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The theory of quasiconformal mappings is nearly 50 years old (see [44] for 
references to the papers by Grötzsch, Ahlfors Lavrent'ev and Morrey from 
the 20's and 30's) and the interest in them does not seem to wane. These 
mappings may be studied for their own sake or as a tool for attacking other 
mathematical problems; they are indeed a powerful and flexible tool. The 
purpose of this lecture is to state two basic theorems about quasiconformal 
mappings in two dimensions (the existence theorem, the first version of which 
is due to Gauss, and Teichmüller's theorem about extremal quasiconformal 
mappings) and to discuss some applications of these theorems. The discussion 
will necessarily be sketchy and several important topics will be slighted or not 
even mentioned. (Some of those are covered in [15], [20], [23].) 

(At St. Louis I learned about an interesting application, due to J. Sachs and 
K. Uhlenbeck, to the theory of minimal surfaces. Added in proof.) 

Lack of time and of competence prevents me from saying anything about 
the subtle theory of quasiconformal mappings in «-space, initiated in a short 
note [48] by my late teacher Loewner, and developed by Gehring, Vâisâlâ and 
others (see the references in [32], [67]), a theory which also has important 
applications (Mostow [55]). 

We begin by defining the concept of quasiconformality. 

1. Recall that a Riemannian metric in a domain in the (x,y) plane is 
defined by a quadratic differential form 

(1) ds2 = E(x,y) dx2 + 2F(x,y) dx dy + G(x,y) dy2 

with 

(2) EG - F2 > 0, E > 0. 
Setting x + iy = z, x — iy = i", (1) can be rewritten as 

(1') ds2 = A(zf\dz + /x(z) dz\2 

where A is a real-valued and /x a complex-valued function. Condition (2) 
becomes 

(2') A > 0 , M < 1. 
A mapping x + iy = z H> W = u + iv is called conformai with respect to 

ds if it preserves orientation and, except at isolated points, takes angles 
measured by the metric (1) into equal Euclidean angles. 

Using the standard notations 

JL » 1/JL _-JL\ JL = I / J L + -JL>\ 
dz 2\dx l dy y dl 2\dx dy J' 

the requirement that w be conformai with respect to the metric (1) may be 
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written as 

(3) dw/dz - ii(z)dw/dz. 

This is the classical Beltrami equation, which goes over into the Cauchy-
Riemann equations for u and v (dw/dz = 0) if JU(Z) = 0. Note that A does 
not enter into (3), as was to be expected. From now on we call solutions of 
(3) ^conformai functions. 

(TECHNICAL REMARK. Solutions of (3) are assumed to be continuous and to 
have distribution derivatives which are, locally, square integrable functions; 
equation (3) is assumed to hold almost everywhere.) 

A homeomorphism w is called quasiconformal if it is /x-conformal for some 
JU, with 

(4) II Mlloo = esssup|/i(z)| < 1. 

If so, the number 

(5) K(w) = (1 + | | / i | | f l 0 ) / ( l - || MIL) 
is called the dilatation of w. If w is a diffeomorphism, K(w) is the supremum 
of the ratios of the major to the minor axes of infinitesimal ellipses into 
which w takes infinitesimal circles in the domain considered. A similar 
definition can always be used, since every quasiconformal homeomorphism is 
differentiable almost everywhere. 

(We have stated the so-called analytic definition of quasiconformality. 
Concerning the equivalent geometric definition, see [4], [46].) 

2. If (i(z) is a measurable function defined for all z E C and satisfying (4), 
then there exists a unique [i-conformai homeomorphism 

(6) zh->w' i(z) 

of C onto itself satisfying w^(0) = 0, vv^(l) = 1. This w^ has a modulus of 
continuity depending only on jl/xll^. (More precisely, it satisfies a Holder 
condition 

(7) <*'(*,). w"(*2»< C{zvz2Y, 
where < , > denotes spherical distance and the positive constants C, a depend 
only on || fi|| „.) 

Also, w* is as "nice" as /x permits it to be. (More precisely, w* is real 
analytic if \i is, infinitely differentiable if /x is, has Holder continuous partial 
derivatives of order up to k + 1 if JU, has such derivatives of order up to k, has 
generalized derivatives which are locally Lp for some/7 = p(\\ f i^) > 2 if ft is 
merely measurable.) 

Finally, w** depends "nicely" on jit. (For instance, if || f̂ *||oo <* k < \ and 
fij -* /x a.e., then wM> -» w*1 uniformly on compact subsets. If /x, considered as 
an element of an appropriate Banach space, depends holomorphically on 
some complex parameters, so does w^(z).) 

If jx(z) is defined in the upper half-plane U = [y > 0], and || /xH^ < 1, then 
there exists a unique homeomorphism 

(8) z^w^z) 

of U onto itself, which is continuous on R U {oo} and keeps 0, 1, oo fixed. 
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This follows from the result about w*. Indeed, 

(9) Wp = wp\ U where v(z) = v(z), v\ U = /A. 

The mapping w^ has properties similar to those of w**, except that the 
dependence on /A is real analytic rather than holomorphic. 

