P(U) which matters. We 
have: if a, /?: G -> (/ are representations and x : G -> 5 * = C is a 
homomorphism such that /? or /? is similar to x« then (U/H, a) is G-equiva-
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lent to (U/H, /?), and indeed through a map which is induced by an R-lmear 
map of R2n (the underlying real vector space of the complex vector space C 
on which U = U(n) acts in the standard way). The reader would expect to 
find more G-equivalences of linear actions if we drop linearity, and yet more 
G-homotopy equivalences. The surprise is that if we make a mild restriction 
on H then we find that linear actions of G on U/H are rigid under homotopy: 
(U/H, a) is G-homotopy equivalent to (U/H, ft) if and only if they are 
G-equivalent through an /{-linear map. Here is a sample result: 

THEOREM 1 (HOMOTOPY RIGIDITY OF LINEAR ACTIONS). If H is a subgroup of 
U = U(n) conjugate to U(n - k) X Tk, where Tk is the k-torus and n > 2k, 
a, /?: G -» U representations of a compact group G, then a G-mapf: (U/H, a) 
-» ( U/H, /?) exists with f : U/H -* U/H a homotopy equivalence if and only if 
there is a linear character x- G-* Sl and ft or /} is similar to x«. 

We should point out that the condition n > 2k is not necessary: for 
example, homotopy rigidity of linear actions holds for U(5)/U(2) X T3 and 
for U(6)/U(2) X T4, but the proof is much more involved. Similarly, the 
condition that H be conjugate to U(n - k) X Tk is too strong: in [13] we 
show homotopy rigidity of linear actions on U(m + n + \)/U(m) X U(n) 
X U(l) for mn > m + n + 1. The right level of generality for our current 
approach seems to be the following: let us call a subgroup H of U friendly if 
H is closed, connected, of maximal rank in U = U(ri) and there exists a 
nonzero vector v E Cn such that hv = X(h)v for some linear character A: 
h -* S1; indeed we assume H is conjugate to a subgroup U(nx) X • • • X 
U(nk) c U(n) with n{ > • • • > nk = 1 and nx + • • • + nk = n (see Borel 
and Siebenthal [7]). We shall outline a strategy for proving 

CONJECTURE A. If H is a friendly subgroup of U then linear actions of a 
compact group G on U/H are rigid under homotopy. 

Indeed one can conjecture that linear actions of G are rigid for U/H where 
H is connected of maximal rank. This is work in progress with Wu-Yi Hsiang. 

An immediate consequence of our homotopy rigidity result is that the 
G-homotopy type of (U/H, a) can be read off from the character table of G 
(characters tell all). For example, if a, /?: G -» U are representations and 
|Trace a(g)\ ^ |Trace/?(g)| for some element g G G, then (U/H, a) and 
(U/H, /?) have distinct G-homotopy types. An example of such a situation is 
given by the alternating group on five letters A5: let a and /} be the distinct 
irreducible 3-dimensional unitary representations, g = (12345), then 

T r a U ) = ! ± 2 ^ and Tr 0(g) - - ! - = ^ , 

so (U/H, a) and (U/H, /?) are not ;45-homotopy equivalent for any friendly 
subgroup H of U == 1/(3). Here, of course, there are no nontrivial linear 
characters and all characters of A5 take real values, so two linear actions 
(U/H, y), (U/H, S) of A5 on U/H (with H a friendly subgroup of U) are 
^5-homotopy equivalent if and only if y is similar to 5. The case of a and /? is 
especially interesting since there is an outer automorphism <p: A5-*A5 with 
<p*a = /?. Even the cyclic group of order two G = Z /2Z gives entertaining 
examples: if we let 1 denote the trivial representation of G then there exist 
linear actions a, (i, y, 8 on CPn such that (CPn, a) « (CPn, p) but (CPn, a 
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+ \)çé(CPn,$ + 1), and (CPn
9 y + 1) « (CPn, 8 + 1) but (CP*,y)96 

(CPn
9 5), where we have used « to indicate Z/2Z-homotopy equivalence. 

