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STOCHASTIC TIME EVOLUTION OF ONE DIMENSIONAL 
INFINITE PARTICLE SYSTEMS 

BY FRANK SPITZER1 

1. Introduction. A familiar fact about Poisson systems of particles (random 
distribution) in Euclidean space R^ will serve as a suitable starting point for 
this survey. Let us denote such a Poisson system by P̂ , where p > 0 is the 
constant particle density, ty is then characterized by the number of particles 
NB in each bounded Borel set B with volume |fl| being Poisson distributed 
with mean p\B\9 and by the mutual independence of the occupation numbers 
NB corresponding to mutually disjoint Bt c R<*. Consider now the following 
stochastic time evolution: each particle remains at rest for an exponential 
time with mean one, and then it jumps in such a way that its displacement is 
governed by a given probability measure v on R .̂ All jumps and waiting 
times are assumed to be mutually independent random variables. Then, if the 
system is a Poisson system P̂p at time t = 0, it remains a Poisson system with 
the same density p at all future t > 0. We say that, for each p > 0, V?p is 
invariant under (is an equilibrium state for) the jump evolution with speed one 
and jump measure v. The simplicity of this state of affairs is due to the total 
lack of interaction between the motions of distinct particles. The same 
phenomenon occurs in continuous time: for example, let the particles perform 
independent Brownian motions, as in the discussion of Doob [2, pp. 404-407], 
Again each ^ is an equilibrium state. 

There is another stochastic time evolution which derives its simplicity from 
a similar lack of interaction between particles. We call it a birth and death 
evolution', each particle dies (disappears) with given death rate 8 > 0, i.e. it 
lives for an exponential time with mean fi"1. However for each bounded 
Borel set B cRd there is a constant rate fi\B\ > 0 for the birth of a particle, 
which upon birth appears at some point uniformly distributed over B. Since 
the evolutions in disjoint sets Bx and B2 are independent, it is not difficult to 
construct the evolution as a Markov process whose state space is the set of all 
integer valued set functions (configurations) on R .̂ It is then trivial to verify 
that this evolution leaves the Poisson system 9p invariant if and only if 
P - P/8. 

The above examples motivate current research efforts in this field. The aim 
is to study stochastic time evolutions with nontrivial interaction between 
particles, and in particular to obtain information about the ergodic behavior 
(equilibrium states, convergence to equilibrium) of such systems. The choice 
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of natural evolutions to study has often come from statistical mechanics 
where the interaction is defined by a physically meaningful Hamiltonian 
based on a given potential V. In those cases when the time evolution has a 
time reversible equilibrium state, it then turns out that this equilibrium state 
must be a Gibbs state corresponding to the potential V. For stochastic time 
evolutions this remarkable fact was first established in the pioneering work of 
Kolmogorov [6]. He considered independent Brownian motions of a finite 
particle system on a compact manifold without boundary (say a torus). Each 
particle has a drift added to its standard Brownian motion, which depends on 
and constitutes its interaction with the other particles. Kolmogorov showed 
that there is a time reversible equilibrium state if and only if the drift vector 
for each particle is the gradient of its potential of interaction with the other 
particles. And, if so, then the time reversible equilibrium state is the Gibbs 
state corresponding to the interaction potential. This result has recently been 
extended from finite particle systems to infinite particle systems on R^ by R. 
Lang [7]. 

Most other authors to date, in considering jump processes and birth and 
death (also called spin-flip) evolutions have found it expedient or necessary to 
replace Rd by a countable set such as the lattice space Zd. (See [8] for a recent 
survey and up to date bibliography.) Then the existence of the time evolution 
as a Markov process is easier to prove, especially when the interaction 
precludes multiple occupancy of sites of Zd. The state space is then the 
compact space {0, \}Zd. 