The existence and uniqueness theorem stated above is the end result of a 
long development, starting with Gauss who proved a local existence theorem 
for a real analytic /A, and involving Korn and Lichtenstein, who recognized 
the importance of Holder conditions, Lavrent'ev, Morrey who permitted ft to 
be discontinuous, Chern, Mori, Vekua, Boyarskii, Ahlfors, Ahlfors and Bers, 
Earle and Schatz and others; see [5] for reference. The simplest proof of the 
theorem utilizes the Calderon-Zygmund inequality for the two-dimensional 
Hilbert transform; it uses no deep function theoretical results [4], [5], [46]. 

3. Applications of quasiconformal mappings to partial differential 
equations occur already in the early papers by Lavrent'ev and by Morrey [54], 
whose approach has been continued by Nirenberg [57], [58]. Here we shall 
consider a partial differential equation of the form 

(10) An<pxx + 2Al2(pxy + A22<pyy « 0 

where 
Ajk-AJk(x>y><Px><Py><P) 

(so that the equation is, in general, nonlinear). We assume that for all values 
of x,y, <px, q>y9 <p considered equation (10) is elliptic, i.e., 

A u > 0, Ai{A22 ~~ AX2 > 0, 

and even uniformly elliptic, i.e., 

0 < — < M < + oo. 
yA 11^22 — ^12 

A trivial example is the Laplace equation <pxx + <p = 0. Nontrivial 
examples are the equation of minimal surfaces 

(1 + tfyPxx - 2<Px<Py<Pjy + 0 + Vl)9yy = ^ 

which is uniformly elliptic for yx + q>y < const, and the potential equation of 
a compressible flow 

(11) (c2 - q>l)q>xx - Icy^yVxy + (c2 - tf)<pyy - 0, 

where c is the speed of sound, which is a given function of the flow-speed 

c2 = i — <x(<pl + <p̂ ), a = const. 

Equation (11) is uniformly elliptic as long as the Mach number 
is bounded away from 1, i.e. for uniformly subsonic flows. 

A direct calculation shows that if y(x,y) satisfies (10) in some domain Z>, 
then the complex gradient w = yx — iq> is fi-conformal, for some \i depen­
ding on tp(x,y), but always satisfying 
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(12) | | /x | | 0 0 <fc(M)< l . 

(Recall that if (10) is the Laplace equation, w is conformai, i.e., holomorphic.) 
Now it is almost self-evident that a ju-conformal function is a holomorphic 

function of any /x-conformal homeomorphism. Hence the complex gradient w 
satisfies 

(13) u > = / ° W*\D 

where ƒ is holomorphic. 
Formula (13) has interesting consequences. Since wM is a topological 

mapping and ƒ is holomorphic, w can have only isolated zeros, unless it 
vanishes identically. It follows that solutions of (10) have the unique 
continuation property: if <p = 0 in any open set, <p = 0. (This is true also for 
elliptic equations of 2nd order in «-space, but requires more continuity 
assumptions for the coefficients.) Also, since wM is a homeomorphism, the 
level lines of a solution <p are topological^ the same as the level lines of a 
harmonic function. 

Suppose now we want to solve a boundary value problem for equation (10), 
say the Dirichlet problem in which the values of <p are prescribed on the 
boundary of the domain Z>. Experts in partial differential equations know 
that in order to prove the existence of a solution it is usually sufficient to 
prove a sufficiently strong a priori estimate, i.e., a statement that a solution of 
the problem, if it exists, satisfies certain inequalities. A priori estimates can 
be derived from formula (13) since for w^ we know the modulus of continuity 
(see (12) and (7)) and ƒ is holomorphic and there are many powerful 
inequalities for holomorphic functions, for instance, Privaloff's theorem 
connecting the Holder continuity of the imaginary part of a holomorphic 
function with that of the real part. 

Indeed, using Privaloff's theorem and a representation of the form (13), I 
gave, many years ago, a rigorous proof for the existence of a subsonic flow 
past a given airfoil profile, satisfying the so-called Kutta-Joukowski condition 
[7]. I mention this result for sentimental reasons: I worked on subsonic flows 
during World War II, remained interested in them for a long time, and 
learned about quasiconformal mappings in order to apply them to flow 
problems. 

Later, in two joint papers with L. Nirenberg, the method based on formula 
(13) has been extended to general, quasilinear second-order elliptic equations, 
and systems of first order equations, in the plane [21], [22]. 

4. We pass to an application of quasiconformal mappings to topology. Let 
S be a compact differentiable orientable surface of genus p (a sphere with p 
handles), and let Y be the group of those diffeomorphisms of S onto itself 
which are homotopic to the identity. With the C^ topology, T becomes a 
topological group. Earle and Eells [25] showed, using quasiconformal 
mappings, that T can be continuously retracted onto SO (3) if p = 0, onto a 
torus if p = 1, onto a point if p > 1. (For the sake of brevity we do not state 
their results for nonorientable surfaces or surfaces with boundary, cf. Earle 
and Schatz [28].) The result for/? = 0 was originally proved by Smale [62], by 
topological methods. Subsequently Gramain [34] obtained a topological proof 
for the whole theorem. 
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I reproduce the proof for p = 0. The sphere may be identified, by 
stereographic projection, with C = C u {oo}. Every element ƒ E T can be 
written uniquely in the form ƒ = g ° w where w keeps the points 0, 1, oo fixed 
and g is a Möbius transformation, i.e., a conformai self-mapping of C 
described by a unimodular matrix: 

