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ITERATED PATH INTEGRALS1 

BY KUO-TSAI CHEN 

The classical calculus of variation is a critical point theory of certain 
differentiable functions (or functional) on a smooth or piecewise smooth 
path space, whose differentiable structure is defined implicitly. Because of the 
importance of path spaces to analysis, geometry and other fields, it is 
desirable to develop a geometric integration theory or a de Rham theory for 
path spaces. Having in mind this general goal, we are going to consider a 
large class of path space differential forms, which can be constructed from 
usual differential forms by a method of iterated integration. 

Recall that the Poincaré lemma is proved through a process of integration, 
which converts every closed /?-form w on a manifold M locally to a (p — 1)-
form. The same process can be used to obtain a (p - l)-form fw defined 
globally on the total smooth space P(M) of M. More generally, given forms 
wv . . . , wr on My we may repeat the integration process r times in an 
appropriate manner and obtain a differential form fw{ • • • wr on P(M) of 
degree — r + 21 < / < rdeg wr Such path space differential forms and their 
linear combinations will be called iterated (path) integrals. 

Our objective is to determine the geometrical significance of such iterated 
integrals. It turns out that they play a surprisingly interesting role in relating 
analysis on a manifold (or differentiable space) to the homology of its path 
spaces. For example, Theorem 2.3.1 implies that the real loop space cohomol-
ogy of a simply connected compact manifold is isomorphic to the cohomol-
ogy of the complex of iterated integrals as differential forms on the smooth 
loop space 12 M. Iterated integrals are path space differential forms which 
permit further integration. They also provide analytic interpretation or reali­
zation of algebraic topological notions such as bar constructions [34], [12], 
Eilenberg-Moore spectral sequences [60], [61], Massey products [46], [51] and 
loop space cohomology classes of Kraines [47]. 

Our de Rham theoretical approach also produces computational tools, 
which have the advantage of dealing with commutative differential graded 
algebras of relatively simple structure. Examples will illustrate how our 
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methods can be used in the computation of homology and cohomology of 
loop spaces and other path spaces. 

We adopt a simple but very general notion of differentiable spaces, which 
will be effectively and indispensably used. 

D. Sullivan has an elegant and efficient theory of minimal models, which 
can be regarded as a de Rham homotopy theory. Though his theory and ours 
are differently motivated, their algebraic topological aspects are intimately 
related by the fact that rational homotopy and the rational loop space 
homology determine each other at least in the simply connected case accord­
ing to a theorem of Milnor and Moore [54]. On the analytical level, a precise 
relation between the two theories has yet to be satisfactorily established. For 
Sullivan's theory, see [31], [37] and [66]. 

Iterated integrals of differential 1-forms are rather obvious generalizations 
of line integrals in calculus and have long existed. See §1.1 for background 
material. 

The integral used by J. H. C. Whitehead [70] for Hopf invariants can be 
taken as a kind of twice iterated integral. A homotopy group theoretical 
approach to iterated integrals was given in [22]. It has been abandoned in 
favor of the present path space approach, which is better adapted to analysis. 

Chapter I covers the analytic aspect of this work. Chapter II is devoted 
mainly to establishing de Rham type theorems. Chapter III describes a 
method of computing loop space homology. The method involves a special 
kind of generalized linear connections satisfying a twisting cochain condition. 
Chapter IV relates the bar construction to iterated integrals and presents a de 
Rham type theorem for pullbacks of the free path fibration. Among such 
pullbacks are various subspaces of the free path space. The Appendix treats 
the cobar construction for differentiable spaces and gives a proof of Adams' 
theorem [1], which is instrumental in this work. Generally speaking, material 
in the first three chapters summarizes, improves or supplements previous 
works, while the last chapter contains mostly new material, which is included 
to indicate both the scope and the future prospect of this work. 

Our presentation will be in terms of smooth paths instead of piecewise 
paths as in [24]. The symbol / will denote the unit interval. Every manifold 
will be C°° and paracompact. The symbol k denotes the field of real (or 
complex) numbers. All vector spaces, linear maps and tensor products will be 
over k unless otherwise stated. By a differential graded algebra A, we shall 
mean a graded algebra with a differential of degree 1 such that Ap = 0 for 
p < 0 and 1 E A0. By A being commutative, we shall mean that uv = 
( - I ) ^ Ü W , Vw EAp,vEA^p,q > 0. 

I am indebted to R. Bott, W. S. Massey and J. D. Stasheff for their 
valuable suggestions in connection with the loop space homology and the 
cobar construction. I also wish to take this opportunity to thank and Institute 
for Advanced Study for the stimulating environment during my visits, which 
contributed a great deal to the subsequent progress of this work. 

CHAPTER I. PATH SPACE CALCULUS 

After introducing iterated integrals of 1-forms on a manifold, we proceed 
to treat differentiable spaces, define the notion of iterated integrals in general 
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and discuss their properties. A substantial part of the material in this chapter 
can be found in [24], 

1.1. Generalization of line integrals by iteration. Let us first consider the 
case of the real line R. A 1-form on R can be written as ƒ(/)<#. Let fbJ{i) dt 
denote the usual integral. For r > 1, define inductively 

(1.1.1) jjx{t)df ••fr(t)dt=f^fjl(r)dr---fr_l(r)dr)jfr(t)dt. 

When r = 0, set the integral to be 1. Such iterated integrals occur in the 
Picard's approximation of a system of linear ordinary differential equations. 

If the real line R is replaced by the complex plane C and if fx{t\ . . . , fr(t) 
are holomorphic functions of a complex variable /, then the iterated integral 
(1.1.1) again makes sense. Parsin has considered iterated integrals of this type 
on Riemann surfaces [56]. 