In Theorem 1, ƒ is not assumed to be a G-homotopy equivalence, that is, 
although there is a homotopy inverse ƒ': U/H -» U/H, we are not saying 
that such an ƒ' can be found which is a G-map ƒ': (U/H, /?) ~*(U/H, a). 
Indeed, Pétrie [15] exhibits a G-space Y, a linear action y on £///ƒ * CPk 

and a G-map h: Y-*(CPk
9 y) which is a homotopy equivalence such that 

the induced map is equivariant AT-theory 

hl:KG(CPk
9y)^KG(Y) 

is not an isomorphism-this means that although h is a homotopy equivalence 
it is not a G-homotopy equivalence. Our approach is based on the fact that 
this sort of pathology cannot occur if Y is a complex projective space with a 
linear action (see [11]): given a G-map h: (CPn, a)-»(CPn, /?) such that h: 
CPn -* CPn is a homotopy equivalence, there exists an /{-linear G-equiva-
lence k: (CPn

9a)^>(CPn
9 p) such that /r= k[ (so, in particular, hl is an 

isomorphism). 
This report is organized as follows: in the second section, we present an 

exact sequence on Picard groups of G-line bundles and popularize some work 
of Graeme Segal [19] on cohomology of topological groups. In the third 
section we examine the case U/H = CP" and show how equivariant K-
theory allows us to prove the homotopy rigidity theorem for this case. We 
also examine the general case of H à friendly subgroup of U and show how a 
result on cohomology automorphisms of U/H implies the homotopy rigidity 
theorem. The fourth section is devoted to proving the result on 
automorphisms of H*(U/H9 Z), where if is as in Theorem 1. 

A few words about the background of the problem. There is an extensive 
literature about G-maps of spheres with linear action: de Rham [16], Atiyah 
and Tall [5], Lee and Wasserman [10], Meyerhoff and Pétrie [14]. The current 
project is the result of numerous consultations with Ted Pétrie. Thanks also 
go to J. F. Adams, J. Dupont, H. Glover, W.-Y. Hsiang, P. Landrock, I. 
Madsen, G. Segal, R. Stong and J. Tornehave for their helpful comments. 

2. An exact sequence of Picard groups. Let X be a G-space, PicG(^) the set 
of isomorphism classes of complex G-line bundles over X. We give PicG(Ar) 
the structure of a group by using the tensor product of line bundles as 
multiplication. If X is a CW complex, then Hl(X;Z) s [X9 S

}] and 

H2(X; Z) ^[X9 CP00] = Pic£(*), 

where E c G is the subgroup consisting of the identity element. 

THEOREM 2.I/X is a nonempty connected G-space and H\X: Z) = 0 then 
the following sequence is exact: 

¥icG(*) c^PicG(X) ^PicE(X)9 

where c: X -** is the collapsing map onto a point, i: E c G the inclusion of the 
identity subgroup. 

PROOF. We shall use the technique of Segal's cohomology of groups [19]: if 
A is an abelian G-group (G compact, A has the compactly generated 
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topology) then cohomology groups H*G(A) are defined for all / > 0. The 
group H £ (A) is the quotient of the group of all crossed homomorphisms <p: 
G-» A (functions which satisfy <p(gg') = <p(g) + g- <p(g') for all g, g' in G) 
modulo principal crossed homomorphisms (those which have the form <p(g) 
= g • a - a for a fixed a in A). The pleasant thing about Segal's cohomology 
is that a short exact sequence 0->A'-+A-*A"-*0 (meaning that A is a 
principal ,4'-bundle with A" as base) produces a long exact sequence 

WG{A)-*H>G{A") >Hfl(A')-+Hi;+i(A)-

If F is a vector space over R then H^(V) = 0 for all i > 0. Given our CW 
space X we first notice that HG (Map (X, S *)) is precisely the set of 
isomorphism classes of G X S ^structures on the projection 7r,: X X Sl -> X> 
that is, #<}(Map(*, S1)) « Ker i. Since #*(*: Z) = 0 we obtain an exact 
sequence 

0->Map(X,Z)->Map(X,i?)-^Map(X,51)^l, 

Map(Ar, Z) =* Z since ^ is connected, and the collapsing map c: X ^> * 
induces a map of exact sequences 