*-(Ac ft"-*-' «.M-£H-
Since w is a diffeomorphism, w = w** for some infinitely differentiable JU, (with 
a proper interpretation of this term at z = oo). On the other hand, g can be 
written, uniquely, as 

(Iwasawa decomposition). Let 0 < t < 1 and set 

«-(-•»- :-)(;' ,°-)(J ?)• «—• 
The theorem in §2 assures thatft — gt ° wt ET depends continuously on /. 
But/, = / a n d 

f0(z) = (az + 6 ) / ( - f t z + Â), |tf|2 + |fe|2 - 1, 

represents, via stereographic projection, a rigid rotation of the unit sphere. 
We shall mention the case/? > 0 later (see § 10). 

5. The most fruitful applications of quasiconformal mappings occur, 
naturally, in complex function theory, in particular in the theory of Riemann 
surfaces. A Riemann surface is a one-dimensional complex manifold or, 
which is the same, an oriented surface on which one has defined a conformai 
structure, that is a consistent way of measuring angles. We may always think 
of a Riemann surface as an oriented, sufficiently smooth, surface embedded 
in Euclidean space, provided we agree that two surfaces are identical qua 
Riemann surfaces if there is a conformai (topological, orientation and angle 
preserving) bijection between them. 

Let S be a Riemann surface of type (p, n), that is, one obtained from a 
compact surface of genus p by removing n distinct points. The celebrated 
uniformization theorem, conjectured by Klein and by Poincaré in 1882 and 
proved by Poincaré and by Koebe in 1907, asserts that if 

(14) 2p - 2 + n > 0, 
then S admits an (essentially unique) representation of the form 

(15) 5= U/G 
where U = [y > 0] is the upper half-plane and G a torsion-free Fuchsian 
group, i.e., a discrete group of real Möbius transformations (conformai 
self-mappings of U). The existence theorem in §2 yields a short proof of the 
uniformization theorem [10]. 

There is a simple geometric method, going back to Poincaré, to construct a 
Fuchsian group G0 such that U/ G0 is some Riemann surface of the desired 
type (p, /!): 
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(16) tf/Go-So. 
There is a diffeomorphism ƒ: S0 -» S, where 5 is the given surface, and if ds is 
some Riemannian metric on S which respects the conformai structure of S, 
we can pull it back to S0, by/, and obtain on S0 a smooth Riemannian metric 
ds0 which will, in general, not respect the conformai structure of S0. Now (16) 
means that there is a conformai universal covering TT0: U*-* S0 with covering 
group G0. Using TT0 we pull back ds0 to a Riemannian metric on U which we 
write in the form A\dz + jmdSj. Thus we obtain in £/ a function /A(Z), with 
j| ^(z)!!^ < 1. Next, we let w^ be the normalized ju-conformal self-mapping of 
U (cf. §2) and we form the group 

A direct calculation shows that this group is a discrete group of Möbius 
transformations, mapping U onto itself, thus a Fuchsian group. If we define 
the map IT: t/~> S by the commutativity of the diagram 

we can verify that TT is conformai and a universal covering with covering 
group G^. Hence U/ G^ « 5, as required. 

The same method yields all classical uniformization theorems for Riemann 
surfaces of finite type and, which is more important, new uniformization 
theorems which seem, at the present time, inaccessible to classical methods. 

6. Let us begin, as before, with the Fuchsian group <70, the Riemann 
surface S0 = U/G0 and another Riemann surface S ** f(S0), and let us 
construct as before the function /A(Z), z 6 U. However, instead of forming the 
ju-conformal mapping Ŵ : I/-» I/, let us extend the definition of /jt to all C by 
setting 

li(z) = 0 forz E L, 

where L = [y < 0] denotes the lower half-plane. (The horrid singularities of /A 
along the real axis are irrelevant.) Then 

G" = w^G0(w^yl 

is again a discrete group of Möbius transformations. In general w11 will not be 
symmetric, w **(£/) will not be U but some Jordan domain At bounded by the 
curve 

C = v^(R)u {oo} 

and w^^L) = A2 will be another Jordan domain. Furthermore, Aj/C* will be 
S and A2/G

M will be L/GQ = S0, since w^L is now conformai. 
If we set S = Sj and »S0 = 5*2, and write G for GM, we obtain the theorem 

on simultaneous uniformization [9]: Given two Riemann surfaces Sx and S2 of 
the same type (p9 «), with 2p — 2 4- n > 0, there exists a (torsion-free) quasi* 



QUASICONFORMAL MAPPINGS 1089 

Fuchsian group G, i.e., a discrete group of Möbius transformations which leaves 
a directed Jordan curve C fixed, such that 
(17) A,/G - Sv A2/G - S29 

Aj and A2 being the two components of the complement of C . 
Note that by (17) the group G is canonically isomorphic to the fundamental 

groups of both surfaces Sx and S2. Thus G defines two Riemann surfaces and 
an isomorphism between their fundamental groups. It can be shown that 
these data determine G uniquely, up to conjugation. 

