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Let 1 < p < <» and let Hp(U) denote the family of all functions ƒ that 
are analytic in the unit disc U and such that 

(1) \\f\\p = Jm ( £ ƒ I * W*»)Pd») 'lp < ~. 

Let on be defined by 

s~>\ °n = to* SUP 
( 2 ) wf=C,xfEU fBHp(U)MWp=l 

We announce the following result. 

SllfWdx-t,wjfo,) 
/= ! 

THEOREM 1. Given any e > 0, tfœre eJtwft J« integer «(e) > 0 swcA that 
whenever n > 72(e), then 

(3) expKS^Tr + e y / 2 ] <a„ < e x p [ - ( ^ T 7 j - e ) » 1 ' 3 ] , 

where q = p/(p - 1). 

Next, let ff£(U) denote the family of all functions g such that ƒ E Hp(U), 
where /(z) = *(z)/(l - z2), and such that H*(U) is normed by ||g||* = ||fl|p> 

where \\f\\p is defined as in (1). Let g G #*(£/), and let {^fe)} be a linear 
approximation scheme defined by 

(4) Tn(g) (z) = £ tfcfafi), xj G U 

where <t>nj is analytic in U for each n and ƒ, and such that 

(5) n^tóii^ciwij 

where C is independent of ». We then announce 
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THEOREM 2. Given any e > 0, there exists an integer n(e) > 0, such that 
whenever n > n(e), then 

expI-^TT + ey'2] 

< inf sup sup \g(x)-Tn(g)(x)\ 
^ TngŒH*(U),\\g\\* = l -Kx<l 
(6) 

;e4t^-'>"']• 
Let us briefly mention some papers which are relevant to the present 

work. In 1964 Wilf [9] proved for the case p = 2 that on = 0((log n/n)112). 
In 1971 Haber [2] and Johnson and Riess [3] proved for p = 2 that on = 
Oin"1^2). The authors of [2], [3] conjectured that their bound was the best 
bound possible. In 1973 [6] it was shown by the author that for p = 2, on = 
0(e~nn 2/2). In 1975 it was shown by Loeb and Werner [4] that for arbitrary 
p>l,oH< 21+2/«exp[-(H/2)1/2/(2<7)]. 

The bounds of Theorem 1 are sharper than any others that have been 
obtained previously. While there is a gap in the constants of the upper and 
lower bounds, no one has previously obtained a lower bound. Moreover, no 
one has previously obtained upper or lower bounds of the type in Theorem 2, 
for approximation in H*(U). 

The results of Theorems 1 and 2 may be extended to establishing the 
optimal 0(e~cn 2) rate of convergence of quadrature and interpolation in 
other Hp spaces, p > 1. In what follows, we shall describe some of these. We 
shall also mention known methods of quadrature or interpolation in each case, 
which converge at the 0(e~an ) rate. At this time it is not known whether or 
not a = c for any of these methods. 

(a) Let 0 < d < TT/2, let Vd = {z = x + iy\ jarg[(l + z)/(l - z)] | < d}. 
(Note that V^^ = U) and let Hp(Vd) denote the family of all functions ƒ that 
are analytic in Vd such that 

(7) IWU = Mm inf ( L\f{z)f\dx\)l,P < - . V J P C-+dVd,CCVd \ J C / 

The optimal rate of convergence of quadratures (2) in H (Vd) is 0(e~cn ), 
where 

(8) (nd/q)1 / 2 < c < 5 1 / 2 7 r + e, e > 0 arbitrary. 

The quadrature methods of Theorem 1.6(b) of [8] and Theorem 3.2 of [7] 
converge at the 0(exp[-(7rd/^r)1/2«1/2]) rate. 

(b) Let H*(Vd) denote the family of all functions g such that ƒ e Hp(Vd) 
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where f(z) = g(z)/(l - z2) and where HJVd) is defined in (a) above. The op-
timal rate of convergence of interpolation (4) in H*(Vd) is 0(ercn ), where 

(9) [nd/(2q)] *'2 - e < c < 5^2TÏ + e, e > 0 arbitrary. 

The method [8] 

«oo s z ^,w^)°iog(f^); 
/=-iV 

sin[7r(x -jh)/h] 

Mx-flOlh] ' 

h = (irdq/N)1'2, x, = tanhflft/2), 

converges at the 0(exp{-([7rc?/(2#)]1/2 - e)w1/2}) rate, where n = 2AT + 1, and 
e > 0 is arbitrary. 

(c) Let Vd = {z = x + z>: |y |< </}, and let #p(Ptf) denote the family of 
all functions ƒ that are analytic in Vd such that 

< o o JVfó y) = ( ƒ*{!ƒ(* + iy)\p + ITOc - *>)ncosh2^(x/2) dxf 

j < rf, and such that \\f\\p = M/, rf~) < ~. 
(i) The optimal rate of convergence of «-point quadratures 

ƒ«/(*) ̂  = £>,ƒ(*ƒ> 

in Hp(Vd) is 0(e~cn ), where c is subject to (8). The trapezoidal rule, 

fRf(x)dx~h £ f(jh), h = (27idq/Nyt\ 

converges at the exp[-(7rdlq)1 f2nl f2] rate [8], where n = 2N + 1. 
(ii) The optimal rate of interpolation offeHp(Vd) on R is 0(e-cn\ 

where c is subject to (9). Interpolation via the Whittaker cardinal function, 

ƒ ( * ) - £ f(jh)S(j,h)(x) (ft = (7r^/iV)1/2) 
/=-iV 

converges at the 0(exp { - ( [ndl2q)]l / 2 - é)nX / 2 }) rate [8], where n = 2AT 4-1, 
and e > 0 is arbitrary. 

REFERENCES 

1. A. A. Goncar, On the rapidity of rational approximation of continuous functions 
with characteristic singularities, Math. USSR-Sb. 2 (1967), 561-568. 



148 FRANK STENGER 

2. S. Haber, The error in the numerical integration of analytic functions, Quart. 
Appl. Math. 29 (1971), 411-420 . 

3. L. W. Johnson and R. D. Riess, Minimal quadratures for functions of low order 
continuity, Math. Comp. 25 (1971), 831-835. 

4. H. L. Loeb and H. Werner, Optimal numerical quadratures in H spaces, Math. 
Z. 138(1974) , 111-117. 

5. L. Lundin and F. Stenger, Cardinal-type approximations o f a function and its 
derivatives (submitted). 

6. F. Stenger, Integration formulas based on the trapezoidal formula, J. Inst. Math. 
Appl. 12 (1973), 103-114 . 

7. . An analytic function which is an approximate characteristic function, 
SIAM J. Numer. Anal. 12 (1975), 239-254 . 

8. , Approximations via Whittaker's cardinal function, J. Approximation 
Theory 17 (1976), 222-240 . 

9. H. Wilf, Exactness conditions in numerical quadrature, Numer. Math. 6 (1964), 
315-319. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, 
VANCOUVER, V6T1W5 BRITISH COLUMBIA, CANADA 