In the present study we shall restrict ourselves entirely to dimension d = 1, 
in order to describe a class of stochastic evolutions whose interaction has no 
meaningful analogue in dimension higher than one. They will be called 
nearest particle evolutions and have the property that the speed of jumping, 
resp. the birth and death rates, depend only on the distances to the nearest 
particle on the left and on the right. In §2 we shall describe a class of 
evolutions called jump evolutions with exclusion. They have the property that 
jumps which would interchange the order of particles on R are excluded. 
There we shall make plausible that the equilibrium states of such evolutions 
belong to the class of renewal processes, a natural generalization of the 
Poisson systems <? . The spacing density of the renewal process will be seen 
to be related in a natural way to the speed of the jump evolution with 
exclusion. The results will be in the form of conjectures, since the rigorous 
construction of these evolutions is an unsolved problem. In §3 we shall 
discuss a similar generalization of birth and death evolutions with interaction, 
whose birth and death rates are allowed to depend on the distances to the 
nearest particles. Again the equilibrium state is a renewal process whose 
spacing density depends on the birth and death rates, and time reversibility 
will play a crucial role just as in the above mentioned work of Kolmogorov. 

Just as in the case of §2, the results of §3 were purely formal at the time of 
this lecture (January 1976). Fortunately R. Holley and D. Stroock have 
succeeded since then in providing a satisfactory existence and uniqueness 
theory [5] for the evolutions in question, which enabled them to prove the 
conjectures in this part of the lecture. Therefore §3 will be cast in the simpler 
framework of birth and death evolutions on Z instead of R, for which L. 
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Gray [4] has obtained even stronger existence and uniqueness results than 
Holley and Stroock. It will be shown that the characterization of the (unique) 
time reversible equilibrium state hinges on a new characterization of renewal 
processes, which may be of independent interest. This characterization (which 
served as a model for Holley and Stroock's similar but deeper result on R in 
[5]) will be discussed in §4. 

Many of the ideas in §§3 and 4 were developed jointly with Kenneth 
Logan, who used them in the related context of characterizing the time 
reversible equilibria for stochastic nearest neighbor time evolution on Z^ [9] 
(nearest neighbor-as opposed to nearest particle-means that the rates at a site 
in Zd depend only on which neighboring sites are occupied). 

2. Jump evolutions. First a formal definition of renewal processes, since our 
goal is to find jump evolutions whose equilibrium states are renewal proces­
ses. 

DEFINITION 2.1. For each strictly positive probability density ƒ on R+ with 
finite expectation Jo>xf{x) dx = m = p" 1 (ƒ is called the density of spacing) 
we define a point process on R as follows: place one particle at — L and one 
at R according to the joint density 
(2.1) Prob[ - L G dx, R G dy] = pf(x + y)dxdy, x > 0,y > 0. 
Then place infinitely many particles to the left of - L and to the right of R, 
with independent spacings given by the density ƒ. This point process will be 
called (:Kf and the set of all renewal processes so obtained is 6À = U/$ƒ• 

We shall say that/— g or ^ — <$g if both ƒ and g have positive means 
and g(x) = c exp(-ax)f(x) for suitable c > 0 and a G R. 

REMARK. The above construction due to Ryll-Nardzewski [10] defines a 
translation invariant point process. Note that ^f = P̂p when ƒ is an 
exponential density with mean p - 1 , and that all the Poisson processes form 
one equivalence class. 

Next we need a natural finite approximation of the infinite point process 
(Af on R by an N-particle point process on a circle 7^ of radius R. We can 
think of N distinguishable particles as a point x = (xv . . . , xN) G 7^. Then 
the N spacings between adjacent particles are well defined, up to cyclic 
permutation, as functions 8{(x), 82(x), . . . , 8N(x), and we let 

(2.2) $</> (X) = c II ƒ[8* {x)l x E 7#, 
k = \ 

where c is the normalization such that $ has integral one over 7^. It seems 
entirely natural that the point process determined by $(^} should converge 
weakly to <$ƒ if N —> oo and R -> oo simultaneously, in such a way that the 
particle density N/(2ITR) converges to p = (fxf(x) dx)~l. This is not hard to 
show [3]; in fact the same proof will show that when N/(2TTR) -> a > 0, then 
the point processes determined by $(^} converge weakly to c:Rg where g — ƒ 
and g has a = (fxg(x) dx)~\ provided such a g exists. This is so because 
0 ( / ) as defined by (2.2) depends not on ƒ, but only on the equivalence class 
containing/. 