A quasi-Fuchsian group is an example of a Kleinian group, i.e. a discrete 
group of Möbius transformations which acts properly discontinuously on 
some open subset of C. The "ju-trick" used in the proof above has been 
applied by Maskit in his penetrating investigations of Kleinian groups which 
led, among other things, to a clarification and deepening of the classical 
results of Klein and Koebe, and to a complete classification of important 
species of Kleinian groups [50], [51], [52]. 

7. Using the theorem on quasi-Fuchsian groups stated in §6, P. A. Griffiths 
[35] obtained a far-reaching generalization of the Poincaré-Klein-Koebe 
theorem to algebraic varieties (over C) of arbitrary dimension. For the sake of 
brevity we state it for affine rather than for projective varieties. 

Let A be an affine algebraic variety, that is, the set in CN of common zeros 
of a collection of polynomials in the variables (z{,..., zN). We assume that 
A is irreducible, that is, not the union of two proper subvarieties, and that 
dim A = n, that is, that the real (topological) dimension of A is In. Griffiths' 
theorem asserts that there is a proper subvariety B c A, and a bounded domain 
D c C such that 

(18) A - B » D/G 
where G is a discrete fixed point free group of holomorphic automorphisms ofD. 

If dim A = 1, A is an algebraic curve and we are in the Poincaré-Klein-
Koebe case. In this case B is a finite set, which must contain all singular 
points of A, and D may be chosen as a unit disc. If dim A > 1, however, D 
will depend on A and B. (B is not uniquely determined.) 

The idea of the proof can be understood by considering a simple example. 
Let A be the affine algebraic surface (dim A = 2) in C3 defined by the 
equation 

z\ - z2(z2 - \){z2 - 2)(z2 - 3)(z2 - z3) - 0 

and let B be the intersection of A with the algebraic (reducible) surface 
z3(z3 - l)(z3 - 2)(z3 - 3) = 0. Then, for f # 0, 1, 2, 3 the intersection of 
A - B with the plane z3 = Ms a Riemann surface 5 (0 of type (2, 1); the 
single puncture corresponds to zx = z2 = oo. Thus A — B is the set of pairs 
(t, P) where t E C - {0, 1, 2, 3} = S0 and P G S(t). 

Let G0 be a torsion-free Fuchsian group with U/G0 = S0 and let TT0: U -* 
S0 be the corresponding canonical projection. Let X be the set of pairs (J, P) 
with f E (/ and P G S(*$($)). Then X is a complex manifold and the 
mapping (J, P) -» (7r0(J), P) is a holomorphic Galois (that is, unbounded, 
unramif ied and regular) covering of A — B by X. 
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Using the holomorphic dependence of w* on [i noted in §2 and the theory 
of quasi-Fuchsian group sketched in §6, one can assign to each f 6 ( / a 
torsion-free quasi-Fuchsian group G$ such that (i) Gt is Fuchsian and U/ Gt = 
S(ir(i))9 (ii) Gç depends holomorphically on f, in the sense that the generators 
of Gç may be chosen as holomorphic functions of J, and (iii) if Aj(f ) and 
A2(£) are the components of the complement of the directed fixed Jordan 
curve C(J) of G ,̂ lying to the left and to the right of that curve respectively, 
then 

We denote the corresponding canonical projections of A^J) onto S(ir(Ç )) by 

Let Y be the set of pairs (f, z) with Ç E U,z E Aj(f ). Then y is a complex 
manifold and the mapping (f, z)h*(f, ^(z)) is a holomorphic Galois 
covering of A" by Y. But y is simply connected, hence it is a (holomorphic) 
universal covering space of A — B. 

To obtain (18) it remains to show that the domain Y c C2 is holomorphi­
cally equivalent to a bounded domain D. The argument involves a simple 
application of Koebe's one-quarter theorem and shall be omitted. 

Examples of representations (18), and extensions to groups G with fixed 
points, will be found in the recent thesis by G. Riera [59]. 

8. We proceed to state the second basic theorem-Teichmiiller's theorem. 
The statement involves the concept of quadratic differentials. A 
(holomorphic) quadratic differential O on a Riemann surface S is a 
holomorphic section of twice the canonical line bundle. This means that <E> 
assigns to every local parameter z defined in a domain A c S a holomorphic 
function <p(z), in such a way that <p(z) dz2 is independent of the choice of the 
parameter; by abuse of language one writes $|A = <p(z) dz2. With every 
quadratic differential <& there is associated a density |$|; locally |<E>| = 
|<p(z)| dx dy. A quadratic differential is called integrable if ffs\®\ < oo, 
normalized if J/5|^>| = 1. If S = U/G, G a torsion-free Fuchsian group, 
every quadratic differential is represented as a holomorphic automorphic 
form of weight (-4), i.e., a holomorphic function <p(z), z E U, satisfying 

<p(g(z))g'(z)2= <p(z), g EG. 