- *Z /* s1 -> 1 

* Z > Map(X, i?) > Map(X, S1) • 1 

which in turn induces maps of long exact sequences of cohomology groups. 
We have 

ffl(R) • //ifcU - * U1CT\ ^ i/2 i ^H^S1) -+H&Z) >Hl{R) 

HhiV) 
S' + ^(Map(X, S1)) — ^ - + #£(Z) ->//2(F) 

where V = Map(X, /?) is a vector space over R, so in both exact sequences 
the extreme terms are zero, hence S and 5' are isomorphisms; thus c*: 
H£(Sl)-*H£(Mzp(X, 51)) = Kerr is an isomorphism, but H£(Sl)2è 
Picc(*) s Hom(G, S1), and under the isomorphism c* corresponds to c\ so 
Theorem 2 is proved. 

Notice that PicE(Y) a / /2(y; Z) under the isomorphism which assigns to 
a line bundle X its first Chern class cx(X). 

COROLLARY 3. Let ƒ: X-*Y be a G-map, X connected, H\X; Z) = 0, s a 
G-line bundle over X, t a G~line bundle over Y. Suppose f*cx(vf) — cx(rs), then 
there exists a homomorphism x* G —» S1 such that ft = x*« 

PROOF. Contemplate s~l -ft. We have 

^(/V' . /V)) - -q(/!j) + cx(i'ft) = -dC/'j) +y*c1(/
,o = o, 

so s~l • ft is in the kernel of r, hence in the image of c!-there exists a linear 
character x: G-> Sl with c'x = X' I = s~l 'f'*> o r / ! ' — X5> a s claimed. 
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3. The strategy of proof. Let CPn~l be a complex projective (n — 1)-
dimensional space, s: S2n"1 -+ CPn~x the Hopf bundle over CPn'\ If y: 
G->U = U(n) is a representation, s = s(y): (S2n~\ y) -^(CPn~\ y) 
defines an element in FicG(CPn~\ y), hence an element in KG(CPn"l

9 y) 
which we still call s. Let R(G) = KG(*) be the complex representation ring of 
G, then [3], [18] KG(CPn~\ y) is a free P(G)-module with 1 , . . . , sn~l as 
basis and 

sn - ysn~l + (A^)**-2 + ( - l ^ y = 0, 

where A'y denotes the ith exterior power of y. 

PROPOSITION 4. Let <p: KG(CPn~\ (S) -> KG(CPn~\ a) be a homomorphism 
of R{G)-algebras with q>(s(fi)) = xs(a)for some linear character x> G-*Sl. 
Then /? is similar to x«. 

PROOF. Let s(a) = s, s((3) = /. Then / satisfies 

tn _ ptn-\ + . . . + ( ^ i ) w
A ^ = o. 

Hence applying <p we have 

Xnsn - fixn~xsn~x + • • • + ( - l ) w A ^ = 0, 

and multiplying with x~w we obtain 

sn - /3x~lsn~l + • • • +(-l)wA / I(/?x~1) = °-

But 

sn - asn-x + • • • + ( - 1 ) ^ = 0 

and KG(CPn~\ a) is P(G)-free on 1 , . . . , ^"""1. Comparing the coefficients 
of sn~l we obtain /?x ~! Œ « in P (G) as claimed. 

We shall now show how homotopy rigidity of linear actions on CPn~l 

follows (compare [11], [12]). Let/: (CPn~\ a)^>(CPn-\ /?) be a G-map so 
thatƒ*: H*(CPn-{; Z) -+ H*(CPn~l; Z) is an isomorphism. Let « = CJ(J) -
c,(rs(a)), the first Chern class of the Hopf bundle s. Then f*u = u or — « 
since ƒ* is an isomorphism and H2(CPn~l; Z) is generated by w. If f*u = 
- «, we replace ƒ by c ° ƒ and /? by /? (where c: CP" - 1 -* CP'1"1 is induced 
by conjugation in U = £/(/*)), so we may assume f*u = w, that is f*cx(ii) = 
c,(/ly). We apply Corollary 3: there exists a linear character x* G-» Sl such 
that ƒ V = x*. Applying Proposition 4 to <p = ƒ' we obtain that /? is^similar to 
X«. Recalling that we may have had to replace our original /? by /? to obtain 
ƒ*« = u we obtain the homotopy rigidity result for linear actions on CPn~l. 