More generally, let w,, w2,.. . be 1-forms on a manifold M and let y: 
ƒ -» M be a smooth path. Write 

Y*w,.=/.(0^ 
and define 

which will be referred to as an iterated line integral. There are sufficiently 
many such iterated line integrals to separate essentially distinct paths in the 
manifold M. We state the following corollary of Theorem 4.2 [15]: 

Let wv . . . , wm be 1-forms on a manifold M, which span the cotangent 
space at every point of M. Then two regular C00 paths a and ft having a 
common initial point in M differ by a parametrization if and only if 
/«w,, • • • wir = j^w,, • • • wir for r > 1, /„ . . . , ir = 1, . . . , m. 

Various aspects of iterated line integrals were considered in [13]-[22], [25], 
[26], [30]. Ree observed the shuffle multiplication of iterated line integrals in 
[57]. For other related work, see Johnson [42] and Asada [6]. 

An obvious problem at this point is to study homotopy invariant (iterated 
line) integrals, namely, linear combinations of iterated line integrals whose 
value along each path depends only on the path homotopy class. 

A simple line integral jw is homotopy invariant if and only if w is a closed 
1-form. There are many other examples of homotopy invariant integrals. (See 
[21].) If w{ and w2 are closed 1-forms such that vv1 A w2

 + ^ 1 2 = 0 ^or s o m e 

1-form w12, then the iterated line integral 

(1.1.2) ƒ w{w2 + wl2 = ƒ wxw2 4- ƒw12 

is homotopy invariant. This can be verified by lifting the integral to the 
universal covering manifold of M. 

EXAMPLE 1.1.1. Let Lx and L2 be the two circles in R3 respectively given by 
the equations 
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y2 + z2 = 1, x = 0, 

and 
z 2 + x 2 = 4 ? ^ ^ o 

Let w,, / = 1,2, be a closed 1-form on R3 — L, representing a generator of the 
integral cohomology group Hl(R3 — L,) via integration. Since L, and L2 are 
unlinked, wx /\ w2 must be exact on M = R3 — L{ \j L2 so that wx /\ w2 + 
du>12 = 0 for some 1-form w12, and the integral (1.1.2) is homotopy invariant 
in M. 

Let y be a loop in M which traces n times around the ellipse: 

x2/a2 +y2/b2 = 1, z = 0, 
with a > 3 and 0 < b < 1. It can be verified that fywx = fyw2 = 0 and 
fywxw2 + w12 = ± n. The integer AÏ represents a higher order linking number. 
Such higher order linking numbers have been defined through Massey prod­
ucts in [50]. 

An iterated line integral can be taken as a functional in the sense of the 
calculus of variation, and a homotopy invariant integral is then a locally 
constant functional whose calculus-variational differential is everywhere zero. 
We are now interested in a differential formula for iterated line integrals. It 
will happen that the differential of an iterated line integral is again an iterated 
integral, which, of course, involves 2-forms. 

1.2. Differentiable spaces. There are two ways to define differentiable 
structures. The first is through using charts, which identify open sets with 
euclidean open sets, whose differentiable structure is known. The second is by 
mapping euclidean sets (of various dimensions) into the manifold in consider­
ation. The latter approach is implicit in classical analysis in terms of parame-
trization. J. W. Smith [62] has defined and studied general differentiable 
spaces from this approach. Using the same approach, we are going to adopt a 
notion of differentiable spaces, for which no topology is needed. 

The symbols £/, U\ Ut, . . . will denote convex sets. All convex sets will be 
finite dimensional. They will serve as models, i.e. sets whose differentiable 
structure is known. 

If dim U = /?, U can be linearly embedded in Rn, which provides U with 
coordinates £ = (£\ . . . , £"). Since U has a nonempty interior in Rn, the de 
Rham complex A([/) on U is well defined, and every (/c-valued)/?-form on U 
can be written as 

with a's being (/c-valued) C°° functions on U. 
DEFINITION 1.2.1. A differentiable space M is a set equipped with a family 

of set maps called plots, which satisfy the following conditions: 
(a) Every plot is a map of the type U -* M, where dim U can be arbitrary. 
(b) If <t>: U-» M is a plot and if 0: U' -> U is a C00 map, then <j> o $ is a 

plot. 
(c) Every constant map from a convex set to M is a plot. 
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(d) Let <#>: [/-» M be a set map. If {t/,} is an open covering of U and if 
each restriction <f>\ Ut is a plot, then <J> itself is a plot. 

DEFINITION 1.2.2. A /?-form on a differentiable space M is a rule that 
assigns to each plot <j>: U -> M ap-form w^ on (/ satisfying the condition: If 
0: U' -* t/ is a C00 map, then 

(1.2.1) w^ = 0 * ^ . 

Define the addition, the /c-action, the exterior multiplication and the 
exterior differentiation through the formulas: (wx + w2)^ = wl<f> + u>2<); (cw)^ 
= cw^ (w, A w2)«> = wH A H>2̂  and (öfw)̂  = dwr Thus we obtain a com­
mutative differential graded algebra A(M) = (A^M)}, which will be called 
the de Rham complex of the differentiable space M. We call 

def 

H*DR(M) = H(A(M)) 
the de Rham cohomology of M. 

EXAMPLE 1.2.1. Every manifold M (with or without boundary) is a differen­
tiable space, whose plots are C00 maps of the type <J>: U -> M. A usual p-îoîm 
w on the manifold M is identified with the /?-form w on the differentiable 
space M by setting w^ = <£>*w for every plot <£. 

EXAMPLE 1.2.2. Every subset 5 of a differentiable space M is a 
differentiable space, whose plots are maps \p such that U -^ S C M is a 
plot of A/. (We shall call the differentiable space S a differentiable subspace 
of M.) The de Rham complex A(S) reflects the richness of the differentiable 
structure of S. For example, if S is the set of rational numbers, then, as a 
differentiable subspace of the real line, S has a de Rham complex with 
AP(S) = 0 for/? > 0, for every plot of S must be a constant map. 