If <£> =£ 0, the curves along which $ > 0 or $ < 0 are called the horizontal 
and vertical trajectories of <E>, respectively. They are, of course, mutually 
orthogonal. Near every PES one can define a local parameter f, called a 
natural parameter for <J>, such that f = 0 at P and 

2 

0 = ( Z L y ^ ) r * 2 near P. 

The positive integer r, the order of $ at P is, clearly, uniquely determined; so 
is f, except that it may be replaced by 9Ç where 0r+2 = 1. 

If Q is a puncture on S and $ a quadratic differential which is integrable 
near Q (and not identically zero), then <& may have a simple pole at Q. In 
this case there is a (unique) natural local parameter f such that f = 0 at Q 
and 
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* 1 ^ 2 

<p = T —r- near O. 
4 f * 

In Figure 1 we show the shape of horizontal trajectories of <ï> near a point 
with r — 0, 1, 2 and - 1. 

/• = 0 r = 3 r = - l 

\ y 

FIGURE 1 

If S is a Riemann surface of type (/>, «), then the integrable quadratic 
differentials on S form a complex vector space of dimension 3p — 3 + n. 
(This follows from the Riemann-Roch theorem.) 

Teichmüller's theorem ([64], [65], cf. also Ahlfors [1], Bers [8], Krushkal 
[41], and Hamilton [36]) deals with a variational problem. Let Sx and S2 be 
two Riemann surfaces of type (/?, n\ with 2p — 2 + n > 0, and ƒ a given 
orientation preserving homeomorphism of Sx onto S2. Among all quasicon-
formal mappings of Sx onto S2, homotopic to ƒ, we want to find an extremal 
one, that is, one with the smallest dilatation. 

(TECHNICAL REMARK. The concepts of quasiconformality and of dilatation 
for mappings among Riemann surfaces are defined in terms of local parame­
ters. This involves no difficulties, since the dilatation of a plane quasicon-
formal mapping w is unchanged if w is preceded or followed by a conformai 
mapping.) 

Teichmüller's theorem asserts that (i) an extremal mapping f0 always exists, 
(ii) is uniquey and (iii) has a definite form. 

Namely, if K(f0) > 1, that is, if f0 is not conformai, then there exist on Sx 

and on S2 two uniquely determined normalized quadratic differentials <J> and 
^ , called the initial and terminal quadratic differentials, respectively, such that, 
for every P E 5, 

ordP$ = ord/o(jP)* 

and, if ordP$ = 0, then there are natural parameters: z = x 4- iy for $ at P 
and f = | + it] for ^ at f0(P% such that near P the mapping f0 is given by 

(19) £ - K^2x9 7) = K-^ïy where K = AT(/0). 

In particular, /0 takes the horizontal and vertical trajectories of $ into those 
of*. 

Part (i) of the theorem is a direct consequence of compactness properties of 
quasiconformal mappings. Today there are several proofs for the characteri­
zation (iii). There is essentially only one proof of the uniqueness statement 
(ii), Teichmüller's ingenious extension of the length-area argument used by 
Grötzsch. 

REMARKS, (a) The variational problem leading to Teichmüller's theorem is 
an extension of a simpler problem first considered by Grötzsch. The great 
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merit of recognizing that the quantity to be minimized is the supremum of the 
local dilatation rather than some average of the local dilatation is due to him, 

(b) We have no time to report here on the important investigations by 
Jenkins and by Strebel on quadratic differentials with closed trajectories and 
by Hamilton, Reich, and Strebel on the extensions of Teichmüller's problem 
to mappings of domains and open Riemann surfaces with prescribed 
boundary correspondence» See [61], [63] for references. 

9. The following variational problem is a rather natural extension of the 
Teichmüller problem, though actually I thought of it (and of the solution) 
only after learning of Thurston's beautiful theorem [66] on the classification 
of topological self-mappings of surfaces up to isotopy (or, which is the same 
in this case, up to homotopy). 

Let S be an oriented surface of type (p, n), that is, homeomorphic to a 
compact surface of genus p with n distinct points removed. We assume that 
2p - 2 + n > 0. Also, let ƒ be an orientation preserving homeomorphism of 
S onto itself. Iff: S ~» S is isotopic to ƒ and if a is some conformai structure 
on S (which makes S into a Riemann surface Sa)9 then it makes sense to 
measure the dilatation K of ƒ' with respect to a; we write K •* Ka(f). We 
want to find a conformai structure o0 on S and a mapping f0 isotopic to ƒ such 
that Kao(f0) be as small as possible. If such a pair (a0, /0) exists, we call a0 an 
f minimal conformai structure and we call f0 an absolutely extremal self-
mapping of the Riemann surface Sa . 

It is known, and easy to prove, that a conformai structure a0 on S and a 
mapping f0 isotopic to ƒ such that ^ o( / 0) = 1, i.e., such that f0: S0o~* SOQ is 
conformai, exist if and only if ƒ is isotopic to a mapping fx with ƒ{" « id for 
some m > 0. If ƒ does not have this property, we call it essentially nonperiodic. 

It can be shown that iff is essentially nonperiodic, then we may, in treating 
the variational problem stated above, restrict ourselves to conformai 
structures o such that the Riemann surface Sa has n punctures but no ideal 
boundary curves. 