Therefore we shall study time evolutions on 7^ whose behavior is inde-
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pendent of R, and if we find that their equilibrium state is <£^\ then it will be 
plausible to assume that the corresponding equivalence class of point proces­
ses <3lf are equilibrium states of the corresponding time evolution of an 
infinite particle system on R. 

DEFINITION 2.2. A nearest particle jump evolution with speed change (either 
on R or TR) is determined by a speed function <;(/, r) > 0 and a jump 
measure v{dx), as follows: each particle jumps in time dt with probability c(/, 
r) dt when / > 0 and r > 0 are the distances to the nearest particle on the left 
and on the right. The displacement due to the jump is governed by the 
probability measure v on R. 

THEOREM 2.3. Let ƒ be an admissible probability density in the sense of 
Definition 2.1 and let 0 = $ ( / ) be as in (2.2). Then <E> is invariant under the 
evolution on TR in Definition 2.2, for any v, provided the speed function is of the 
form 

(2.3) c(l, r) = ƒ(/ + /•)/ƒ(/)ƒ(/•), / > 0, r > 0. 

PROOF. TO simplify the notation, assume v(dx) = y(x) dx to be absolutely 
continuous. Then the semigroup of the evolution has the representation 

Pt(x, y) = exp(tG)(xf y), x, y E Tg. 

Now <I> will be an equilibrium state if 

(2.4) f $(x)G(x,y) dx = 0, y E 7#, 
JjN 

and a time reversible equilibrium if 

(2.5) (b(x)G(x9y) - *(y)G(y, *), *,ƒ E 7#. 

We shall verify that (2.5) holds under the additional assumption that v is 
symmetric, i.e. cp(x) = cp(-x). Without this (2.5) does not hold but (2.4) is 
easy to verify, as in similar calculations in [11]. 

For each £ E TR let 

^k \i)X = (**1> -*2' ' • • ' xk-\* £> •*£+ I' * • ' *> •*#)•> X E: TR . 

Note that (2.5) holds if x = ƒ. Also if x 7̂  >\ then G(x, j>) 7̂  0 only if y is of 
the form Sk(£)x, for some I < k < N and some £ E 7^, which means that 
the /cth particle jumps from xk to £. When the configuration is x = 
(xj, . . . , xN\ then, assuming (2.3), the speed of the Ath particle is 

mm $</»(x) ' 
where T^X = (*,, x2, . . . , ^_ 1 ? x̂  + 1, . . . , xN). Therefore (2.5) takes the form 

which is satisfied, since ¥£-x\irkSk(Ç)x) = * ( / " , ) (%^)-
This theorem then leads to the 
CONJECTURE. The nearest particle jump evolution with speed change given 

by c(/, r) = ƒ(/ + r)/f(l)f(r) has as equilibrium states all <ïL such that 
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It has to be understood, however, that the very existence of these time 
evolutions is still in question in all cases except when ƒ is an exponential 
density. Once this is settled one could attempt to prove an even stronger 
conjecture, of a type which will be discussed in detail in §3. It states that if an 
evolution of the type discussed has a time reversible equilibrium state, then 
this state must be a renewal process, or a convex combination of such 
objects-and that this can happen only if the speed is a constant multiple of 
the speed in (2.3). 

We proceed to another class of jump processes with exclusion of jumps 
which would change the order of particles. 

DEFINITION 2.3. A nearest particle jump evolution with speed change and 
exclusion (either on R or TR) is defined just as in Definition 2.2., except that 
jumps are excluded which would reverse order. 

THEOREM 2.4. Let ƒ be an admissible probability density in the sense of 
Definition 2.1, and let $ = $ ^ ) be as in (2.2). Then $ is invariant under the 
evolution on TR in Definition 2.3, for any v, provided the speed function is of the 
form 

(2.6) c(/, r) = h(l + r)/f(l)f(r), I > 0, r > 0, 

where h is any strictly positive measurable function. 