DEFINITION 1.2.3. Let M and M' be differentiable spaces. A set map/ : 
M -* M' is a differentiable map if, for every plot <£ of M, ƒ<£ is a plot of AT. 

Both homomorphisms A(Af')—>A(M) and H%R{M')-» H%R{M) induced 
by a differentiable map ƒ will be denoted by ƒ* when there is no ambiguity. 

PROPOSITION 1.2.1. If f: M -» M' is a constant map, then f*: AP(M')~* 
Ap(M),p > 0, are trivial 

This assertion follows from the fact that ƒ factors through the singleton 
differentiable space {0}, which has a trivial de Rham complex. 

DEFINITION 1.2.4. A predifferentiable space M is a set equipped with a 
family of maps of the type U -» M also called plots, which satisfies only the 
conditions (a), (b), and (c) of Definition 1.2.1. 

Differential forms on a predifferentiable space can be defined in the same 
way as for a differentiable space. 

Every predifferentiable space M has an associated differentiable space 
structure, whose plots are set maps of the type <f>: U-* M such that there 
exists an open covering { Ut) of U with each restriction <j>\ Ut being a plot of 
the predifferentiable space M. It is easy to verify that M, as a differentiable 
space, is well defined and that the de Rham complex of the predifferentiable 
space M coincides with that of the differentiable space M. 

Sometimes it is more convenient to define a differentiable space M through 
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a predifferentiable space in the above manner. We shall call such a predif-
ferentiable space a defining predifferentiable space of M. 

Hereafter M will denote a differentiable space. 

1.3. Integration and chain complexes. 
DEFINITION 1.3.1. A plot <j>: £/-» M of a differentiable space M is compact 

if U is compact. 
If w is a p-fovm on M and if <j> is compact, define f^w = /j/W^ when 

dim U = p and j^w = 0 otherwise. We shall often write <w, </>> = J^w. 
DEFINITION 1.3.2. Let ^ : I/-» M, / == 1 , . . . , /, be plots on a common 

convex set U. A linear combination 

will be called a plot chain of M on [/. 
If w is a differential form on M, define wc « Styw^. If t/ is compact, 

define <w, c> = j^w,. 
An «-simplex of M is a plot of the type a: A" -* M, where A" is the 

standard «-simplex. Define the boundary 3a in the usual way. We have 
<dw,a> = <w,3a>. Denote by A(M) = (An(M)} the free chain complex on 
simplices of M. Then An(M) consists of plot chains of M on A". Write 
H+(M) = //(A(M)), which will be referred to as the homology of the 
differentiable space M. 

An «-cube of M is a plot of the type <f>: ln ~* M. An «-cube <J>, « > 1, is 
said to be degenerate if ^ ( l 1 , . . . , {") is independent of the first coordinate 

Let A/: Z ^ 1 -» /", 1 < i < «, e = 0,1, be given by 

({ | , . . . ,^^.. . ,« l ,)h>(€^.. . ,«'-^e4'+^... ,€ , ,) . 
If <J> is an «-cube of M, define 

0.3.1) 3<>- 2 (-1)'(4>\0-*V) 
1 < i < n 

which is a plot chain ofMon/"" 1 . 
Denote by C'^{M) the free chain complex on cubes of M with the 

boundary operator (1.3.1) and by C^(M) the quotient of C^(M) over the 
subcomplex spanned by all degenerate cubes of M. We shall call CJ(M) the 
normalized cubical chain complex of Af. There is a natural isomorphism 
H(C*(M)) w H^(M) which can be proved by an acyclic model argument. 
See [40] and [41] for further detail on the cubical homology. 

Every topological space can be regarded as a differentiable space whose 
plots are continuous maps. If A' is a topological space, then the chain complex 
A(A") (resp. C^(X)) in the singular sense coincides with that in the differentia­
ble sense. 

DEFINITION 1.3.3. A topological differential space M is a differentiable 
space as well as a topological space (which will be denoted by TM in order to 
distinguish it from the differentiable space M) such that every plot of M is 
continuous with respect to the topology. 
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Manifolds are topological differentiable spaces. So are most differentiable 
spaces we are going to consider. 

For a topological differentiable space Af, plots of M will be called smooth 
plots while those of TM will be called continuous plots. The same distinction 
applies to simplices, cubes, maps, etc. 

The next lemma gives a sufficient condition for the smooth and continuous 
homologies to be identical. 

LEMMA 1.3.1. Let M be a topological differentiable space such that, for every 
continuous simplex a: A" ~»rM with smooth (n — lyfaces, n > 1, there exists a 
continuous homotopy 

h:An X I-»TM 

relative to the boundary A" of Aw from a to a smooth n-simplex of M. Then the 
canonical map M -*TM induces a chain equivalence 

A(M)-»A( rM) 

as well as a chain equivalence k(M)Xo~* k(TM)Xo, where A(M)Xo denotes the 
subcomplex of A(Af) spanned by simplices whose vertices are at a given base 
point x0 E M. 

This lemma can be verified by a standard argument. For manifolds, the 
above chain equivalences have been proved in [33]. 

1.4. The Poincaré operators. If M, and M2 are differentiable spaces, then 
A/, X M2 is a differentiable space, which has a defining predifferentiable 
space whose plots are maps <}>{ X 02: U{ X U2 -» M{ X M2 such that <j>x and 
02 are plots of Mx and M2 respectively. 

DEFINITION 1.4.1. Let Af be a differentiable space. A A^AO-valued 
function u on / is an element of AP(I X Af) such that, for every plot ip: 
U ~* Af, the/?-form u , Xxf/ is of the type 

where 1 = 17 denotes the identity map of I and £ = ( £ \ . . . , £ " ) denotes the 
coordinates of £/. 

For example, every element of AP(I X Af) that comes from Ap(Af ) is a 
Ap(M')-valued function on ƒ. 

