
BOOK REVIEWS 1015 

a thorough discussion of integration over the fiber in a bundle, sphere bundles 
and the Euler class, the Thorn isomorphism, Hopfs theorem on vector fields 
and Lefschetz's coincidence theorem, 

The second volume, after an exposition of Lie group theory, introduces 
principal and associated bundles, connections (principal and linear), parallel 
displacement, covariant derivative, and curvature; and then discusses the 
concrete-geometric case of the Weil map, from the point of view of principal 
bundles and also from that of vector bundles with given structure tensors. One 
finds there the cohomology of the classical groups (the exceptional groups do 
not appear) and of some homogeneous spaces, the formulae for the character­
istic classes (Pontryagin, Euler, Chern), and Chern's proof for the Gauss-
Bonnet-Dyck-Allendoerfer-Fenchel-Weil-Chern theorem. 

The third volume, after introductory material on spectral sequences and 
(very welcome) on Koszul complexes, gives a thorough and complete treat­
ment of the algebraic form of the Weil map. Many examples, classical groups 
and homogeneous spaces, are worked out. A minor quibble: The third volume 
does not have an index of notations. 

There is a large number of interesting problems in the first two volumes, 
ranging from simple illustrations to rather difficult general theorems, and 
adding a lot of "general mathematical education". There is a very extensive 
bibliography. The third volume has a set of interesting notes on the history of 
the various facts, and on relations with other topics (e.g., the currently active 
area of characteristic classes of foliations). 

The authors have done us a real service in making this fascinating, but 
rather complex, field accessible and organizing it so clearly and competently. 

H. SAMELSON 
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Applications of sieve methods to the theory of numbers, by C. Hooley, Cambridge 
Tracts in Mathematics, no. 70, Cambridge University Press, Cambridge, 
London, New York, Melbourne, 1976, xiv + 122 pp., $18.95. 

In number theory there are famous conjectures which can easily be 
explained even to a layman, but which still resist a complete solution. Two of 
them are as follows. 

There exists an infinity of primes p such that p + 2 is also a prime (the twin 
prime problem). 

Every even integer greater than 3 is a sum of two primes, or equivalently, 
every integer greater than 5 is a sum of three primes (Goldbach's problem). 

It is in the attempt to solve such problems that sieve methods have been 
developed. The first steps were taken by V. Brun around 1920. Since his 
pioneering work, there has been progress in refining the techniques and 
improving the results of sieve theory. The power of the elementary methods 
originally used has been considerably increased by the combination of 
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analytical arguments. Although sieve methods have not yet sufficed to settle 
either the twin prime problem or Goldbach's problem, they have led to results 
rather close to them. The most remarkable achievements, so far, concerning 
these two conjectures are due to I. M. Vinogradov (1937) and Chen Jing-run 
(1973). Vinogradov proved, in particular, that every sufficiently large odd 
integer is a sum of three primes. From Chen's theorem it follows that there are 
infinitely many primes p such that p + 2 has at most two prime factors, and 
that every sufficiently large even integer is a sum of a prime and an integer 
with at most two prime factors. 

The three main techniques available nowadays to derive sieve results in a 
general way are known as the method of Brun, the method of Selberg and the 
method of the large sieve. Before giving a brief, and somewhat crude, account 
of them, we recall the notion of a sieve. 

A sieve S == (9t,9, tip) consists of a finite set 91 of positive integers, a finite 
set 9 of primes, and for everyp in 9 a set Qp of residue classes modulo/?. The 
sieve has "holes" at exactly those integers which lie in a residue class of üp for 
any/? in 9. The elements of % not falling through the "holes", i.e. not lying in 
any residue class of tip for/? in 9, constitute a sequence 9l0, the sifted sequence. 
A sieve is called small or large, according as the sets tip, p in 99 contain a 
"small" or "large" number of residue classes modulo /?. 

The main problem in sieve theory is to estimate JV0, the cardinality of 9l0, 
in terms of the given sieve S = (91,9, Slp) from above and below. We have 

(!) NQ - 2 s(n), 

where s denotes the sifting function defined by 

, . f 1, for n in 9ln, 
s{n) = < ^ t . 

V, 0, otherwise. 

If S is assumed to be such that Üp just contains the residue class 0 modulo p 
for all p in 99 one gets a small sieve for which 

(2\ s(n) = 2 \*{d\ 
K } d\(n,p) 

where \i denotes the Moebius function, (n,P) the greatest common divisor of 
n and P, and P = Tipe<$p. With JV̂  = 2we9t;</|» *> ^ ^ *> ^ therefore follows 
from (1) that 

(3) ^ = 2 ^ ^ ) ^ . 

Although (3) gives an exact formula for JV0, it usually is of no practical use, 
since too many summands appear on the right-hand side. However, (3) was 
the starting point for V. Brun. Indeed, he obtained bounds for iV0 by 
substituting appropriate partial sums of the right-hand side of (2) for s(n) in 
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(1). In particular, he proved that for k « 0, 1, 2 

rf|/> d\p 
w(d)<2k + \ w(</)<2* 

where co(rf) denotes the number of distinct prime factors of d. This result 
follows at once from (1) and 

2 ii{d)<s{n)K 2 ltd). 
(4) d\(n,P) d\(n,P) 

u{d)<2k+\ co(rf)<2A: 

Inequalities (4), as well as later refinements of the method, were obtained 
mainly by combinatorial arguments. 