We omit the proof since it is similar to that of Theorem 2.3 and was 
already given, for the case of h = 1, in [11, pp. 261-263]. Also the resulting 
conjectures are analogous to those following Theorem 2.3 and were discussed 
in [11, pp. 284-289]. The existence of the time evolution on R remains an 
open problem. 

3. Birth and death evolutions. Here the plan is to build an interaction into 
birth and death evolutions by making the birth and death rates depend on the 
distances / and r to the nearest particles on the left and on the right. Since R. 
Holley and D. Stroock have recently [5] developed this theory for infinite 
systems on R, we shall treat the technically simpler case of Z. 

An admissible spacing density will be a probability density ƒ with 
00 00 

2 ƒ(*) s 1, 2 * ƒ ( * ) - m = p-* < oo, ƒ(*)><> for/: - 1 , 2 , 3 

The translation invariant renewal process on Z corresponding to such a 
sequence ƒ will be denoted ^Kf as in §2 on R. It is the probability measure jiton 
£2 = {0, 1}Z which is uniquely determined by the cylinder set probabilities 

(3.1) /4<*2,...,J - m-'/(*i)/(*2)- ' •ƒ(*>) 
where A^ki...k denotes the event that uk = ak+ki = • • = «*+*,+*,+ ... +kj 

= 1 and co, = 0 for all other integers / between k and k + kx + k2 + * • * + 
kr Finally <$ denotes the union of ^ over all admissible/. 

A nearest particle birth and death evolution has been shown to exist by L. 
Gray ([14], Theorem 4.4) in the following sense. Let £2' C ÇL be the set of config­
urations co = {<jôk\ k G Z} G 12 such that cok= 1 for infinitely many positive and 
infinitely many negative values of k. Let jS(/, r) and 8(1, r) be strictly positive 
functions on / > 1, r > 1 and such that ô is bounded. (The boundedness of 8 
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is a natural condition because it prevents the particle system from dying out 
in a finite time.) Let 

f fi(l,r) ifco. = 0, 
[ 8(1, r) if uk = 1, 

whenever oök^.t = <o*+r = 1 and to,r = 0 for k - / < j < k + r, and y 7* &. 
For each i 6 Z and each to G fi' let co* G Î2' be the configuration which 
agrees with co at all sites y ¥" k while (uk)k == 1 - co*. Finally let <>D(Q') be the 
set of right continuous functions with left hand limits from R* into Q'. Then 
there exists one and only one (strong) Markov process cot, t > 0, with state 
space £2', whose trajectories lie in <3)(ö') and which is such that the domain of 
its pointwise generator G contains the cylinder functions and is given by 
(3.3) Gh(o>) = 2 ck(u)[h(<*k) - *(«)], <o G 0', 

for every cylinder function (depending only on finitely many coordinates) h. 
A probability measure JU on ti' will be called an equilibrium state for the 

above time evolution (Markov process) co(/) if 

V[«(0] - vM°)]< ' > °' 
for every cylinder function ƒ. It will be called a time reversible equilibrium 
state if it is an equilibrium state and in addition the stationary process <o(0, 
/ G R, which is in state fi for all / G R is invariant under the reflection 
t —» - Mt is known ([4], Theorem 3.21 and Theorem 4.4) that this happens if 
and only if 

Vt«(oM*>(o)] = vM°)M«(')]. ' > 0' 
for all pairs of cylinder functions ƒ and g and that this in turn is equivalent to 

(3.4) ƒ ,i(</«)[/(co)Gg(co) - g(<o)C/(co)] - 0 

for all pairs of cylinder functions ƒ and g. 
The above results provide the appropriate setting for 

THEOREM 3.1. (a) Suppose that a nearest particle birth and death evolution 
has rates /?(/, r) > 0 and 8(1, r) > 0 with 8(1, r) bounded, which satisfy the 
equation 

(3-5) WO'IU^)' '>••'>•' 
nVœre ƒ w a/? admissible spacing density. Then the renewal process JU = <$ƒ is a 
time reversible equilibrium state. 

