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VARIATIONAL INEQUALITIES 
AND FREE BOUNDARY PROBLEMS1 

BY DAVID KINDERLEHRER 

The study of variational inequalities and free boundary problems finds 
application in a variety of disciplines including physics, engineering, and 
economics as well as potential theory and geometry. In this brief informal 
exposition, we intend to discuss several examples with the intention of 
illustrating the questions and ideas which comprise this theory. A general 
introduction to variational inequalities is provided in the papers [Li-S], 
[L-Sl], and [Brl]. Free boundary problems from the viewpoint of variational 
inequalities are discussed in [L-Sl], [K3], [K4], and [Bal]. We shall cite more 
recent work in the course of our discussion. The first four sections of this 
paper concern some familiar problems whereas the last three are devoted to 
very recent considerations in the study of free boundaries. Our understanding 
of this topic is still rudimentary. 

The methods we discuss may be applied to treat problems of physical 
interest. Among these are questions of fluid mechanics ([Br-S2], [BR-D]), 
hydraulics ([Bal], [Ba2], [S4], [CI], [F-Jl], [F-J2], [Al]), elasticity ([Ti], [Br2], 
[Br-Sl], [C-N3]), plasma physics ([Te2], [Be-Br], [P], [K-Sp]), and hydro­
dynamics [Fr-Ber]. More complete references are given in the text. 

Stopping time and impulse control problems lead to the notion of quasi-
variational inequalities. Spatial limitations have prevented the inclusion of 
this topic here. We refer to [Ben-Lil], [Ben-Li2], [F-Ben], [F4], [An-F]. We 
have also omitted a discussion of the theory of thin obstacles ([Fre2], [Fre3], 
[Giii]). 

The author wishes to acknowledge his indebtedness to Professor Nestor 
Riviere for his vigorous interest in this work. 
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1. The obstacle problem. We begin with an informal description of what has 
been generally referred to as the "obstacle problem.^ Let £2 c R" be open, 
connected with smooth boundary 9S2 and let \p E C2(S2) satisfy 
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max il/ > Oandûf <0on 30. 

Consider a function u(x) satisfying 

(1.1) )z ƒ uldx = ïrd\ j ƒ v^dxivE Cl(Q),v> i//inQ,t> = Oonö) . 

Here ux * (uXi,..., u^). 
Suppose, for the moment, that u exists and uE.C *(Q). 
The set Q may be divided into the two subsets 

I = I(u) « {* E Q: M(X) — *K*)}> closed, and 

2 - / = { J C 6 Ö : u(x) > \p(x)}, open. 

The set ƒ is called the coincidence set of u. One anticipates that 
(1.2) Aw = 0 i n Q - / , 
whereas, at least formally, 
(1.3) A i i - A ^ in/ . 
Notice this immediately suggests that the second derivatives of the solution 
may not be continuous in Q. In addition, u - \p attains its minimum value 
zero at any point of I ; hence, 

"*, = &, on/, \<i<n. 

In this fashion we may regard u as the solution of a Cauchy problem 

Aw = 0 in Q - /, 
(1.4) * = *//, 

Since the Cauchy problem for A is not well posed even for a smooth initial 
surface 3/, the mere existence of a solution suggests restrictive conditions on 
3/. The set 3/ is what we call a "free boundary". 

The set of f unctions 

K̂  = {veCl(Q):v > i//inQ,t? = 0on3Q} 

is convex, so that M + / ( t ) - « ) 6 K ^ whenever «,t)GK^ and 0 < / < 1. If u 
has minimum Dirichlet integral in K̂  then 

F{t) - \ [ (ux + t{v - u)xfdx, 0 < t < 1, 

has a minimum at t « 0, whence 

o</"(o)=jf^(0-«)JCi<&. 

Summation over repeated indices is understood. We express this condition as 

(1.5) u G K̂ : f Uxi(v - u)Xidx>0 farvGK^. 

It is, by and large, the way in which variational inequalities are formulated. 
The convexity of the function \p2, p = (/>„ . . . ,/?„), easily leads to the 
conclusion that (1.5) implies (1.1). 
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The analogy between (1.1) and (1.5) and the variational solution of an 
elliptic boundary value problem is more than casual. It would be legitimate 
to write that the theory of variational inequalities has as its model the 
variational theory of boundary value problems, but differs from this theory in 
that the competing functions belong to a convex set instead of an affine 
space. Just as in the theory of boundary value problems, the use of a 
minimization principle akin to Dirichlet's Principle to achieve the existence of 
u entails widening the notion of solution, in the present case to functions in 
the Sobolev space 

v G #<{ (Û) - {<> £ L2(Q): vXt G L2(Q), 1 < i < n, v = 0 on 3ö}. 