A mapping/: S -» S will be called reducible if there is a mapping ƒ isotopic 
to ƒ and r > 0 Jordan curves C{i..., Cr on 5, such that no Cj is homo topic 
to a point or a puncture on S, or to a Ck with k ¥" j , and such that for each y 
there is a A: with f'(Cj) = Ck. 

If f is essentially nonperiodic, then an f-minimal conformai structure on S 
exists if and only if f is irreducible. 

A proof of this statement, based on the direct method in the calculus of 
variations and on Teichmüller's theorem, will be found in the forthcoming 
paper [17]. The same paper contains a characterization of absolutely extremal 
mappings. 

A nonconformal extremal self-mapping f0 of a Riemann surface S (of type 
(/>, w), with 2p — 2 4- n > 0) onto itself is absolutely extremal if and only if its 
initial and terminal quadratic differentials coincide. 

Assume this is so, and let O be the initial and terminal quadratic 
differential. The horizontal trajectories of $ are the leaves of a foliation of 5, 
with finitely many singularities, "(r + 2)-pronged" singularities at points at 
which the order of $ is r ^ 0 (cf. Figure 1 and note that r •» - 1 can happen 
only at the punctures of 5). The vertical trajectories of $ are the leaves of a 
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transversal foliation. Both foliations are "measured", i.e., there is a consistent 
way of measuring the distance between two leaves, namely by the 
Riemannian conformai metric ds = |$ |1 / 2 . The mapping f0 takes each of the 
two foliations into itself, and, by (19), multiplies the distance between vertical 
trajectories by the constant K1^2 and that between horizontal trajectories by 
A"~,/2, where K is the dilatation of/. A map with these properties is called 
by Thurston a pseudo-Anosov-diffeomorphism. 

Thus we have proved, using quasiconformal mappings, one of Thurston's 
topological theorems. An essentially nonperiodic orientation preserving topo­
logical self-mapping of a surface S {of the type considered) is either reducible or 
isotopic to a pseudo-Anosov-diffeomorphism but not both. 

(The last statement follows from the detailed proof.) 

10. An application of Teichmüller's theorem going back to Teichmüller 
himself is a new proof of the difficult part of a classical theorem by Fricke. 
To explain this theorem we must define the Teichmüller space Tpn (which, by 
the way, could have been called Fricke space). 

Let S be an oriented surface of type (/?, n), 2p — 2 + n > 0. A marked 
Riemann surface of type (p9 n) is an orientation preserving homeomorphism 
ƒ: S -*f(S) where ƒ(S) is a Riemann surface. Another marked Riemann 
surface fx\ S -±fx{S) is called equivalent to ƒ if ƒ, = h o f o g where g is 
isotopic to the identity and h is conformai. The set of all equivalence classes 
[ ƒ] is called Tp „. It is a complete metric space under the Teichmüller distance 

HUil [fi]) = > f log if ( A / 'homotopicto/2o/ f>. 

(One does not need Teichmüller's theorem to prove this.) 
Every orientation preserving topological self-mapping g of S onto itself 

induces an isometry g+ of Tp„ which sends the equivalence class of ƒ: S -* 
f (S) into that of ƒ ° g: S -~>f(S). These isometries form the modular group 
Mod^,,. It is clear that two points of TPt„ are equivalent under Modp/f if and 
only if they can be represented by mappings of S onto the same Riemann 
surface. It is equally clear that g+ E Mod^ n depends only on the homotopy 
class of g. 

Fricke's theorem reads: The Teichmüller space Tpn is homeomorphic to 
U6p-6+2«. tfoe moduiar group Mod^ acts properly discontinuously. 

The difficult statement is the first one (see Fricke-Klein [30, pp. 284-394]; 
[31, pp. 285-310]; a modernized version of Fricke's argument will be found 
in Keen [38]). 

In order to establish Fricke's statement about Tpn from Teichmüller's 
theorem we give the reference surface S, used in the definition of Tp>w, a 
conformai structure. Then every marked Riemann surface of type (/?, n) is 
equivalent to a unique extremal map/: 5 -^ / (5 ) . This ƒ has some dilatation 
K * e2p > 1 and, if p > 0, a (normalized) initial quadratic differential <E>; if 
p = 0, then ƒ = id. Conversely, every normalized quadratic differential O and 
every p > 0 determine an extremal map/: S -*f(S). We may interpret <E> as 
a direction in jtfp-*6*2» (since the real dimension of the space of quadratic 
differentials is 6p — 6 + 2ri) and p as the distance from the origin. This gives 
a bijection between R$P- 6 + 2 " and 7^„, and it turns out that this bijection is 
bicontinuous. 
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Fricke's theorem has been used by Earle and Eells to establish the cases 
p » 1 and p > 1 of their theorem, cf. §4. Another topological application of 
Fricke's theorem will be discussed presently. 

11. The following theorem goes back to Nielsen: 
(a) Let g be an orientation preserving homeomorphism of a surface S onto 

itself If gm is homotopic to the identity, then g is homotopic to a mapping g0 

such that g™ = id. (Here S is assumed to be oriented and of type (p, n), 
2p - 2 + n > 0.) 