(b) Suppose, conversely, that we have a nearest particle birth and death 
evolution with j3(/, f) > 0, 8(1, r) > 0 tftó §(/, r) bounded, and such that it 
possesses a time reversible equilibrium state fi. Then it follows that fx = cAf for 
some admissible spacing density f, and furthermore the rates must satisfy 
equation (3.5). 

We illustrate the theorem by a concrete 
EXAMPLE. Let 8(1, r) = 1 and /3(l, r) = A(\/l + \/rf, l> \,r>\, where 

A > 0 is a given parameter. Then the evolution exists in the sense described. 
By Theorem 3.1 it has a time reversible equilibrium state JU if and only if there 



886 FRANK SPITZER 

is an admissible spacing density ƒ such that 

= A( J + i ) , / > l,r > 1, 
ƒ(/ + 0 

and then jut = <&ƒ. To find all possible ƒ let g(k) = /c2/(/c), A: > 1. Then 
gU)g(r) = ^g( ' + r) for / > 1, r > 1, so that g(/c) = ^e~a* for some real a 
orf(k) = Ak~2e~ak. But for/to be admissible we must have 

A%k-2e~ak= 1, A^k~xe-ak < oo, 
l i 

which works (for some a > 0) if and only if 
l 

v4 > (H-s-Hence we have to distinguish two cases 
(i) A > o/V2. By Theorem 3.1 there exists a unique time reversible equi­

librium state /A = <3lj, with 
ƒ(*) = Ak-2e~ak, k > 1, 

where a is the unique solution of v42f°A:~2e~a* = 1. 
(ii) y4 < 6/TT2. By Theorem 3.1 there is no time reversible equilibrium state. 
There is an obvious conjecture for what "goes wrong" in case (ii). It is that 

the birth rates are then sufficiently small compared to the death rates so that 
the particle system "dies out" in the weak sense that the probability that 
(co(O)fc = 0 tends to one as t —>°° for each k E Z, for any initial configuration 
in £2'. This has indeed been proved by R. Holley (oral communication) by 
coupling methods, based on comparison of the process to one on a large finite 
interval with both end points occupied. This implies that when A < 6/TT2 

there is not even an equilibrium state \x such that JU(Q') = 1. When A = 6/IT2 

however, it is not known whether there are equilibrium states which are not 
time reversible. 

PROOF OF THEOREM 3.1. Equation (3.4) is the necessary and sufficient 
condition for ju to be a time reversible equilibrium state. In view of (3.3) it 
takes the form 

(3.6) f 2 ck(o)[h(a)g(ak) - A(u*)g(«)] /*(</«) - 0, 
J k<=z J 

for pairs of cylinder functions g and h. It can be simplified by 
LEMMA 3.2. Equation (3.6) holds if and only if 

(3.7) ƒ c0((o)cp((o) ii(dœ) = ƒ c0(u)<p(<o°) /i(rfw) 

for all cylinder functions (p. 

To prove the lemma assume (3.7). In view of the translation invariance of 
the rates ck(') it implies 

fck(ù))<p(a)n(du) =fck(u)(p(üik)ii(do)), keZ. 

Letting <p(co) = h(<S)g(o)k), we see that (3.6) holds. Conversely suppose (3.6) 
holds and choose for some finite A cZJ E A, 
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h(io) = I I to,, g(co) = h(J). 
ktEA 

Then h(co)g(cok) — h(o)k)g(<S) = 0 unless k = j . Therefore (3.6) implies that 
(3.7) holds for <p = h. By linearity (3.7) must hold for all cylinder functions <p. 