We shall often use u = u(t) to denote a Ap(A/')-valued function on /. Thus 
for t0 E ƒ, u(t0) is the image of u under the homomorphism induced by the 
inclusion Af = {/0} X Af c / X M'. 

If w is a AP(M')-valued function on /, define 

fbudtEAp(M'), a,b E / , 
Ja 

such that 

( ƒ/* *) = 2 (j[V*(''ö *)rf*'' A ' ' ' A<#-
Similarly define the AP(M')-valued function du/dt on / such that (3w/30ix^ 
is obtained by differentiating the coefficients of w1Xî// with respect to t. 
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The 1-form dt is well defined on ƒ X M'. Every /?-form v on I X M' can 
be uniquely written as 

(1.4.1) v = dt /\v' + v" 
where v' and v" are respectively A?~X(M')- and A/?(M,)-valued functions on 
/.When/? = 0, sett/ = 0. 

We shall write t/ = (9/3/)J Ü, which coincides with the usual notation for 
an interior product in the case where M is a manifold. 

Define a (differentiable) homotopy between differentiable maps in the 
obvious way. 

LEMMA 1.4.1. Let /0,/f. M' —> M be differentiable maps. Then every homo­
topy F: I X M' -* M from f0 to fx induces a chain homotopy 

f: A(M)->A(M') 

given by w H> f}
0(d/dt) J F*w) <A swc/z r/w/ 

d[+ [d=ft-/$. 

PROOF. Let dM> denote the exterior differential in AT. If w G AP(M) and 
F*w = v = dt /\v' + v'\ then 

djw + (dw = ƒ dM,v' dt+ ( i-dM,vf + -jrî/') * 

= i ) / r ( l ) - t ; / , ( 0 ) = i T ^ - i o ^ 
REMARK. In the special case where M = M' is a convex set in /?" and F 

representing a contraction, the above lemma is the usual Poincaré lemma. 
Therefore we call JF the Poincaré operator of the homotopy F. 

1.5. Iterated integrals. By a path in M, we mean a plot of the type y: 
I -» M. Denote by P(M) the set of all paths in M. For every set map a: 
U -» P(M% the suspension map of a is defined to be the map 
(1.5.1) <t>a:I X U^M 

given by (/,£) h»a(£)(0- Then P(A/) is a differentiable space having a 
defining predifferentiable space whose plots are maps of the type a: U -* 
P(M) such that its suspension map <j>a is a plot of A/. 

For every / G /, there is a differentiable map pf: P(M)-* M given by 
Y H» Y(/). In particular, the maps/?0 and/?, assign each path to its initial and 
end points respectively. 

Let y' be the path such that Y'(T) = y(/r). Denote by pt\ P(M)-> P(M) 
the differentiable maps given by y (-* y'. 

Denote by rjv the constant path at x in M. Denote by TJ: M -» P(M) the 
canonical differentiable map given by x h* TJ.V. Then there is a homotopy 

(1.5.2) / X P(M)^P(M) 

from TJ°/?O to the identity map \PiM) given by (/,y) f-»y'. This is the 
homotopy obtained by contracting each path along itself. Denote by 
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(1.5.3) ƒ : A(P(M))-*A(P(M)) 

the resulting Poincaré operator. 

LEMMA 1.5.1. Let F denote the homotopy (1.5.2). If v G AP(P(M)% then 
u = F*j'v is a Ap~l(P(M))-valued function on /, and 

u(s) = ƒ *( y J F*v) dt, s E I. 

PROOF. For every plot a: I/-» P{M), set a' = F ° (17 X a) and a" = 
F o (1 ; x ar): I X I X U-^>P(M), which is given by a"(M,£)(r) = a(£)(ter) 
and can be factorized as 

M x l f / a' 

I X I X U -> I X U->P(M) 
where /A: ƒ X ƒ -» ƒ is such that (7,s) f-> ta. 

Write üa/ = d/ A v' + v" in the sense of (1.4.1). Then va„ = d(st) A t/(.rt) 
+ v"(st) = dt /\ sv'(st) + (ds A tv'(st) + ü"(sO). 

Hence 

IF*JV\
 =(fv) = fsv\st)dt= jSv\t)dt. 

COROLLARY. Under the hypothesis of the lemma, ƒ ' ƒ ' = 0. 
For any element u in a graded vector space, write Ju = ( - l)degMw. 
Take note that, for any form w on M, /'/?o w = 0 because the composite 

map / X P(M) £> P(M)-?>M is given by (f, y) h>T?Y(0) and is independent 
of/. 

DEFINITION 1.5.1. For forms wv . . . , wr on A/, define fwx = ƒ'/>* ^i and, 
for r > 1, 

J H V -wr=flj\fwx- -wr_A AP*wr 

Set ƒ wx • • «)vr = 1 when /* = 0 and = 0 when r < 0. 
Observe that fwx • • -wr is of degree 2 1 < / < r ( - 1 + deg wt) on P(M). Since 

ƒ û  • • -wr = 0 if deg w, = 0 for some /, 1 < / < r, it will be understood that 
each w,. is of positive degree. 

Elements of the graded subspace of A(P(M)) spanned by all ƒwx • -wr 

r > 0, will be called iterated integrals. 

PROPOSITION 1.5.2. For forms wx, . . . , wr on M, 

J \<i<r J 

- s ( - l y f ^ i ' -^w/-i(^w/Aw/+1)w/+2- --wr 
l < / < r ^ 

-^0W1 A J H > 2 ' "Wr + u / " V "Wr-\J AP\Wr 
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PROOF. The formula holds when r = 0. For r > 0, 

djwx • • -wr = </ƒ ( / ƒ u>, • • - w ^ J A ƒ>**>,. 

according to Lemma 1.4.1, 

" " ƒ d\ySW\' #'Wr-l) ApfwJ + (« / /^r ""V-l) A P K 

+ (~1/JV"V ••/Wr_1(rfwr)+ U / w , ' --Wr-ijApfw,.. 

