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Pattern synthesis, lectures in pattern recognition, Volume 1, by U. Grenander, 
Applied Mathematical Sciences, No. 18, Springer-Verlag, New York and 
Berlin, 1976, vii + 509 pp., $14.80. 

A generation or so ago, applied mathematics consisted primarily of the 
solution of partial differential equations subject to diverse geometrical con­
straints. The development of computers radically altered this emphasis: 
numerical methods superseded analytical approximations, and the rapidly 
expanding capacities of digital computers obviated the need for ingenious 
shortcuts. 

Analog computers, with their versatile internal structures, would probably 
have given rise to investigations into structural configurations if they had not 
fallen behind digital automata because of their restricted speeds. Nevertheless, 
the design of digital computer circuitry itself has stimulated work on configu-
rational mathematics, and the very scalar quality of the digital computer has 
necessitated an analytical approach to pattern recognition. The theory of self-
organizing automata (Turing), the genetic code and research on neural nets 
have proven the power of an algorismatic approach to structure. 

A pattern is an ordered array whose components bear a well-defined 
relation to each other. Pattern recognition amounts to the identification of 
these components, and the nature of their interrelationships. Such identification 
is to a certain extent subjective: the expression of the internal vibrations of 
material objects as a series of monochromatic mutually orthogonal functions 
is convenient, but not necessarily fundamental in acoustic theory. The 
description of a crystal in terms of stacked cubical unit cells may please the 
crystallographer, but the solid-state chemist will prefer a model based on 
stacking spheres of different diameters. Thus the same crystal will appear in 
different "gestalten" in different contexts. 

A very effective way of reducing the apparent complexity of a pattern is the 
above-mentioned algorismatic approach, namely by synthesizing it according 
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to a given generating rule, which relates each component to at least two other 
components. For example, an assembly of points defined by the relation that 
each point be at the center of a regular tetrahedron whose vertices constitute 
points belonging to this same assembly, constitutes the locations of carbon 
atoms in the diamond structures. 

Ulf Grenander, of the Division of Applied Mathematics at Brown Univer­
sity, proposed ten years ago at a scientific meeting in Loutraki, Greece, that it 
would be possible to create a general theory of patterns; the present volume 
is the first in a projected series reporting on the progress of this study. The 
author cautions us in his Introduction that the first two volumes should be 
considered as only a preliminary presentation. He states that pattern theory is 
a fairly new branch of applied mathematics, so that it would be unreasonable 
to expect at this time a presentation as polished and careful as he would have 
liked to make it. 

Grenander's approach is the algorismatic one: he defines a concept of arity 
as the maximum number of connections that may relate any structural 
component to other components. When every component bears an identical 
relation to all other components, the structure is regular. The above-men­
tioned diamond structure would have arity jour, the arity is here analogous to 
a chemical valency. For directed graphs the arity equals the sum of the in-arity 
and out-arity. 

It is difficult to know for what audience this volume is intended. The subtitle 
suggests that it is based on lecture notes for Grenander's course at Brown 
University; the introductory notes also indicate that it is a report on research 
in progress. The result is somewhat uneven: many applied mathematicians will 
find the first one hundred and forty pages tough going without attending the 
lectures. This is not surprising because of the rapid expansion of applied 
mathematics into new areas and the novelty of the theory presented here. The 
formalism of this first third of the book is uncompromising. In reading these 
pages this reviewer immediately recalled Conway's Game of Life, so popular 
with undergraduates taking computer courses. Nevertheless, this game is not 
discussed before page 313, and even then the generating rules of this game, as 
presented here, would not recruit many undergraduates to the study of this 
rather significant growth system. 

Following the abstract image theory, there are applications to a wide variety 
of structures: fibres, slivers, etc., the heart, genealogical trees, river systems 
and motion studies. The chapters on space-time patterns are among the most 
fascinating in this book; their relevance is attested to by recent work on, for 
instance, morphogenesis by René Thorn, catastrophe theory by James Calla­
han, on allometry by Gould, on branching systems by Woldenberg and on 
coastline structures by Mandelbrot. Nevertheless it is not likely that many 
experts in the widely ranging field of application of Grenander's theory will be 
able to draw directly upon this book and use it profitably in their own work. 
There is a need for translation: presumably this theory is expected to spin off 
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applications in a manner analogous to the spinoffs of the switching and 
information theories. Indeed not every present-day systems engineer would 
have been able to cope directly with early Caldwell, Huffman, Shannon or 
Wiener; nevertheless he is now indirectly applying the results of those early 
investigations. It is hoped, however, that in its final form this prototype will 
become more accessible. 

In warning the reader that his growth patterns should be seen as mathemat­
ical constructs rather than biological realities, Grenander quotes Rosen on 
biological morphogenesis: one investigates the capability of models. This 
reviewer has pointed out elsewhere that the similarity of patterns occurring at 
widely different scales is due to the fact that the specific nature of interactive 
forces is frequently superseded by the properties of three-dimensional space, 
which permit but a limited repertoire of patterns and connectivities. Therefore 
these mathematical constructs have a validity in equilibrium and steady-state 
systems, regardless of specific interactive forces. 
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Spectral synthesis, by John J. Benedetto, Academic Press, Inc., New York, 
1975, 278 pp., $27.50. 

Let $ be in L°°(R). If <& can be written as 

n 
$(*) = 2 ckexp(ixyk)9 

then the set of characters {exp^xy^): k = 1,...,«} is called the spectrum of 
$ and denoted sp $. The set of translates of <3> spans a finite-dimensional 
subspace % of L00 (R), namely the linear span of sp $. In fact, sp $ is exactly 
the set of characters exp(ixy) belonging to %. Thus the linear span of the 
translates of O is determined by its spectrum. The problem of spectral 
synthesis for bounded functions is to study suitable generalizations of this 
simple observation. That is, given $ in L°°(R), is the smallest translation-
invariant subspace of L°°(R) containing $ and closed in some topology 
generated by the spectrum of O ? The problem has been studied with various 
topologies on L00 (R), but for many purposes the most suitable is the weak-* 
topology. Also the setting is often generalized to a locally compact abelian 
group G with character group T. In our discussion above, G = R and 
T = {exp(ixy):y £ R}-

For the more general set-up, let <& be in L^iG) and let 3^ be the smallest 
weak-*-closed translation-invariant subspace of L°°(G) containing $. For any 
weak-*-closed translation-invariant subspace Ï of L°°(G), we define its 
spectrum as ?T n T. And the spectrum of O is, by definition, the spectrum of 
?T$ . The spectrum is a closed subset of T and every closed subset E of T is the 
spectrum for at least one Ï. If there is exactly one % i.e. if E determines Ï in 