To prove part (a) of Theorem 3.1 we now assume (3.5) and have to verify 
(3.7) when jit = <3ly. We may in fact assume that the function (p in (3.7) is the 
indicator of an event of the form Alr n B where 

(3.8) Alr = [os: CO_, = to,. = to0 = 1; to, = 0 for all - / < k < r, k ^ 0] 

and B is an event specifying a finite number of coordinates co, with j outside 
the interval [— /, r]. Note that c?0(to) = /?(/, r) on the set where <p(to°) = 1 and 
S(l, r) on the set of co such that <p(to) = 1. Therefore (3.7) reduces to 

(3(1, r) = fq>(U)p(d») 

8(l,r) f<p(o)0)n(du) ' 

In view of the definition of <p, and using the fact that ju = cAp we get, letting 
i / f = [w: co° G /J/r], 

and 

V{Alr) = f(l)f(r)/m, ix(Âlr) = ƒ(/ + r ) / « 

/<p(co)M(rfW) li(A„nB) n(Alr) ƒ(/)ƒ(/-) 

which together with (3.9) complete the proof of part (a) of Theorem 3.1. 
To prove part (b) of Theorem 3.1 one proceeds in a quite similar fashion, 

up to a point. We assume that JU, is a time reversible equilibrium state for the 
time evolution and conclude just as above that it must satisfy the identity 

li(AlrnB) fi(l,r) 
(3.10) 

/ i ( i / rf l B) 8(1, r) 

The proof will then be complete if we can deduce from (3.9) that /x must be a 
renewal process 6Af for some admissible spacing density ƒ. This will be done 
in the next section, in a theorem which translates the information we have 
about ix at this point into the statement that /A = <:fty for some ƒ. Let us 
summarize this information. 

(i) ix(A) > 0 for finite cylinder sets A c £2. 
This is clear since the birth and death rates are positive. 
(ii) ju(£2') = 1, i.e. ix[iok = 1 i.o. for k > 0 and also for k < 0] = 1 which 

follows from Gray's existence theorem for the time evolution. 
(iii) The conditional probability that u>n = 1, given co for all k ^ n depends 

only on the distances / and r from the site n to the nearest occupied sites on 
the left and on the right of n. 

This most crucial property (iii) is a consequence of (3.10), since the 
conditional probability in question may be written 

M 4 n g ) j8(/,r) 
H(A/r n B) + p(Â,, n B) «(/,/•) + p(l, r) ' 
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which evidently is independent of the event B and depends only on the 
spacings / and r. 

4. A characterization of renewal processes. Let ÇR = U c$f be the class of 
renewal processes described in the beginning of §3, and let <? denote the class 
of processes satisfying properties (i), (ii) and (iii) at the end of the last section. 
We shall show that § = <3l and since the inclusion <$ c S is quite obvious, 
we begin immediately by assuming that JU E S and we shall show that 
fi E °X. The proof is divided into eight steps. 

Step 1. Choose the events Alr as in (3.7) and Alr = [<o: <o° E Alr], and call 

(4.1) ii[Alr]/ii[Âlr] =g( / , r ) . 

Then there is a strictly positive sequence ak, such that 

(4.2) g(l, r) - aflja^. 

PROOF. By using property (iii) one can express the ratio 

/x[(o0 = co,. = o)J+k — o)j+k+n = 1, o)t = 0 for all other 0 < / < j + k + n] 

ju[co0 = o)j+k+n = 1, o>i = Ofor all 0 < / <j + k + /?] 

in two different ways in terms of the function g. This yields the functional 
equation 

g(h k)sU + &,") = g(/c, rt)g(y, k + /?). 

To solve this equation let tn = Il^igO', 1), define ^ = tk
xg(k, 1) and verify 

that 4.2 holds. 
Ste/? 2. Let A*k ...k be the basic cylinder events used in equation (3.1). Let 

n = kx + A:2 + • • • + Ay. Then there exists a family of constants c^ , with 
n > 0, /c E Z, such that 

(4.3) M « * 2 . . . *,) = c(
n

k)akaki • • < * v 

PROOF. First define c^} = [x[œk = 1]. Then define c„(/c) by setting /x(/4,f) = 
c^k)an for ft > 1. The rest follows by induction on j from Step 1. For example, 
\i kx + k2 = n, then by property (iii) and Step 1 we have 

c^an • ak ak 

Step 3. For « > 0 
00 

(4.4) c<*>- 2 4 ^ * e Z . 
PROOF. By property (ii) of /x we know that <o,. = 1 for some / > k with 

probability one. If j + k + n is the first index after k where this occurs, we 
obtain from Step 2 that ii(Ak) can be decomposed as follows: 

00 

y'= 1 

Step 4. If {^}A:>I *S a given strictly positive sequence such that the 
equation 
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00 

(4.5) Cn « 2 Cn+j*p " > °> 

has a nonnegative solution cn, n > 0 (not identically zero), then the sequence 
{ak} must be such that the equation 

00 

(4.6) 2 akt
k - 1 

& = i 

has a unique positive root /0. The solution {cn} must be of the form cn = at£, 
n > 0, for some a > 0. 