Hence the lemma follows by induction. 
In the cases of r = 1 and 2, we have formulas 

d ( w = ~ I dw — p$w + /?f w, 

-/>o>i AJw>2 + u / ^ i j A/^fw2-

In §1.4 [24], a constructive definition of fw{ • • • wr was given. We are 
going to verify that the present definition agrees with that definition. 

Write w/ = (9/3/) JF*pfwt and wr = F*fwx • • • wr, both of which are 
A(F (A/))-valued functions on I. Since F is a homotopy from TJ O pQ to lP(A/), 
we have 

«,(!)-ƒ W, • • 'W„, 

If a: t / -»P(M) is a plot, then 

W)i /x« = •^-i(F*P>i)itxasm ^ 7 J ( w i k 

which is ̂ (a ,^) as defined in [24]. Therefore, in order that the two definitions 
agree, it suffices to verify that 

( L 5 ' 4 ) */ / \ \ 
Ur{s) = i \fo\ "fo2w'l{t{) dt{ " ") A w''-i<''-»> dt'-') A w^ dt'-

For r > 1, ur is a A(P(M))-valued function on ƒ such that 

wr0) = f t;'(0 * 
•'o 

where 

c'(0 = - | j F * ( y J w , - ••*,_, A ; f » , j - jiJ(Jur_l(t)/\F*ptwr). 

According to Lemma 1.5.1, wr_, is also a A(P(M))-valued function on I so 
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that 

t / (0 = 1^,(0 A (ftJF*ptwr) - ^ , ( 0 A w;(r). 

Finally, (1.5.4) follows by induction. 
EXAMPLE 1.5.1. Let w be a p-îorm on M and let a: U~*P(M) be a 

compact plot with dim U = p — 1 > 0. Write 

n ^ = *(/,£)<// A d^x A • • • A d¥~x 

so that 

and 
( i JH I , x a

= i J^ = a(a)^,A•••A "̂, 

Therefore 

(H -L 
EXAMPLE 1.5.2. A closed Riemann surface M of genus p can be represented 

by a disc D whose boundary is represented by a product of loops at x0 E M: 

y = ax(ïxaï%-{ • - • ap($pa-%-\ 

Construct a plot o: I -» P(M) with a(0) = TJ and a(l) = y such that the 
suspension map <j>a maps the interior oî I X I homeomorphically onto the 
interior of £>. 

Let wx and w2 be closed 1-forms on M. Then 

( IwjW^a) = \dI w\w2>a) 

i.e. 

( JW!W2,3a\ = / - fwx /\w2 - (p$w{) AJW>2 + J W I A/>*w2>
aV 

Since /?0a and/^a are constant plots, CPo^Oo = (^î^a = 0 and the r.h.s. of 
the above equation becomes 

( - fw\ A w2,a\ = - ( w i A w 2 A ) = ~ ƒ Wj A w<> 

On the other hand, 3a = (y) — (TJ^, where (y) denotes the 0-simplex (or 
0-cube) of P(M) at y. Use formulas in [21] to compute the l.h.s. of the 
equation, which becomes 

(f"i»2,(y)) = 2 (/*iM«,A«f'ft"1)) 
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We obtain the identity 

JM \<i<p\J*i Jh J«i Jft ) 

which is essentially the Riemann bilinear relation for M. (See [4].) 
DEFINITION 1.5.2. Let a,j8: U-> P(M) be plots. Let r: ƒ x U -> I be a C00 

map with r(0,£) = 0 and T(1,£) = 1 Vf E £/. Then /3 is a reparametrization of 
a via r if 

i8(€)(0-a(€)(T(/,€)). V(/,€)e ƒ x t/. 

PROPOSITION 1.5.3. ƒƒ /? w a reparametrization of a, then 

(K'-w'HK'-4 
/or ##>> /ömw wx, . . . , wr on Af, r > 0. 

PROOF. Let f: ƒ X {ƒ-» / X £/ be given by (/,£) H> (T(/,£),9. Write a form 
Ü on / X (/ as Ü = A A v' + t;" with c' = (3/9/) J t). Then 

T*V = (3T(/,€)/3/)rf/ A T*ü' + T*ü" 

where f*ü and f*ü" are also A(t/)-valued functions on I. If w is a form on 
A/, then 

(1.5.5) ( ^ f H ' ) 1 | X / S - (9r(a)/a0f*(FVfw)1 / X a . 

By using (1.5.4) together with (1.5.5) and observing that the iterated integral 
(1.1.1) does not depend on the parametrization of the interval [a9b], we 
conclude the proof of this proposition. 

REMARK. This proposition will also hold when Definition 1.5.2 is weakened 
by allowing r(/,£) to be piecewise C00 with respect to the variable t. 

The following formula for the exterior multiplication of iterated integrals 
can be found in §4.1 [24]: 

(1.5.6) fwr • • w, A J V H * ' • wr+, « 2eaJwa(i) • • • wo(r+j) 

summing over those permutations o of r + s letters with 

a"1 (I) < • • • < o~l(r), a " 1 ^ + 1) < • • • < o~](r + 5), 

where ea = ± 1 depends on a and also deg w,, 1 < / < r + 5. 

1.6. Products of path space plots. We are going to define two related partial 
multiplications of plots of P{M\ which will assume an essential role in 
uncovering the geometrical significance of iterated integrals. 

DEFINITION 1.6.1. Let x0,xx E M. A plot a: U -* P(M) is said to be from 
x0 (resp. to *,) if a(0(0) = x0 (resp. «(f)(1) = *,) Vf G I/. 