We build our approach to linear actions on U/H on this special case of 
CPn~K Suppose H is a friendly subgroup of £/ = £/(«); there exists a 
nonzero vector t> E Cn such that At> = \(h)v for all A e H for some linear 
character A. We define a map <n: U/H-+ CPn~l by 7r(«#) = [uv]. If a: 
G -* (/ is a representation then m is a G-map 7ra: (U/H, a) -* (CP"""1, a). 

PROPOSITION 5. If H is a friendly subgroup of U = U(ri) and ma is as above, 
then 7r'a: KG(CPn~\ a) -» KG(U/H9 a) w a monomorphism. 
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PROOF. We may as well assume H = U(nx) X U(n^ X • • • X U(nk) with 
nk = 1 and v = en, the last vector in the standard basis of C\ then w is 
induced by the inclusion H cU(n-l)X U(l). Let T = U(l) X • • • X 
1/(1) be the standard w-torus of U consisting of diagonal matrices, then 
T c H c U induces a commutative diagram of projections 

(U/T,a) >(U/H9a) 

* \ . 1 
and since p! is a monomorphism (see [18]), so is u£. 

Now let a, /?: G-» t/ be representations, 5 = s(a), t = s(fi) the G-Hopf 
bundles on (CPn~\a) and (CPn~\ fi), respectively. Let/: (U/H9a)-> 
(U/H, /?) be a G-map such that/: f///f -* U/H is a homotopy equivalence. 
Let u = Ci(iW^) = C](i!fl£/). If ƒ*« = w, then as before Corollary 3 says that 
there exists a linear character x* G-* Sl such that ftyt = x ^ = w«(x$). 
Thus f maps the image of v^ into the image of %. Since 7̂  is a 
monomorphism, we may define 

V = (riylf%:KG(CP»-\ji)^KG(CP"-\a) 

which, of course, is a map of i?(G)-algebras and <p(t) = x?> so Proposition 4 
says that /? is similar to x«- The catch, of course, is that there is no reason to 
expect that f* u is equal to u, so we have to do more work. 

The group of (/-maps Mapu(U/H9 U/H) is isomorphic to NV(H)/H, 
where NV(H) = {a G U\aHa~l = H} is the normalizer of H in £/ (see 
Bredon [8], Samelson [17]). If y: G-» £/ is a representation and fc: U/H-» 
U/H is a t/-map, then fc: {U/H, y) -> ( t / / # , y) is a G-map. Let c: U->U 
be given by c(«) = w, the matrix with complex conjugate entries. We have 
chosen H in its conjugacy class so that c(H) = H, hence c: (U/H, y)-> 
(U/H, y) is a G-map. We have a homomorphism 

^: NV(H)/H X Z/2Z-*Aut(H*(U/H; Z)) 

given by i//(&, /) = A:* ° c'*. Stated in another way: the homomorphism \p 
defines an action of NV(H)/H X Z/2Z on H*(U/H; Z). Of course the 
group Homeq( i / / / / ) of all homotopy classes of homotopy equivalences of 
U/H also acts on H*(U/H; Z) by taking induced homomorphisms in 
cohomology. We now state several related conjectures. 

CONJECTURE B. Let H be a friendly subgroup of U = U(n), ir: U/H-* 
CPn~l the standard map, u = TT*C,(.S), where s is the Hopf bundle on CP"~\ 
then the orbit of u under NV(H)/H X Z/2Z is the same as the orbit of u 
under Homeq(U/H). 

PROPOSITION 6. Conjecture B implies Theorem 1 (homotopy rigidity of linear 
actions on U/H). 