Recall that HQ(Q) *s a Hubert space. 
Henceforth we consider an enlarged convex set, still called K̂ ,, 

K ^ = { Ü G HÙ (Q): v > $ in 0} , 

where the notion of > is defined appropriately [SI]. 
The existence of the solution u of (1.5) now follows by direct methods. 

Indeed, as one suspects, 

u « Jty, where P: H^ (Ö) ->K^ 

is the projection operator from HQ(Q) onto the closed convex set K̂ . 
A smooth function w is superharmonic in Î2 provided that -Aw > 0 in Q. 

We say that w G HQ(Q) is superharmonic if 

f w^Xi dx>0 wheneverO < f G H£(Q). 

With u the solution of (1.5) and ? G Hj(Q)9 f > 0, 

and hence u is superharmonic in $2. It admits the characterization [L-Sl] 

u(x) = wî[v(x) G HQ (Q); v superharmonic, v > \p in Q, and v > 0 on 3Î2}. 

From the Riesz Thoerem, we deduce the existence of a nonnegative 
measure /i such that 

u(x)-[ G(x9y)dp(y)9 x E Ö , 
(1.6) •'o 

SUpp Jul C I, 

where G(x,y) denotes the Green's function of the Dirichlet problem for —A 
in Q. This framework for variational inequalities which bears a strong 
resemblence to potential theory is developed in Lions and Stampacchia [Li-S] 
and Lewy and Stampacchia [L-Sl]. 

Likewise, it is possible to prove old facts about potential theory using 
variational inequalities. As an illustration, G. Stampacchia [S-5] has given a 
new and very simple proof that the minimum of two superharmonics is 
superharmonic which remains valid in the context of divergence form second 
order elliptic operators with bounded measurable coefficients. 

The question of whether or not u G C\Q) has become a question about 
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the smoothness of the solution of (1.5). Since we already know that u £ 
C2(Q), this regularity theory will have to be especially invented for variational 
inequalities. 

A second variational inequality we would like to describe briefly concerns 
the function of least area in the convex set 

K^ = [v lipschitz in Q: v > $ in Q, v = 0 on 3Q). 

The question is to find 

r ux 
(1.7) uEK^.J ' (« - u)x dx>Q forallt>EK^. 

yrr^ 
All the difficulties inherent in the lack of coerciveness of the pairing 
determined by the minimal surface operator, 

{Au, O « I , Sx dx> u> £ lipschitz, 

* v ^ 
influence the existence considerations here. So one is led first to establish 
suitable a priori estimates for |wx| in the manner required for the solution of 
the Dirichlet problem. In particular, the condition that the mean curvature of 
3Î2 have the proper sign is imposed ([Mal], [Ma2], [L-S2], [Gia-P], and also 
[J-Ser] for the Dirichlet problem). 

This problem has also been considered from a parametric standpoint by M. 
Miranda [Mi]. 

2. Regularity of the solution. Returning to our example (1.5), we give a short 
description of a method of penalization which leads to smoothness of u 
[L-Sl]. Formally, u is the solution to the nonlinear boundary value problem 

— At/ = -Ai//0(w - \p) in K, 
C-1) w = 0 on a B, 

where 

•(')-{ 1, t < 0, 
0, t > 0. 

Recall here (1.2) and (1.3). Of course, it is difficult to give meaning to (2.1) 
since neither u nor 9 is continuous. 

The method of penalization consists in replacing the variational inequality 
(1.5) by a family of nonlinear boundary value problems resembling (2.1) and 
then demonstrating that their solutions converge to the solution of the 
variational inequality. The principal difficulty lies in obtaining suitable a 
priori estimates. Let 0e(t) be defined by 

and set 

1 / < 0, 
1 - t/e 0 < / < e, 0 < e < 1, 

10 t > e, 
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(2.2) ue e i/o1 (Q): - Awe = max(-Ai/>, O)0e (ue - ip) in Q. 

One may show ue exists by the Schauder fixed point theorem, for example. 
One may further show that ue G K .̂ The standard elliptic theory and the 
uniform boundedness of the right hand side of (2.2) insures that 

llwellcIa(n) < const, 0 < a < 1. 

Here C1,a(Q) denotes the C\Q) functions whose norm 

M*) ~ vx(
x')\ 

IMIc«- = IMIL-<O> + S U P — \ x _ x>\a— < <*>• 

It now follows, with the aid of the device of Minty, that 

ue -» u in C u (2) for each a < 1. 
What appears to be a subtle refinement of this is the fact that uXXj E L°°(Q) 

([Br-K], [Frel], [Ge]). However this fact seems to be essential in tiie study of 
the coincidence set I. The proof depends on a theorem of Stampacchia [S-1J. 