The hypothesis of (a) implies that the modular transformation g+ E Mod^,, 
is periodic: g™ = id. Assume that g* has a fixed point T E Tpn, and let r be 
represented by ƒ: S->f(S). Let us give to S a conformai structure which 
makes ƒ into the identity. The condition gjj) = T means that g: S -> S is 
homotopic to a conformai map g0. Since (go% = g J1 = id, g™ is homotopic 
to the identity, and hence, being conformai, is the identity. This argument can 
be reversed and shows that (a) is equivalent to the following statement: 

(a') If g * EL Tpn and g™ = id for some m > 0, then g* has a fixed point. 
If m is the power of a prime, (a') follows directly from Fricke's theorem 

and from the Paul Smith periodicity theorem. If not, one decomposes m into 
its prime power factors and applies the Paul Smith theorem repeatedly, 
making use of the following auxiliary result: If F is the set of points in Tpn 

fixed under an element of Mod^ „, then every component F0 of F can be 
identified with a Tp. n,, and the action of the stabilizer of F0 in Modp „ can be 
identified with the action of a subgroup of Mod^ „,. This is so since the 
quotient of a Riemann surface by a finite group of conformai self-mappings is 
again a Riemann surface. 

This elegant proof of (a) and (a') is due to Fenchel [29], cf. also Kravetz 
[40]. There are reasons to believe that (a') can be replaced by the stronger 
result. 

(b') Every finite subgroup of Modpn has a fixed point. 
This is equivalent to 
(b) Let T be a finitely generated group of orientation preserving topological 

self-mappings of S and T0 the group of homotopy classes of elements of T. If T0 

is finite, then the generators of Y are homotopic to generators of a finite group. 
If Tpn were "of negative curvature in the sense of Busemann" (see Linch 

[47] for definitions), (b') would follow, but Masur [53] showed it is not. On the 
other hand, the argument used above to prove (a') also establishes (b') for the 
case when the finite group in question is solvable. Other special cases of (b) 
have also been established. 

(Thurston observed that his classification theorem yields a proof of (a) 
which is independent of Smith periodicity.) 

12. I now would like to point out some connections between quasiconfor-
mal mappings, schlicht functions, and ordinary differential equations in the 
complex domain. 

Recall that if w(z) is a locally schlicht holomorphic (or meromorphic) 
function, its Schwarzian 

, . , , "'"(') 3 <""(*)' 
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is holomorphic. Conversly, every holomorphic function <p(z) is a Schwarzian 
of a locally schlicht function 

w(z)«ih(z)/ i j2(z) 
where TJ„ ri2 are two linearly independent solutions of the ordinary 
differential equation 

2v\'\z) + <p(z)-q(z) = 0. 

Thus w is determined by (w, z) = <p uniquely, except that it may be replaced 
by a o H>, a a Möbius transformation. 

It will be convenient to consider holomorphic functions w(z) defined in the 
lower half-plane L. If w is schlicht, it satisfies the Kraus-Nehari inequality 
[39], [56]: 

(20) y2W(z)\<\ ( v - { w , z } ) ; 

Nehari proved that if 

(21) y2\<p(z)\<l
2 (*-{*>,*}) 

then w is schlicht. (Both inequalities are sharp, Hille [37].) Hence it is 
reasonable to consider Schwarzians as elements of the complex Banach space 
B of holomorphic functions qp(z), z E L, with norm 

llvll = sup^VOOl < -Hoo. 
The set S c B of Schwarzians of schlicht functions is bounded and closed, 
but I do not know whether it is connected. 

More accessible is the subset T(l) c S consisting of Schwarzians of 
functions admitting an extension to a quasiconformal self-mapping of C = C 
U {oo}. The set T(l) is called the universal Teichmüller space. 

Every element of T{\) can be written, by definition, as 

<p*(z) = {w*\L,z} 

where /i(z) is a measurable function with || nW^ < 1 and \i\L =* 0. Denote the 
set of all such functions by M. For every JU, E M we can form the function H>M. 
An easy but basic theorem (see, for instance, [10]) asserts that 

(22) (jP̂ 1 * <p̂  if and only if wJR = wjR. 

For <p E r ( l ) , inequality (20) can be sharpened to 

IIVl<|ll/*lloo 
(Kühnau [42], cf. Lehto [45]). On the other hand, if instead of (21) one has 
llvll < l> ^en, according to Ahlfors and Weill [6], <p E T(l) and 

<p = <jpM where jüt(z) = -2y2<p(z) for z E U. 

If <p = (w, z) E r ( l ) , then w(L) is, of course, a Jordan domain and we 
may assume, without loss of generality that its boundary curve C contains 
z = oc. Ahlfors [3] proved that if a, b, c are any three finite points on C 
following each other in this order, then 

b-a 
c — a 

(23) < M 
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for some constant M, and that, conversely the existence of such a constant is 
sufficient in order that the conformai map of L onto the domain bounded by 
C admit a quasiconformal extension. 