PROOF. We keep the notation of our earlier discussion: let a, /î: G -» U = 
(ƒ(«) be representations,/: (U/H,a)-+(U/H, fi) a G-map such that/: 
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U/H -» U/H is a homotopy equivalence, u = TT*C,(^). According to 
Conjecture B there exists an element k of NV{H)/H X Z /2Z such that 
k*f*u = u. Replace f by f° k (here we may have to replace a by 5 if 
conjugation is involved). Then f*u = w, so rfV^f = IV^J, and since £ / / # *s 

connected and simply connected, we obtain from Corollary 3 a linear 
character x' G-> S1 such t h a t / ^ / = x^IC5)- So now letting <p = fl£~!/fyj 
we can apply Proposition 4 to conclude that /? is similar to x«-

We shall prove an even stronger result for a multitude of subgroups of U: 
CONJECTURE C. The map t/> is an isomorphsm of NV{H)/H X Z /2Z onto 

the group of all algebra isomorphisms of H*(U/H; Z) if H is a friendly 
subgroup of U = £/(/*) and n > 3. 

Notice that f/(2)/ T2 « S2, and in this case $ has a cyclic group or order 2 
as a kernel. If n > 3, ̂  is a monomorphism. 

Let us boldly walk even further on the limb: the following algebraic 
conjecture implies Conjecture B (and Conjecture C in a lot of cases). 

CONJECTURE D. Let T be the standard torus of U = U(n\ {ex, e2,..., en] 
the standard basis for Crt, let TT,: U/T-* CPn~x for i = 1 , . . . , n be given by 
ir.iuT) = [we;], 5 the Hopf bundle on CP"""1, let Xt** *fcx(s). lî x E 
H2(U/T; Z) and xn = 0 then there exists an integer a and an j in 
{1, 2 , . . . , n) such that x = axé. 

The algebraic data are easy to state: H*(U/T; Z) = Z [ x „ . . . 9xn^t] 
modulo the ideal I„ = (h2,..., Aw), where h§ is the sum of all monomials of 
degree / in xx>..., xn_x (see Borel [6])-for example, for n = 4, h2

 Œ x2 + 
x,x2 + JC,JC3 + jtf + x2x3 4- xj. It is important to notice that n — 1 appears 
above, not /j-indeed xn = — JC, - #2 "~ * * * ~ xn-\- The group NU(T)/Tis 
S„, the symmetric group on « letters which acts on H*(U/T; Z) by permut­
ing the xl9..., xn. Conjecture D is trivial to prove for n = 3. For n = 4, the 
algebra is already delightfully complicated and a hint is helpful: examine the 
solutions of x4 = 0 first over Z /3Z and then exploit the fact that multipli­
cation by JC, from H6(U(4)/T4; Z/3Z) to H\U(4)/T4; Z/3Z) has kernel 
of dimension one to show that if xx + y is a solution of x4 = 0 over Z and 
>> = bx2 + CJC3 then for all natural numbers k we have 3k\y implies 3k+l\y, so 
y = 0. 

The limb is beginning to creak ominously, but let's take one more step: 
CONJECTURE E. If H is a connected subgroup of maximal rank of U = 

U(n) and Homeq(£//ƒƒ) is the group of homotopy classes of homotopy equiva­
lences of U/H then Nv(H)lH x Z/2Z is a normal subgroup of Homeq( (ƒ/ƒƒ) if 
n > 3. 

One reason for thinking wishfully about Conjecture E is that it would give 
a beautifully simple proof of Conjecture C for H = T, the maximal torus of 
U(n) and Homeq(C///f) is the group of homotopy classes of homotopy 
equivalences of U/H then NV{H)/H X Z /2Z is a normal subgroup of 
Homeq(U/H)ifn>3. 

4. Algebra automorphisms of H*(U/H; Z). We shall prove Conjecture C 
for U = U(n), H= U(n - k) X Tk, n > max{2A;, k + 2}. As before, let 
{e„ e2 , . . . , en) be the standard basis of C* and let IT,: U/H -» CP"" ' be the 
projection vs(uH) = [**£„_*+,] for / = 1 , . . . , k. Let >> E H2(CPn'1; Z) be 
the Chern class of the Hopf bundle and let JC, = ir*(y)\ then H*(U/H; 
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Z) = Z[x„ . . . , xk]/I, where the ideal I = (hn_k+l,..., hn) and hj is the 
sum of all monomials of degree y in xl5 . . . , xk. A free basis for //* is given 
by xE = jcf'xf2 • • • **S where 0 < ex < n - k + i (see Borel [6]). The group 
NV{H)/H is Sk9 the symmetric group on k letters, and it acts on H*(U/H; 
Z) by permuting JC„ . . . , JC*. We examine the case of k = 2 more closely. 