3. The one-phase Stefan problem. The considerations of the previous section 
may be extended to the study of parabolic variational inequalities. A particu­
lar example is the one phase Stefan problem which is the description, 
typically, of the melting of a body of ice maintained at 0°C in contact with a 
region of water. The unknowns are the temperature distribution of the water 
and the ice-water interface. This temperature distribution is required to solve 
the heat equation and energy is conserved across the interface. 

We begin with an abbreviated description of this problem in one space 
dimension. Let 0 < x0 < R and T > 0 be given. Our problem is 

To find a curve T: t = s(x)9 x > x0, and a function @(x, /) satisfying 

s(x) = 0 for 0 < x < x0, 
~®xx + 0/ = 0 in 2 - {(JC, 0: s(x) <t<T}y 

0 = 0 
onT9 

0 ^ ' = -k 
0(JC, 0) = h(x\ 0 < x < x0, 
®(0, 0 = g(0, 0 < / < T, 

where k > 0 is the heat of fusion, h(x) > 0 is the initial temperature, and 
g(t) > Ois the temperature of the boundary t. 

Note that @(x, i) = min 0 = 0 f or (JC, /) G T, by the maximum principle, 
so &x < 0 on T. Hence 

s'(x) > 0, x0< x < R, 

so the curve T is monotone. This is the property of the one phase problem 
which readily permits its formulation as a variational inequahty. It consists of 
introducing a new dependent variable by means of integration of the old one. 
Let us describe this way of formulating the problem since it is also useful in 
the study of filtration (eq. [Bal]), fluid dynamics [Br-S2], and potential thteory 
[K-Sl]. 
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Suppose now that 0 and T exist and set 0 — 0 in the complement of Q. 
Following Duvaut [D], set Q = (0, R) X (0, T) and define 

u(x, i) = f 0(x, r) rfr, (x, 0 E g, 
'o 

f( \ . ( A ( * ) ' 0 < x < XQ, 
/ W \ - * , x 0 < x < * , 

*( ')- f*(T)*» 0 < / < r , and 

K= {t?6l°°(o):ü >0a.e. inö}. 

It is no loss in generality to assume x < /? for (x, /) e T. We now compute 
the equation satisfied by u(x, i) in Q. Suppose that u(x, i) > 0. Then either 
0 < x < x0 and f > 0 o r x 0 < x < / ? and / > s(x). Consider the second 
possibility, in which case 

u(x, i) - f 0(x, T) dr. 
M*) 

Since 0(x, s(x)) = 0, 

ux(x,t)=f' ex(x,T)dr. 
Js(x) 

Now 

M * > t) - ƒ ' 0„(x, T) rfr- ^ ( ^ ( x , s(x)) 

- ƒ ' 0T(x, T) * + A: - 0(x, f) + k = w,(*> 0 + *• 

In the same manner, when 0 < x < x0, / > 0 we find that 

*xx(x> 0 - f @r(*> *) rfr= */,(*> 0 - *(*)• 

Consequently we may divide Q into the two sets defined by the conditions 

{-uxx + ut)(v - u) - /(t? - u) = 0 fort; E K, 
{ 

{• 

i / > 0 
and 

'(-uxx + ut)(v - u) - ƒ(© - w) - +fo > 0 fort? E K, 
H = 0. 

Hence it is always the case that 

u E K and ( - i*̂  + ut)(v - u) > f(v - u) in g for all t; E K. 

These considerations lead to the parabolic variational inequality 
(-uxx + ut){v - u) > f(v - u) ae. in Qfor all oGK, 
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u = 0, 
u « i//, 

M = 0 , 

r = 0,0 < x < R9 
x » 0, 0 < / < T, 
x = R, 0 < / < T. 

(3.1) 

This is analogous to (1.5) after an integration by parts. It is clear that u G K 
and that Q - {(*, /): u(x9 i) > 0}. 

Without formulating the classical problem (cf., e.g., [F2] or [F-K]), we 
present the variational inequality associated to the Stefan problem for 
arbitrary dimension. We restrict our attention to a special case. 

Suppose given an "annular" domain G c R " whose boundary consists of 
dBô = {x: \x\ = 8}, some 8 > 0, and a smooth manifold T0 with dB6 lying 
inside f0. Let 2? denote a large ball with center at the origin containing G and 
set D = B - B6, Q « D X (0, T) for a T > 0. Let k > 0, h(x) be a smooth 
positive function in G, and I/>(JC, /) be a smooth positive function in dB6 X 
(0, J ) . For the /j-dimensional variational inequality, we are asked 

To find u(x9 0 6 K = { i ? 6 L°°(Q): v > 0 in Q} such that u^, ut G 
L\Q)and J 

(—Aw + W,)(Ü — u) > f(v - a) a.e. J/I g for Ü G K, 

w(x, 0) = 0, JC G A 
(3-2) "(Jt, /) - ^(JC, 0, (x, 0 e 355 X (0, r ) , 

W(JC, /) = 0, |x| - R, 0 < f < T. 