The set T(l) turns out to be a domain (Ahlfors [3]) which is contractible 
(Earle and Eells [26]), homogeneous (Bers [12], [13]), and holomorphically 
convex (Bers and Ehrenpreis [18]). It would be pleasant if S were the closure 
of r ( l ) , but whether this is so is an open question. However, recently 
Gehring [33] proved that T{\) is the interior o/S. 

13. If G is a discrete group of real Möbius transformations, i.e., a Fuchsian 
group, we denote by B(G) the closed linear subspace of B consisting of those 
<p which satisfy the functional equation of quadratic differentials 

<p(g(z))g'(z)2=<p(z), g EG. 

If G is finitely generated, T(l) n B(G) is known to be connected; in all cases 
we call the component of T(l) n B(G) containing the origin the Teichmüller 
space of G, and we denote it by T(G). 

A calculation shows that ^ J A E M , belongs to T(G) if and only if 

(24) ^(g(z)) g\z) /g\z) = ii(z), g EG. 

This requirement is equivalent to the condition that G* = w'tG(w/A)*"1 be a 
quasi-Fuchsian group and that Ĝ  = w^Gw"1 be a Fuchsian group. 

Clearly, dim T(G) = dim B(G). This dimension is finite if and only if G is 

U/G = S J- • AS) = U/Gp 
finitely generated and does not act properly discontinuously on any real 
interval, and if and only if the Riemann surface U/G is compact, except 
perhaps for finitely many punctures. 

If dim B(G) < oo and <p G B(G), then <p G T(G) if and only if q> is the 
Schwarzian of a conformai mapping of L onto some Jordan domains. In 
other words, in this case the Ahlfors condition (23) is automatically satisfied. 

If dim B(G) < oo and G is torsion free, then T(G) can be identified with 
TPin9 (/>, ri) being the type of U/G ([11] and [12], [13], [26], [27] for more 
general groups). For if <p G T(G), then cp = <p̂ , JU, G M where /x satisfies (24) 
and WpGw"1 = Ĝ  is Fuchsian. This implies a commutative diagram 
where m and <n^ are canonical projections. The map ƒ represents an element of 
Tpn (cf. §10), and all elements of Tpn can be so obtained. It follows from (22) 
that the point in Tpn depends only on <p and not on the JU, G M occurring in 
the above diagram. The resulting bijection T(G)~> Tpn turns out to be a 
homeomorphism. 

This method of representing Tpn as a bounded domain in c3/,~3+rt (note 
that dim B(G) = 3p — 3 + n) is one way of giving Tpn a complex structure. 
There are several others, and they are all equivalent. It is at this point that the 
deeper theory of Teichmüller spaces begins. But we cannot pursue these 
matters here. 

(If dim B(G) < oo and G has elements of finite order, T(G) is 
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holomorphically equivalent to Tpn+r where (/>, n) is again the type of U/G 
and r is the number of nonconjugate maximal finite cyclic subgroups of (?• 
The original proofs of this statement, by Bers and Greenberg [19] and by 
Marden [49] were complicated; Kra gave a very short proof, based on 
Teichmüller's theorem, see [27].) 

14. The embedding of Tpn into C3/,~3+w constructed in §13 may be called 
semicanonical. It is not fully canonical since it depends on the choice of a 
torsion-free Fuchsian group G, with U/G of type (/?, n), and also, which is 
less significant, on the choice of a basis in B(G). 

Little is known about the actual shape of Tpn in C2p~2+n
9 except for the 

negative information contained in the fact that Tpn is not a homogeneous 
domain if 3p - 3 + n > 1. This result is due to Royden [60]. 

Finding the semicanonical embedding amounts to solving an accessory 
parameters problem for a second order ordinary linear differential equation. 
Already the simplest case is difficult. 

Let P(z) denote the Weierstrass ^-function belonging to the primitive 
periods (1, T) where r E U. We consider Lame's equation for n = — \, that 
is, the equation 

i j ^ ) + [ ^ ( z ) + X]i , (z) -0 , 

and denote two linearly independent solutions by -q{ and t)v Classical 
uniformization theory asserts that for each r there is precisely one X such that 

(25) — (C - the periods of P) = ( a S1" 
v ' T/2 [ o r 1 

mply covered disc 
half plane. 

This is so since condition (25) is necessary and sufficient in order that the 
mapping of the disc or half-plane inverse to T^ /T^ followed by the mapping 
of (C - the periods) by the pair (P(z), @\z)) be a universal covering of S)(T), a 
Riemann surface of type (1, 1) belonging toy(r). 

However, the actual value of X has been found in only a few cases. 
Now we ask: for which values of X is 

^i /^ *i~ j c ^\ fa simply covered 
(26) — ( c " the periods of P) = { / \ 
KZO) r?2 F } I Jordan domain? 
The theory exposed in §13 gives a qualitative answer: for all X in some simply 
connected bounded domain A, depending only on j(t). This is so since it can be 
shown that the set of X satisfying (26) is the semicanonical image of 7 ^ in C, 
determined by a Fuchsian group G with U/G = S)(T). 

It would be important, in view of some questions concerning Kleinian 
groups, to know what A is. In particular is A a disc for some, or for all, values 
of T? This concrete problem may be a good place to end. 
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