In the late forties, A. Selberg introduced a new method to estimate JV0. 
Unlike his predecessors, he considered not only suitable truncations of the 
sum in (2) but also looked for simple functions s+, $~ satisfying s"(n) < s(n) 
< s+(n) for all n. In the case of the upper bound, he found the class of 
functions given by 

(5) *+(*) Œ ( j | \ / j » \ f real, X, = 1, z > 1, 

most useful. Defining, then, Rd by 

(6) Nd - N/f(d) + Rd9 

where N denotes the cardinality of ?Jland ƒ a multiplicative function satisfying 
1 <f(d) < oo, he obtained 

denoting by [J, d'] the least common multiple of d and d\ In order to choose 
the \d optimally he looked for a minimum of the quadratic form 

dskifUd']) 
dJ'\P 

in the variables Xd under the condition \x = 1. Such a conditional minimum 
indeed exists and is given by 

»-(£$?JS(1-'*W)T-
It is attained for 
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(8) Xd = ii(d)f(d)Qo 2 ^ n ( l - l / / ( / > ) ) _ 1 . 
v ' d'<z JV" / p\d' 

d\d'\P 

As far as the 0-term in (7) is concerned, it often turns out that Rd is a small 
remainder term in (6) for an obvious function ƒ. In such cases satisfactory 
bounds can usually be derived for that 0-term, when the \d are given by (8). 

Selberg's lower bound method is more intricate than the upper bound one, 
since we do not know a class of functions s~ analogous in simplicity to the 
class given by (5). Selberg's idea to by-pass this difficulty is to express 5 as 

s{ri) = 1 - 2 op(n) 

with suitable functions op and to use functions s~ of the form 

s'(n) = 1 - 2 <(*) , 

where the a* are again amenable to the upper bound method. It is therefore 
understandable that Selberg's upper bounds are sharper than his lower 
bounds. But, unfortunately, good lower bounds are required to solve the twin 
prime problem or Goldbach's problem by sieve methods. 

Selberg's method is more powerful and, in many respects, simpler than 
Brun's. These two methods as described here by means of a sieve with 
üp = (0 mod/?} for p in 9 can be so adjusted as to yield useful results for 
small sieves. 

The first result for a large sieve was obtained by Yu. Linnik in 1941 and runs 
as follows. Let S be a sieve with 91 = {1,...,/?} and 9 = {p prime|/? < \/N}. 
Denote by ET, 0 < r < 1, the number of primes p in 9 for which Qp contains 
more than rp elements. Then Linnik proved that there is an absolute constant 
c > 0 such that N0 < cN/r2ET. In 1948 A. Rényi began his investigations on 
large sieves. His contributions were partly stronger, partly weaker than 
Linnik's theorem. Starting with an arbitrary sequence of integers 9ït: 1 < mx 

< • • • < mz < N and setting 

Z(p,a) = 2 1, 
wE9H 

m=a(modp) 

one expects of an evenly distributed sequence 9H that Z(p,a) is about Z/p in 
size most of the time. Rényi considered the variance 

V= 2 p £ (Z(p,a)-Z/p)2 

p<X a=\ 

and proved for X < (A//12)1/3 that 

V < 2NZ. 

Finally in 1965, E. Bombieri and K. F. Roth, independently, sharpened 
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Rényi's inequality by proving a result comparable with 

(9) V < (N + X2)Z. 

If 9H is taken to be the sifted sequence 9l0, this also implies Linnik's result. 
Inequality (9) is a particular case of the inequality 

(10) 2 2 \S(a/q)\2 < (N + Ô2) 2 k l 2 

where 5 denotes an exponential sum 

M+N 

S(x) = 2 ane
2™x 

with arbitrary complex coefficients an. Similar inequalities have also been 
proved, when, in the definition of S, characters of some groups are taken 
instead of e2mnx. The proof of such inequalities essentially comes down to an 
estimate of the operator norm for specific linear maps between finite dimen­
sional Banach spaces. 

Inequality (10) contains much more than just an estimate for the sifted 
sequence of a large sieve. It has been used by Bombieri to prove that for any 
A > 0 there is a B > 0 such that for K = xx,2\og~Bx, 

2 max max 

(11) ( / '* )=1 

= 0(x log"'4*), x -> oo, 

where <p denotes Euler's function and <n{y\ kj) the number of primes less than 
y lying in the residue class / modulo k. This is a powerful result. It has been 
found useful in estimates of the 0-term in (7) and has sometimes even served 
as a good substitute for the generalized Riemann hypothesis for all Dirichlet 
L-series. Inequality (10) has also proved useful for small sieves. Nevertheless, 
(10) is referred to as an inequality of the large sieve type in view of its first 
application (9). The method of the large sieve provides proofs for (10) and 
similar inequalities. 