(3.3) ƒ (x) = { A ^ ) ' JC G G, 

x Œ D - G, 

as before. 
Again we may inquire about the smoothness of the solution [F-K] and, 

indeed, in what sense 0 = ut and r = 9 Q n Q, Q — {(*, 0 : u(x> 0 > 0}, 
comprise a solution to the classical Stefan problem. We discuss this in §5. A 
general discussion of parabolic free boundary problems may be found in 
[Mag]. 

4. Free boundary problems: the nature of the coincidence set. This section 
will be devoted to a brief description of the coincidence set of (1.5) in the 
geometrically simplest cases. As we have mentioned in (1.4), this form of free 
boundary has a connection with the Cauchy problem for an elliptic equation. 
Not all free boundaries occur in this manner. For example, the classical free 
boundary problems associated with steady fluid motion, which arise from 
Bernoulli's Law, admit a different formulation. For an introduction to those 
considerations we refer to the book of P. Garabedian [G, Chapters 14,15]. 

Suppose that 

Q C_R2 is strictly convex with smooth boundary 3fi and \p G 
(4.1) C2(S2) is a strictly concave obstacle with the properties 

maxö \p > 0 and \p < 0 on 3 S2. 

Here is a summary of our knowledge about the coincidence set: 
Let u be the solution of (1.5), assume (4.1), and let I = I (u) denote its set of 
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coincidence. Then 
(i) if\f/ is real analytic, dl is an analytic Jordan curve, 
(ii) if$ E C2a(Ö), 9/ is a Cha Jordan curve, 0 < a < 1, 
(iii) if $ E Cm'a(Q), 9/ is a Cm'Ua Jordan curve, m>2,0<a<l. 
The conclusion (i) is due to H. Lewy and G. Stampacchia [L-S1], (ii) may 

be found in [K4], and (iii) in L. Caffarelli and N. Riviere [CR1]. The work 
[CR1] is considerably more general and contains an extensive 
characterization of I without any geometric assumptions about Q and \p. 

We might observe that if we assume only that tp E C2(S2), we may conc­
lude, under the hypothesis (4.1), that 9/ is a Jordan curve of measure zero. In 
fact, it is a quasi-conformal circle and thus admits a Holder continuous 
parameterization ([K2], [K3]). 

Naively, one may suspect I to be convex. Let us dispell any hopes about 
this. If \f/ is the graph of a polyhedron, there is a Lipschitz solution to the 
variational inequality (1.5) [L-S2]. The graph of the solution, has contact with 
either an entire open face or with none of it ([Mu-S], [Kl]), according to a 
special maximum principle. So the coincidence set consists of the projection 
in Q of faces, subsets of edges, and vertices and may well be only edges and 
vertices. It is easy to find a sequence \pe -» i// as e -» 0 of C00 strictly concave 
ipe whose coincidence sets Ie "converge" to I. 

So, for example, if i// is a tetrahedron, the coincidence set of the solution to 
(1.5) has the shape of the letter Y. It cannot contain a face, for in that case, 
the superharmonic u would attain an interior minimum. It follows that there 
are smooth concave obstacles for which the coincidence set is not convex. But 
is it always star-shaped? To carry this idea one step further, consider a 
tent-shaped polyhedron whose edges project to the configuration 

> — < 

This leads to the discovery of a smooth obstacle with coincidence set which is 
not even star-shaped. 

If the boundary conditions on 9S2 are not homogeneous, then 9/ may also 
admit cusps. David Schaeffer [Scl] has given examples of this and also of 
much more bizarre situations (cf. also [KN1]). 

We want to suggest the reasoning which leads to the conclusion (i) and the 
difficulties encountered in adapting it to (ii) and other questions. Suppose 
that co is a simply connected bounded domain in the z = xx + ix2 plane with 
r c 9w a smooth Jordan arc. Consider functions u, \p satisfying 

u E C1 (<o U T), *// real analytic in a neighborhood of co U I\ 

Aw = 0 in co, 

u = i// 

on T, k = 1,2, 

w
 XJ rxj 

Ai/>7*0 in (OUT. 
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Suppose that z = 0 E T. The complex gradient f(z) = uXi — iuX2 is 
holomorphic in w and has continuous boundary values F(z, z) = ty — %2 

for z E T. In a neighborhood of z = 0, consider the equation 

(4.3) / (z) = F(z,z*(z)), 

keeping in mind that z\z) = z is a solution of (4.3) whenever z ET. Since 

af? *X^%,*.)-<o,o) = ^ ( 0 ) * o , 
we infer the existence of a solution z* = £(z, ƒ) of (4.3) holomorphic in (z, ƒ) 
near (0,/(0)). In particular 

**(z) = f (z> /(z))> z G <°> l z l s m a l l > 
is holomorphic in z. By the uniqueness statement of the implicit function 
theorem 

(4.4) z*(z) = z, z E T, \z\ small. 