LEMMA 7. ƒƒ u = ax, + fot2 W <W efe/wew/ i/i H\U{m + 2)/U(m) X T2; 
Z) W/7A w2m = 0, //œfl either a = 0orb = 0. 

PROOF. We first claim that if both a and b are nonzero and u2m+x = 0 then 
a = b. Notice that JC["+2 = x2

m+2 = 0 (since both come from CPm+l) and 
H4m+2 h a s xmxm+i a s b a s j s Moreover, x,m+1x2

m = - xpcf+ l. We have 

0 = u2m+l = (axx + fec2)
2m+1 

= ( 2 m +
1

1Vm+,*mxr+,A:2
m + ( 2 ^ 1)amèm+1jc1

mx2
m+i, 

so a ¥" 0, £ 7̂= 0 implies A = A. If now, in addition, u2m = 0, then we have 

0 ={J+ l)a2mx?+lx?~l + {2m)a2 

+ ( 2 m
t W \/w - 1/ 

but //4m has {x,m;c2
m, jt,m"'1jc£,+ 1} as basis and 

V m + L m - 1 «̂ _ v-zw^w ^ / w — l m + 1 
Ai X 2 ~ Aj X 2 A | X 2 , 

so the above sum reduces to 

Ai A 2 

* 2 

O = {(Ï) - ( W
2 :I)} A W' 

so since (2^) =̂ (™+i) for all m it follows that a = 0, a contradiction to our 
temporary hypothesis that a =£ 0 and b ^=0. 

COROLLARY S. Let V Œ H2(U(m + k)/U(m) X 7*; Z) fe aw e/eme/tf MCA 

//wtf t>m+* = 0. If m > k then v = ax^or some i in ( 1 , . . . , &}. 

PROOF. By applying a suitable element of Sk we can assume that the 
coefficient of xx is nonzero. We wish to show that the coefficient of xt for 
/ ^ 1 is zero-and, of course, it is sufficient to prove this for i = 2. Consider 
the standard map 

j : U(m + 2)/U(m) X T2^U(m + k)/U(m) X Tk 

induced by the standard inclusion Cm+2 c Cm+k under which j*xx = x{, 
j*x2 = x2J*xi = 0 for / > 2. Inspect u =j*v; then wm+* = 0, m + A: < 2m; 
hence a ^ 0 implies that the coefficient of x2 is zero. 

We arc now ready to prove Conjecture C for U(m + k)/ U(m) X Tk. 

THEOREM 9.1fn> max{2£, A: + 2}, {/ = C/(w), H= U(n- k)X T9 then 
the map y\> is an isomorphism of NV(H)/H X Z /2Z onto the group of all 
algebra isomorphisms ofH*(U/H; Z). 

PROOF. We first prove that $ is onto. Let <p: H*(U/H; Z) -» H*(U/H; Z) 
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be an algebra automorphism; then q)(xx) = u is an element with un = 0 (this 
since xx = 0) and because n > 2k, Corollary 8 is applicable, so u =* axi for 
some i and a = 1 or — 1. By using elements of NV(H)/H = Sk we can 
normalize <p (using c* if necessary) to have <p(xx) = xx. We claim <p is the 
identity. If not, use S* to arrange <P(JC2) = - x2. Now consider <p as an 
automorphism of Z[x„ . . . , xk] (remember: there are no relations among the 
generators in H2). The relations in grading 2n — 2k + 2 are generated by 
A„_*+j so we must have q>hn_k+x « ± hn_k+x, but (̂x""*"*"') = JC,"""**1 and 
«pC*!1*-̂ ) = — x"~kx2, so <p(x2) == — x2 is impossible, and we have shown 
that \p is onto. 

To prove that \p is one-to-one is even easier: since m > 2 each o E 
NV{H)/H = Sk maps Xj into some xi9 c*xx = — x„ so the kernel of ^ is 
contained in Sk X 0, but we have already noticed that ^|5^ X 0 is faithful, so 
\{/ is one-to-one, as claimed. 
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