Let a,j8: U-*P(M) be plots with a(f)(l) = >8(C)(0) Vf E U. Define the set 
map 

afi\ U —> the set of piecewise smooth paths in A/ 
such that aj3(ö(0 = «(0(2/) for 0 < / < | and = 0(0(2/ - 1) for | < / < 
1. 
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Define the plot a"1: £/-* P(M) such that a~!(£)(0 = a(Ç)(\ - t). 
If a: U -> P(M) is a plot to x and if a\ U' -* P{M) is a plot from the 

same point JC, define the set map 

a X a': U X U' —» the set of piecewise smooth paths in M 

such that (a X a')(£O(0' = «(0(2/) for 0 < / < \ and = a\Z){2t - 1) for 
\ < / < 1. 

We shall say that the product plot aft (resp. a X a') is well defined, if the 
map a(5 (resp. a X a') is well defined and, furthermore, is a plot of P(M). 

When the product plots a/? and a X a' are well defined, the following 
formulas can be verified as in § 1 [24]. 

(1.6.1) ( fw, • • • w\ = ^ ( f wx • • • w,) A ( fw / + 1 • • • w) , 

(1.6.2) ( fw{ • • • Wr) = 2 ( f H'i * * * w/) x ( [H'/+i * • ' w) * 

(1.6.3)/ ƒ w, • • • H>r,a X a ' \ = 2 ( fw\ ' * " w/»a)( Jw /+i ' * ' wr>«'V 

provided both a and a' are compact plots. 

(1.6.4) (fwr - - w) = 0, r > 1. 

Recall that a plot chain of P(M) on t/ is a finite formal sum of the type 
c = Stya,. where ^ E Z and each a,: [/-> P(M) is a plot. We say that the 
plot chain c is reduced if 2 ^ = 0. 

DEFINITION 1.6.2. A plot chain c of P(M) on a compact convex set is of 
order s if, for any forms wl5 . . . , wr on M, <ƒWj . . . wr,c> = 0 provided 
r < s. 

DEFINITION 1.6.3. A plot chain c of P(M) on £/ is strongly of order s if, for 
any forms wl5 . . . , wr on M, (ƒ w, . . . wr)c = 0 provided r < s. 

For example, any compact plot a: U-» P(M) with dim £/ > 0 is of order 
1, because <l,a) = 0. On the other hand, a is not strongly of order 1, for 
\a = 1 =É 0. Every reduced plot chain of P(M) is strongly of order 1. 

Let c = 2«,-a/ and c' = 2fly'ay' be plot chains of P(M) on U and (/' 
respectively. We say that the product plot chain 

c X c' = 2 rt/Hjty X a' 

is well defined if each product plot a( X aj with ntnj ^ 0 is well defined. 
Similarly, we say that the product chain 

cc' = 2 n^j^aj 
'J 

is well defined if each product plot aêaj with ntnj =£ 0 is well defined. The 
following formulas are direct consequences of (1.6.1) and (1.6.3): 
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(1.6.5) (ƒ*, • • • ^ - 2jh • • • *')e
 A (K- • • • 4' 

(1.6.6) / Jwi * < • wr,c X c ' ) « 2 ( / w i - é ' wi>c)\fwi+\ ' ' ' w"c'}> 

provided £/ and £ƒ ' are compact. 
The above formulas lead to the next assertion. 

LEMMA 1.6.1. Let c and c' be plot chains of P(M) such that the product plot 
chain c X c' (resp. cc') is well defined. If c is of order r (resp. strongly of order 
r) and if c' is of order s (resp. strongly of order s), then c X c' (resp. cc') is of 
order r + s (resp. strongly of order r + s). 

COROLLARY. If cv . . . , cs are plot chains of P(M) of order 1 (resp. strongly 
of order 1) and if the product plot chain cx X . . . X cs (resp. cx . . . cs) is well 
defined, then it is of order s (resp. strongly of order s). 

REMARK. We have not indicated a grouping for the multiplication in the 
product plot chain c, X . . . X cs (resp. c1 . . . cs) for such a grouping will be 
immaterial for our subsequent discussions owing to Proposition 1.5.2 and the 
pertinent remark. 

CHAPTER II. LOOP SPACE COHOMOLOGY 

Let M be a differentiable space, and let x0 G Af. We associate to every 
differential graded subalgebra A of A(M) a differential graded subalgebra A ' 
of A(P(M)). Denote by A'XQ the restriction of A' on the smooth loop space 
ÜM at x0. Then A'Xo is a subcomplex of A(flM) spanned by iterated integrals. 
The main objective of this chapter is to determine the cohomology H(AX^). 
Theorem 2.3.1 asserts that, under reasonable conditions, H(A'X^ is the real 
loop space cohomology of M for the simply connected case. Theorem 2.6.1 
characterizes H°(A'XJ in the nonsimply connected case. (In Sullivan's theory 
of minimal models, there are results of similar nature. See [66] and §3 [31].) 
Recently, in analyzing maps from the bar construction of A(M) to A(P(M)), 
Gugenheim [75] gives a proof of a more general version of Theorem 4.7.1 [24]. 

Most material in this chapter can be found, in essence, in [24] and [26]. 

2.1. Differential graded algebras of iterated integrals. Let A be a differential 
graded subalgebra of A(M). Denote by A' the subcomplex of A(P(M)) 
spanned by 

Po w ' A ƒ Wi • • ' wr AP*w", w',w'\wv . . . , wr é A, r > 0. 

It follows from (1.5.6) that A' is closed under the exterior multiplication. 
Indeed, A' is the smallest differential graded subalgebra of A(P(M)) that 
contains both p$A and pfA and is stable with respect to the Poincaré 
operator ƒ'. 

The two maps A -» A' respectively given by w H>p*w and/?f w induce the 
same cohomology homomorphism H (A) -> H (A') because they are chain 
homotopic via a chain homotopy given by w h» fw. 
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THEOREM 2.1.1. The differential graded map A ~-> A' given by w 
p$w is a chain equivalence. 