At this stage, we have represented z on T as the boundary value of a 
function holomorphic in co. This implies that T is analytic by the Schwarz 
Reflection Principle. To verify this conclusion, let 

<p: G->u, G = {t = /, + ft2: |/| < 1, \mt > 0}, 

9(0) = 0 

be a conformai mapping of G onto <o which transforms the real segment 
( - 1 , 1) onto T. We know that <p E C{G u ( - 1 , 1)). Define 

<p(/), Im / > 0, |/| < 1, 

z*(<p(ô), l m / < 0 , | / | < l , 

a holomorphic function in G U {t: \t\ < 1, Im t < 0}. When / is real, (4.4) 
insures that $ is continuous. By Morera's Theorem, O is holomorphic in a 
neighborhood of f = 0. Consequently, 

t-*$(t), /real, |;| small, 

exhibits an analytic parametrization of a portion of T. 
It was observed in [L-Sl] that the extension (4.5) is valid if T is known only 

to be a continuum. This is the idea of the proof of (i). It fails, evidently, when 
i/> is not analytic. Indeed, the definition z* * ^(z, f) is suspect in this 
situation. 

From a slightly different viewpoint, (4.5) offers an extension of <p to a 
function $ satisfying the homogeneous analytic equation (3/3/)$ = 0. In 
general, it is not possible to achieve an extension of this nature so an 
alternative idea has been devised which might be interpreted as a 
combination of classical potential theory and some ideas about Sobolev 
spaces, especially their trace classes (cf. [K3], [K4], and [K-S, Chapter V] for 
the simplest treatment). 

An extension of the conformai mapping based on (4.3) is not always 
convenient. For example, in (1.7) the complex gradient is not holomorphic. 
Here the demonstration of analyticity of 3/ relies on the resolution of a 

(4.5) 
* ( ' ) -
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system of differential equations to extend analytically a conformai represen­
tation of the minimal surface which is the graph of u in Î2 - I. 

The idea of connecting an analytic function to its possible extension by 
means of the solution to a differential equation is due to Hans Lewy ([L2], 
[L3], [L4], [LI]). A particularly lucid description of his idea is presented in the 
paradigm [LI]. We shall return to [L4] in §7. 

5. Recent directions in free boundary problems. Here we intend to discuss 
some work in [K-Nl] and some recent work of L. Caffarelli ([Cl], [C2]). At 
the conclusion of this section we describe the smoothness properties of the 
ice-water interface in the Stefan problem. We begin from a formal point of 
view with the notions of hodograph and Legendre transformations. These 
have the effect of "straightening" the free boundary at the expense of 
introducing a highly nonlinear equation. 

Suppose that u is a solution of (1.5) with 
(5.1) - At/> > 0 and analytic. 

In addition, assume that 

T c 3 I is a Cl hypersurface and 
^ 6 C ( r u ( 8 - / ) ) , l <ij<n, 

where Uy « uxx. We assume O E T and that the inward normal to Q — I at 0 
is in the direction of the positive jc,-axis. Set w = u — \p. Then, analogous to 
(14), 

AH> = a in Q — I, 
(5.3) w = 0 onT, 

Wj = 0, 1 < i < n, 

where a = — A^ > 0 is analytic in a neighborhood of x = 0. We introduce 
the change of variables 

(5.4) X l 

ya = xa, 2 < a < ny 

and the function 

(5.5) v(y) - xxyx + w(x). 

We refer to (5.4) as a partial hodograph transformation and to v in (5.5) as 
the Legendre transform of w. Note that (5.4) and (5.5) differ from the 
customary definitions by a change in sign. 

It is easy to see that (5.4) is 1:1 near JC = 0. Indeed, since w, = 0 on T and 
( 1 , 0 , . . . , 0) is the normal to T at 0; 

wta(°) = 0, 1 < / < n, 2 < a < n9 

so from (5.3), wn(0) = a(0) > 0. Hence dy/dx(0) is nonsingular. Under the 
mapping (5.4), a neighborhood of x = 0 in Q — I is mapped onto a set 
U c {y : y i > 0} and a neighborhood of x = 0 in T is mapped onto 

S c { ^ , - 0 } . 
The property of the Legendre transform is that 
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do = xxdyx + y\dxx + dw 

a>l 

or 

(5.6) l l 

Va = Wa> 2 < a < H. 

We write t> for t^.. In particular, a portion F of T admits the parametrization 

(5.7) F : xx - -|S- (0, x 2 , . . . , *„), (0, x 2 , . . . , x„) E 2. 