PROOF. We shall use standard Martin boundary theory. Without loss of 
generality we may assume c0 = 1, since (4.5) shows that c0 > 0. Let S be the 
convex set of excessive sequences, i.e., 

S = I c: c0 = 1, cn > 0 and c„ > 2 cn+j(ij for « > 0 \. 

The set S is compact in the topology of pointwise convergence since Cj < a~x 

for each y > 1 and because the limit of excessive functions is again excessive. 
S is also metrizable. By an integral representation theorem of Choquet, [1, 
Theorem 27.6], the sequence c admits an integral representation in terms of 
the extreme points of S. Each of the extreme points occurring in this 
representation must satisfy (4.5) (be harmonic) since c does. Therefore we 
shall try to find the harmonic extreme points of 5. Suppose that c is one of 
them. Then 

oo c j. • °° 

4 , - 2 ^ T 2 " 2 <ijCj<Pj(n), 

where ^ajcj ~ ' a n d each tpj is harmonic. Since c is extreme we have 
q>j(n) = cn for n > 1 for any value of j > 1. It follows that 

cn+J = CjCn9 n > l , y > 1. 

Consequently 

cn — atn for some t > 0. 

Substituting into (4.5) it follows that t is the (obviously unique) positive 
solution of lLakt

k = 1. Thus S has only one harmonic extremal. Therefore it 
is the desired solution of (4.5) and Step 4 is proved. 

Step 5. The constants cff> in Step 2 satisfy 

4 * ) = cikt\ n > 0, A: E Z, 

where f is the unique positive root of *Lfakt
k = 1, and ak, k E Z, are 

constants. 
PROOF. Immediate by applying the result in Step 4 to the equations (4.4). 
Step 6. Define the sequence ƒ (/c), & > 1, by f(k) = a^*, with / defined in 

Step 5. Then 

where ƒ (/c) > 0 and 2f/(*) = 1-
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PROOF. Immediate from Steps 2 and 5. 
Step 7. ak = a > 0 for all keZ. 
PROOF. From Step 6 we have ii[ook = co^+1 = 1] = aj(\), where the ak are 

unknown positive constants (positive by property (i) of /x). But all our 
inductions could have been performed moving to the left instead of to the 
right on Z. This would have yielded Mt^+i " w* = 1] — & + 1 / ( l ) , where 
{/?*} is another sequence of unknown positive constants. Similarly we get 

/*[«•>* = <°*+„ = 1 ] = «*/(*) = Pk+J(n)> kGZ9n> \. 
Since/(A) > 0 we get c^ = &+„ for all & E Z, H > 1 which gives ak = fik = 
a > 0, A: E Z. 

Step 8. The sequence ƒ (n), n > 1, has finite mean, in fact for a as in Step 7 

2 *ƒ(*) - -[• < oo. 
* = i a 

PROOF. By Steps 6 and 7 and property (ii) of \i 
00 00 

1 - a = /i[w0 = 0] = 2 S i^t^-fc = coz = 1, coy. = 0 for - k < j < l] 
& = i / « i 

= 2 S «ƒ(* + /) - a 2 (j - 1)/C/) - « 
* « 1 / - 1 7=1 

which gives the desired result. 
By Steps 6 and 8 the sequence {ƒ(&)} which we have defined is an 

admissible spacing density for a renewal process 6Xj. By Steps 6 and 7 it 
follows that jit has the same cylinder set probabilities which in (3.1) were used 
to characterize Sly. Therefore \x = 6Xj which completes the proof. 
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