PROOF. If r\\ M -» P(M) is the constant path map, consider the differential 
graded map A' ~> A given by u h> T/*M. Since T/*/?O W = w, it remains to show 
that the differential graded map A' ~> A' given by u h>/?ô ?*w is chain 
homotopic to \A>. Hence this theorem is a consequence of Lemma 1.4.1 and 
the definition of the Poincaré operator ƒ'. 

For x0,xx G M, denote by P(M;x0,xx) the differentiable subspace of P(M) 
consisting of all paths from x0 to xx. If a is a plot of P(M;x0,xx), then both 
p0 ° a and/?, ° a are constant maps so thatp%w = pfw = 0 for any form w 
of positive degree on M. 

Denote by fx
l
owx • • «w,. the restriction of fwx * • *wr on JP(A/;JCO,JCI). The 

exterior differentiation formula becomes 

dfX]wx • • • wr » 2 ( - 1 ) ' P ^ i • * • Jwi_l dwiwi+l • • • wr 

If .4 is a differential graded subalgebra of A(A/), denote by ^ i ^ the 
restriction of 4 ' on P(M;JC0,JCJ). Then AXf^x is spanned by all fx

lwx* -*wr 

with w„ . . . , wr G A, r > 0. 
Write ÏÏM = P(M;#0 , JC0) , which is the loop space of M at a given base 

point x0. Set A'Xo = A'XQIXO. 

2.2. The smoothing property. 
DEFINITION 2.2.1. A map a: i/-> P(M) is said to be in equilibrium about 

(/0,£0) if, for (/,£) in a neighborhood of (/0,£0) in I X [/, a(0(0 - <*(£)('p)- A 
plot a: U-^>P(M) is said to end (resp., to start) smoothly if it is in 
equilibrium about (1,£) (resp. (0,£)),V£ G I/. 

LEMMA 2.2.1. Every differentiable space M satisfies the following property 
{which will be called the smoothing property): For every continuous function a: 
U-* I on a convex set U, if a map a: l/-> P{M) is in equilibrium about 
(#(£),£), V£ G U and if, for the suspension map <f>a, the restrictions 

</>a|{(/,£) G / X U:0< / < * ( € ) } 

and 

*a|{(f,€) E I X £/:*(*)< / < 1} 

are both differentiable maps, then a is a plot of P(M). 

PROOF. The restriction of <j>a to a sufficiently small convex neighborhood of 
any point in I X U is a plot of AL Hence, according to the condition (d) of 
Definition 1.1.1, <j>a is a plot of M. 

COROLLARY. Le/ a,/?: U-*P(M) be plots with a(0(l) = 0(0(0), V£ G (/. 
Le/ a: U -» (0,1) £e a C °° function. If a ends smoothly and if ft starts smoothly, 
then the map JU,: U -» P(M) g/ue« 6y 
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(to(t)-\"®{t/a®)9 0<t<a^ 

wa/?/o/o/P(M). 

LEMMA 2.2.2. ƒƒ a,/3 <2«d JU, are plots as given in the above corollary, then 

ƒ<?/• any forms wl9 . . . , wr cw M. 

PROOF. Let T: ƒ X £/-> / X U be the piece wise C00 map such that, 
V£ E I/, T maps [0,1/2] X {£} and [1/2,1] X {£} linearly onto [0,a(o] X {£} 
and [tf (£)>!] X {£} respectively. Then the product plot a/3, as defined in §1.6, 
is a reparametrization of /x. Hence the lemma follows from Proposition 1.5.2 
and (1.6.1). 

COROLLARY. Let a: I/-» P(M) be a plot ending smoothly to x0 and a': 
U' —> P(M), a plot starting smoothly from x0. If v: U X U' —> P{M) is a plot 
given by 

where a: U X U' -» (0,1) w a C°° function, then 

ttwr "4"0<?< J^1' H x (̂ ,+i* "4-
LEMMA 2.2.3. Le/ x0, Xj E M. G/üefl a/iy /orms w,. am/ simplices a, <?ƒ M vwïft 

deg wt = deg a, = nx > 0, 1 < / < s, //*ere exwte a compact plot chain c of 
P{M\x0,Xy) strongly of order s such that 

O'--^)-(ƒ.;•)• "U4 
PROOF. Let di be the (nt - l)-cube of P(M) from x\ to x" as defined in 

§A2. Let y/ (resp. y/, and y) be a 0-cube of />(A/) from x0 to x/ (resp. from */' 
to x0 and from x0 to x^, which starts and ends smoothly. Let 

be the constant map whose image is the constant loop TJ . Then ct = y/ X a,-
X y" - 6,- is a plot chain on In'~x which is strongly of order 1, and 
(Jw,., c,> = fawr Set c = Ct X • • • Xcs X y, which is a compact plot chain 
strongly of order s. Hence, according to (1.6.6), 

- ( /^i ) - - - ( /^4 
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PROPOSITION 2.2.4. The canonical homomorphism HDR{M)^> H*(M\k) via 
integration preserves the cup product. 

PROOF. Let w' and w" be closed p- and g-forms on M, p,q > 0. Let a: 
Aw —> M be a simplex, where n = p + q. Then 

J w ' A w" = / f w ' A w",a \ = ( - l W < / f n > V ' , â \ 

by (A2.1) and Lemma 2.2.2, 

= ( - l W fw'w\do) - f w' f vv". 
\J I J(r)° Jo{q) 

Hence, if z is an «-cycle in A(M), then 

fw' A w" = - < V ® w",Az> 

where A denotes the Alexander-Whitney diagonal, and the negative sign is 
due to our sign convention for the formula (A2.1). 

2.3. A theorem on loop space cohomology. Recall that k is the field of real 
(or complex) numbers. 

THEOREM 2.3.1. Let M be a topological differentiable space with a base point 
x0 and having the following properties: 

(a) The underlying topological space TM is simply connected with homology of 
finite type. 