The smoothness of F has become a question of that of v in £/ (J 2. One 
easily computes from (5.3), setting^' = (j>2,... ,yn), that 

<*n "7"^ 2 * L + 2 ^ - 0 ( 1 ; , , / ) = Oint/, 
(5.8) vlx vxx a>x a>l 

v - 0 on 2. 
Note that w,, = - l/vxx < 0 in t/. 

The equation of (5.8) is elliptic and analytic near >> = 0 in U; hence, by a 
well-known theorem ([ADN1], [Fl], [Mo]), v(y) is analytic in U U 2. There­
fore F is also analytic. 

In summary, once (5.2) is assumed, the free boundary is analytic provided 
the obstacle ^ is. Similarly, if $ E Cm'a(£2), then T is of class C m ~ u , 
0 < a < 1. This idea may be implemented in many other problems, in­
cluding, incidentally, those of steady fluid motion mentioned in the beginning 
of §4. Again we refer to [K-Nl] for details. 

To affirm the hypothesis (5.2), L. Caffarelli has developed a theory about 
the initial regularity of T. We describe the principal conclusion [C2], Theorem 
3. Set Bp(0) = {* E R \ |JC| < p}. 

Suppose that 0 E T and 
meas(5p(0)n I) 

l i m i n f
 /T, ,^ x— > 0. 

P-O meas(5p (0)) 
Then there is a neighborhood Br(0) such that T n Br(0) is a C1 hypersurface 
and 

u0 e c((0 - / ) u (r n *,(<>))), 1 < ij < ». 
The proof entails a careful analysis of the geometry of I. A major step is to 

show that the points of 3/ possessing positive density with respect to I 
constitute an open subset of 37. We shall give an outline of the proof. 

Given a bounded set S c Rw, let us call min diam S the infimum of the 
distances between pairs of parallel planes which enclose S. Given x0 E 37, 
Caffarelli determines a continuous increasing function co(p) with <o(0) = 0 
such that either 

min diam( ƒ n Bp (x0)) < u(p)p 

for all small p or if for some small p0 > 0, min diam(I n Bpo(x0)) > <o(p0)p09 
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then 

(5.9) min diam(I n Bp (x0)) > u(p0)p for all p < p0. 

By a geometric argument one may establish that I n Bp(x) contains a ball 
of radius proportional to min diam(Bp(x) n / ) , at least for small p, so (5.9) 
implies that 

meas Bp (x0) n / 
-——-— > c > 0 f or p < p0 and some c > 0. 

meas£p(*o) 
With this in mind it is not difficult to prove that if a point of 3T has positive 
density with respect to I then a neighborhood of it in 31 shares this property. 

These considerations extend to the Stefan problem. For example, there are 
known conditions about the boundary temperature \pt of (3.2) and the initial 
temperature g of (3.3) which insure that T is Lipschitz in the space variables 
for each fixed time [F-K, Theorem 5]. This is sufficient to apply Caffarelli's 
work [C2], cf. also [K-N2], to conclude that T is a C1 manifold and that the 
second derivatives uip utp 1 < ij < n9 are continuous in £2 u T. 

It is worth noting that the interface T separating the ice and water regions 
at a given time / depends only on the data prescribed through time /. 
Therefore T cannot in general depend analytically on the time variable. 
However, it exhibits rather precise behavior: it varies analytically with the 
space variables and is in the second Gevrey class with respect to time. 
Moreover, in any time interval during which the contributed heat is analytic, 
the interface depends analytically on time. Both of these statements are 
proved in [K-N2], [K-N3]. In one space dimension, the analyticity of the free 
curve was shown by Avner Friedman [F3]. 

6. The confined plasma. Consider an axially symmetric toroidal vessel 
which contains an ionized gas, for example hydrogen, held in equilibrium by 
an externally applied magnetic field. We are asked to find the magnetic 
vector B of the vessel a part of which is occupied by the gas while the rest is a 
vacuum. The magnetic vector satisfies a different relation in each region so in 
particular its determination locates the space occupied by the gas. For 
expository purposes, it is easier to suppose the gas contained in an infinite 
cylinder of constant cross-section Ö c R , where Q is bounded and simply 
connected. 

The magnetic vector in this configuration admits a stream function u, 
namely B = (j?„ B2, B3) with (Bu B2, 0) = curl(0, 0, u) = (w^, -uXy, 0) and 
B3 = B3(u). 

In the simplest model, the problem reduces to this: 
Given \ > 0 ,1 > OJind u E H\Q) satisfying 

0 in Q, 
c > 0 ondQ, 

I 

where c > 0 is a constant to be determined; v denotes the outward normal to Q. 

Aw + A min(w, 0) = 
u = 

(M) ƒ ¥*• 
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The set Qp = {x: u(x) < 0} is the cross-section of the plasma region and 
Q - üp = {JC: u{x) > 0} is the cross-section of the vacuum region. We shall 
show that Tp = dÛp is an analytic Jordan curve [KNS] by transforming the 
question into one about an elliptic system with complementing boundary 
conditions [ADN2]. A similar problem with the same "free boundary" 
condition occurs in the theory of the hydrodynamical vortex [Fr-Ber]. 