These three sieve methods are related to Vinogradov's and Chen's theorem, 
mentioned above, in the following way. Although no one of them enters in 
Vinogradov's original proof explicitly, Vinogradov estimated certain exponen­
tial sums by a method which has some resemblance to Brun's. Another proof 
of his theorem can now be given with the help of the large sieve. For Chen's 
theorem the methods of Selberg and of the large sieve are used. 

In view of the growing interest in sieve methods, it is not surprising that 
several books on this subject have appeared in recent years. All three main 
methods are discussed in [5]. However, the large sieve is only treated in its 
incomplete form as it was before the contributions of Bombieri and Roth. 
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Applications are indicated. In [4] the methods of Brun and Selberg are treated 
and mainly applied to problems of the so-called type H and HN which 
generalize the classical twin prime problem and Goldbach's problem. The 
large sieve method is considered in [1], [3], [6] and [7]. As the main applications 
of the large sieve, Bombieri's theorem (11) is proved, and upper bounds are 
given for the numbers of zeros of Dirichlet's L-series in certain domains of the 
critical strip. These results are of great use for further arithmetical questions. 

Hooley's book is not so much concerned with general sieve methods as with 
various applications of sieve techniques to interesting problems in number 
theory. Hooley starts with a short, illustrative survey of sieves, stressing the 
peculiarities of those methods which he is going to use later on. In the rest of 
his book, these methods are used in connection with problems which include, 
in particular, the following: Chebyshev's problem on the greatest prime factor 
of IL=i (1 + n2), Artin's conjecture on primitive roots, and the problem of 
Hardy and Littlewood on the representation of an integer as a sum of two 
squares and a prime. Hooley, himself, has made a substantial contribution to 
each of them: 

If pN denotes the largest prime factor of 11^=1 (1 + n2\ then a fragmentary 
proof of N = o(pN)9 N -> oo, was found in Chebyshev's manuscripts after his 
death. Hooley proves that AT11/10 < pN for sufficiently large N, which consider­
ably improves earlier results of A. Markov, T. Nagell and P. Erdös. 

Under the assumption of the generalized Riemann hypothesis for certain 
Dedekind zeta-functions, Hooley gives an asymptotic formula for the number 
of primes/? less than x which admit 2 as primitive root modulo/?, when x tends 
to infinity. Such a formula was conjectured by E. Artin in 1927. However, the 
numerical factor appearing in it was brought into question by the work of D. 
H. Lehmer. H. Heilbronn then proposed another factor, which now turns out 
to be in accordance with Hooley's result. 

In 1957 Hooley showed, assuming the generalized Riemann hypothesis for 
Dirichlet's L-series, an asymptotic formula for the number of times an integer 
can be represented as a sum of two squares and a prime. In 1960 Yu. Linnik 
gave an unconditional proof of this result by using his dispersion method. In 
1965 another unconditional proof became available, since Bombieri's theorem 
(11) could now be used instead of the Riemann hypothesis in Hooley's work 
of 1957. This second proof, which is much shorter than Linnik's, is presented 
in this book. 

Hooley also touches the central problem of the limitation of the methods 
used. It is a common feature of sieve methods that only upper or lower 
bounds, rather than the expected asymptotic results, are obtained. An 
important question therefore is whether, and if so, how far, the bounds can be 
improved by refinements of the method, e.g., by introducing weights, provided 
certain natural conditions are fulfilled. The foundations for such investigations 
were laid in [8] by A. Selberg. In a forthcoming paper [2] E. Bombieri settles 
that question in the case of the bounds for 
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2 <*ng(n)> * - > oo, A: = 1, 2, . . . , 
ne% 

under some general assumptions on {a^)^x. In (12), g denotes a suitable 
weighting function, and \ the set of square-free integers having exactly k 
prime factors. Although one of Bombieri's assumptions is usually not easy to 
verify for given (an)^==l, there is no doubt that his work is an important 
contribution to our knowledge of general sieve methods, which is likely to 
influence their future development. 

Hooley begins the chapters of his book with a historical survey on the 
relevant problem, and ends them with a discussion of other applications of the 
method or of possible relaxations of the hypothesis used. This practice is 
helpful to the reader and provides a good orientation of the subject. The book 
is written with great attention to detail. It affords an insight into the richness 
of the problems which can successfully be treated with the help of sieve 
methods. It can be recommended to anybody interested in sieve methods. 
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Abstract analytic number theory, by John Knopf mâcher, North-Holland Math­
ematical Library, vol. 12, North-Holland, Amsterdam & Oxford; American 
Elsevier, New York, 1975, ix + 322 pp., $29.50. 

The reader may wonder what the title of Knopfmacher's book signifies. The 
word "abstract" refers to an axiomatic set-up of the material which is treated 
here within the framework of arithmetical semigroups, the standard example 
being the positive integers with their multiplicative structure. The word 
"analytic" refers to the admission of analytic functions and Cauchy's theorem 
as tools in proving theorems. Finally "number theory" indicates that this work 
arose from generalizations of theorems on ordinary integers. 

The main topics treated in this book are rooted in: 
(i) Dirichlet's theorem that there are infinitely many primes in every residue 