A description of the physical basis for this model may be found in R. 
Temam [Tel] or Shafranov [Sh]. Solutions to (6.1) have been found by 
Berestyeki-Brezis [Be-Br], Puel [P], and Temam ([Te2], [Te3]). The solution is 
not generally unique, cf. D. Schaeffer [Sc2], but the works cited above 
contain appropriate uniqueness statements. 

In [Te3], the solution is found to be the function u minimizing 

(6.2) E(v) = \ ( v2
xdx-± f min(ü, O)2 dx - Iv\dQ 

among all functions v satisfying 

(6.3) l |min(ü, 0)| dx = T- , v\m is constant. 
JQ A 

Note that by a result of Stampacchia [SI], any solution u of (6.1) satisfies 
uEC2a(Q),0<a< 1. 

It is possible to show that for the solution of (6.1) obtained via (6.2), (6.3) 
[K-Sp], Tp = dQp is a C2-Jordan curve. In particular, fl^ is connected. 

To explore the question of the analyticity of Tp, we consider a local 
situation. Suppose that T is a C ̂ Jordan arc contained in B = {x E R2: 
|JC| < 1} joining (—1, 0) to (1, 0) passing through (0, 0). Let [/+ and £/_ 
denote the components of B — T containing (0, 1) and (0, — 1) respectively. 
Suppose now that 

(6.4) 

uE C2(B): Au = 0inU+, 

Au + \u = 0m [/_, 

« = 0 
onT, 

[du/dv^0 

where v is a normal direction to T. 
We may assume that u > 0 in U+ and u < 0 in £/_ and that (0, 1) is a 

normal direction to T at (0, 0). 
Consider the transformation 

y\ - *i> 
(6.5) |JC| small, 

y2 = u(x), 

and the new dependent variable 
(6.6) v(y) = x2. 

This mapping is 1:1 near x = (0, 0) because du/dv(x) ¥= 0 on T. A subarc of 
T is mapped onto a segment o of the y raxis and neighborhoods U± n N are 
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mapped into domains G± contained in {y2 > 0} and {y2 < 0} respectively. 
Say G+ - {y : \y\ < c, y2 > 0}, G_ - {y: \y\ < e, y 2 < 0}, and a -
{(yv0):\yx\<e). 

It is easy to verify that 

(6.7) .„.^^.-^l^fl^-lil^^ 

whence from (6.4), 

Fiv^vJ^O inG+, 
vE C\G+ Uou GL). 

F(t^, vy) + Av2 « 0 inG_, 

Now reflect v in GL into G+ defining 
w(>>) « t>( ƒ „ - y2) for y E G+. 

After a brief calculation we are led to the elliptic boundary value problem 

inG+, 
i ^ ^ + A ^ - O 

<6-8) t; - w - 0 
on a 

u2 + w 2
a 0 

This problem is coercive, or complementing [ADN2], so v(y) and w(y) are 
analytic in G+ u a [Mo, p. 271]. From (6.6) we see that a neighborhood of 
(0,0) in T is analytic. 

The two phase Stefan problem is also amenable to this formulation 
[K-N-S]. 

7. A theorem of Hans Lewy. In his work [L4], H. Lewy observed that 
solutions of the Laplace equation and its associated eigenvalue problem are 
co-extensive on analytic arcs. More precisely, let G = {x E R2: |*| < 1, 
x2 > 0}, o — {x: x2 = 0, \xx\ < 1}, and suppose u, v E Cl(G U a) satisfy 

Ai/ = 0 
inG, 

At) + \v « 0 
(7.1) f u - v - 0 

\ on o y 

) u2 — v2 = 0 

where \=£0 is a number. 
Then w, v axe analytically extensible into a neighborhood of x «• 0. Lewy's 

proof uses the ideas mentioned in §4. The result was generalized to higher 
dimensions by C. Kahane [Ka]. Obviously, (7.1) is not coercive. 
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We begin with an elementary proof of Lewy's result motivated by our 
present ideas [KNS]. Set 

w = u — v, z = u + v. 
Then 

(7.2) z - 1 (Aw + | w) and 

A2^ + AAH> = 0 in G, 
H> = 0 

on a. 
H>2 = 0 

The boundary conditions on a for the equation in (7.3) are analytic and 
complementing [A-D-Nl]. Hence w is analytic in G u a. The complementing 
condition in this instance means that the boundary conditions of (7.3), when 
suitably extended to all of 3G, and the fourth order elliptic equation consti­
tute a well posed boundary value problem. By (7.2), z is also analytic. 
Consequently u and v are analytic near G U o. Notice the importance of the 
fact that X =5̂  0. This was not needed in the plasma problem (6.4). 

We introduce a free boundary problem associated to the system (7.1). Let 
Ö C R" be a simply connected domain whose boundary contains a smooth 
hypersurface T. Suppose that u\ u2 E C3(Q u T) satisfy 

Aw1 = 0 
in £2, 

At/2 4- u2 = 0 
ul - u2 = 0 

on Y 
ul - q? ̂  0 

H>Aere p denotes the normal direction on T. 
We shall show that T is analytic [KNS]. With some imagination the 

equations (7.2), (7.3) may be regarded as a fourth order elliptic system. Again 
we shall pass to a fourth order problem, on this occasion a true system. 

The conditions fulfilled by u' onT are, in essence, necessary. In particular, 
the conclusion fails if du'(x)/di> = 0 for some x E T or if we assume only 
that ux = H2onI\ 

For the proof, set 

( " ) w = ux - u2 and z = ux + u2 

or 

ux = \{w + z), i/2 = — ^(w - z). 

From these relations we compute that 
(7.6) z = 2Aw + w in Q 
and 

(7.3) 

V'--»7 
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(7.7) A2^ + Aw> = 0 in £2, 

(7.8) w = 0, wv = 0, ww = 0, u ^ ^ 0 on T. 

The last condition follows from the fact that 

dp dp 

and (7.6). 
Suppose that 0 E T and that the x„-axis is in the normal direction to 2 at 

0 E T. Introduce new independent variables 

(7.9) y = (x\ - wnn) near x = 0, x' = (x„ . . . , xn_x) 

and dependent variables 

vl(y) = x„yn + w„(x), 
(7'10) « 2 W - 2 *U*). 

In view of (7.8), the mapping (7.9) carries a neighborhood of 0 in Î2 onto a 
neighborhood U of j> = 0 in a half space, say £/ c {>>: >>„ > 0} and an 
appropriate portion of T onto 2 =dU n {>>„ = 0}. 

We determine a relationship between t»1 and v2 from (7.7). We agree that 
the subscripts of the vl refer to differentiation with respect to y and those of w 
refer to differentiation with respect to x. Now vl is the Legendre transform of 
wn with respect to (7.9), so 

*>a = w<xn> I < a < n - l9 

vl = x„ 

In addition 

/Î/2/I 1 > 

1 t>L 

= ( 4 ) _ 4 ( 4 ) , 1 < a < „_ 1 ( 

and 

«4 
2 * w - t>j — r ü«> l < ^ < « - 1 , 

,2 

2 2 o "^ 2 . 

a<n t>„„ 
t £ 
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Let us write 

0 = AV + Aw, 

0 = Wnnnn + 2 2 ™aann + 2 "aaBB + ^ + 2 H> 
a < « a,/3<n a<n 

consequently 

(7.11) Fx (Ü1, Ü2,J>) = 0 in [/, where 

/ • . (o ' .c 2 ^) -

w 
+22 (4)-4(4' 

(7.12) + 2 
a,P<n 

v}(}-2 <f} + 

_2 
y/ij8 

vL -

vnp 

f 1 1 

»V + U2-J>„. 

The second equation is obtained by differentiating v in two ways: 

2 Waan = "T and 2 "W, = 2 
a < « a < « 

w 
2 1 

So 

(7.13) F2(t>', Ü2) = vi - 2 (*>>,!„ - ( ^ ) 2 ) = 0 in tt 

We have deduced that v\ v2 is a solution to (7.11), (7.13) subject to the 
boundary conditions 

(7.14) ^ = 0, Ü2 = 0, on S. 
To linearize the equations at y = 0 observe that 

t/(0) - 4(0) = t&(0) = OJ1,(0) = v2(0) = 0, 

1 < a, p < n - \,j = 1,2. 

For variations 5', v2 of .F, and F2 we obtain 

(7.15) Luv
l + Ll2v

2 = 
^nnn 2 

ZJ Vnna ' -2J Vaa, 

(7.16) L 2 ^ ' + L^ö2 = v2
n- vl„„(0) 2 öi,, 

a<n 

corresponding to Fx and F2 respectively where, as usual, only the highest 
order terms of the linearization are considered. The Dirichlet boundary 
conditions are 

(7.17) vx = 0, Ü2 = 0. 
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A choice of the weights 

î = 0 , /, = 3, rx = —3, 

where sl9s2 correspond to (7.15), (7.16), tl9 t2 to t?„ t>2, and rl9 r2 to the 
respective boundary conditions t;1 = 0 and v2 = 0 reveals this boundary 
value problem to be coercive [ADN2]. Again invoking [Mo, p. 271], we see 
that the functions v1 are analytic in U U 2 near y = 0. It follows, since 
xn = ^ ^a t T is analytic near A: = 0. 
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