(b) The inclusion A(A/)V c A(rAZ) induces an isomorphism H(1(M)XJ œ 

If A is a differential graded subalgebra of A(AZ) such that H (A) ^ H*(TM;k) 
via integration over A(M)V , then there is an isomorphism 

(2.3.1) H(A'Xo)^H*(QTM;k). 

REMARK 1. The above theorem has been proved in [24]. In his work [75], 
Gugenheim gives a simpler proof without using the cobar construction. The 
proof as given in §2.5 will enable us to include in the theorem the following 
additional assertion: "If the inclusion induces an isomorphism 

(2.3.2) H*(QTM;k) « T/*(Î2M;A:), 

then (2.3.1) is an isomorphism of graded algebra via integration." 
REMARK 2. Every simply connected mainfold M with homology of finite 

type meets the conditions of the theorem including the isomorphism (2.3.2). 
EXAMPLE 2.3.1. Let w be an «-form on S"\ n > 1, so that fSnW = 1. Let A 

be the differential graded subalgebra of the de Rham complex A(S") spanned 
by 1 6 A°(SW) and w. Then each ur = fx

x°w • •-w (r times) is a closed 
r(n - l)-form on SIS", where x0 G S". Thus H(A'Xo) = A' . It follows from 
the theorem that AXQW / /*(fi rS

w). Since AXo has a basis consisting of 1, «,, 
w2, • . . , the #th Betti number of the topological loop space of Sn is equal to 
1 when q = r(n — 1), r > 0, and is equal to 0 otherwise. As a matter of fact, 
it will be shown in Example 3.1.1 that wr, r > 0, represent integral de Rham 
cohomology classes. Consequently Jur /\us- nrsur+s, where nrs is an integer. 



848 KUO-TSAI CHEN 

In particular, when n is odd, it can be seen through the formula (1.5.6) and its 
detailed description in §4.1 [24] that nrs = Cr

+5). (The cohomology ring 
7/*(S25w) was determined by Serre [58].) 

Let/: S2n~l -» Sn, n even, be a differentiable map such that ƒ (yQ) - x0. 
Then (tif)*f*0ww = f$°f*wf*w represents an integral cohomology class. If a 
is a cycle representing a generator of H2n_2(QTS2n~l), then </£°/*w/*u>,a> is 
an integer equal to the degree of the induced homomorphism 
H2n_2(iïTS2n~l)-> H2n_2(iïTS") and is therefore the Hopf invariant of the 
map/[41]. 

In [70], J. H. C. Whitehead computed Hopf invariants by using a twice 
iterated integral. (See also [71].) Our version is essentially the same as his but 
offers a systematic approach. 

2.4. Filtration and Massey products. We shall subsequently prove Theorem 
2.3.1 by pairing a cohomological spectral sequence arising from a filtration of 
A'XQ and homological spectral sequence of the cobar construction F(A(M);Co). 
Let us discuss now the filtration of A' 9 which is itself geometrically meaning­
ful. 

Let M be a differentiable space, and let A be a differential graded 
subalgebra of A(M). For x0 G M, the complex AXQ has a descending filtration 

* - 4;o(0) c • • • CA'XO(-S)C- • 

such that A'x( — s) is the subcomplex spanned by all fx°wl • - • wr vr,, . . . , wr 

EA,0<r°< s. Set A' (s) = 0 for s > 0. 
.v0\ / 

There is a linear map 
(2.4.1) A-^A'4-l) 

given by w |—> f*y\ By using the same argument as for Lemma 4.2.1 [24] and 
suitable reparametrization for smoothing plots, we can make the next asser­
tion. 

PROPOSITION 2.4.1. Let M be path connected, i.e. H0(M) = Z. Then the 
kernel of the linear map (2.4.1) is A0 0 A [ n d\°(M). 

In other words, if w is a p-îorm on M, then fx
x°w determines w uniquely 

when/? > 1 and up to the difference of an exact 1-form when/? = 1. 
Since dfx°Qw = — jx

x°dw, for any />-form w, p > 0, on Af, w is closed if and 
only if fx°Qw is closed. If u G A'XQ( — S) and du G A'x(— 1), then there exists a 
unique w G ^ such that dw = fx°w. Moreover w is closed but not necessarily 
exact. Therefore w represents a cohomology class. This is precisely the 
situation where Massey products [46], [51] arise. 

For illustration, we describe how triple Massey products are obtained in 
our context: Let w,, w2, w3 be closed forms in A, and let w12, w23 G A satisfy 
the condition 

dw[2 — Jwx A w2 = 0, dw23 — Jw2 A w3 = 0. 

Consider 

w = fX\wlw2w3 + vt;,^ + w12w3) G 4 ; ( -3) , 
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whose differential is 

du = fX\Jw{ A H>23 + Jwl2 A H>3) E A' (-1). 

The preimage of du under the map (2.4.1) is the closed form Jw{ A w^ + 
Jwn A ^3, whose cohomology class is called a Massey triple product. 

If the above Massey product is trivial in H (A), then 

for some wl23 G A. We obtain a closed form 

fJCo(w1w2w3 -I- wxw23 + w12w3 + vt>123) 

in ^ 0 ( — 3), which represents a differentiable version of Kraines' cohomology 
class for loop spaces [47], 

2.5. Pairing with the cobar construction. As in the Appendix, let C — 
A(M)Xo. The cobar construction F{C) has an ascending filtration {FS(C)} 
such that F_S(C) is spanned by all [a,| • "\or], r > s > 0, and FS(C) = 
F(C) for s > 0. Denote by {F r,6T} r>0 the resulting spectral sequence. Then 
E°_s - F _ , ( C ) / F . ^ ,(C), and £,° =M)fors > 0. 

Let C^.j be the chain complex obtained from the reduced chain complex 
of C through lowering the degree by 1. That is (Citl^l)g = 0 for q < 1, and 
(C*-\)q ~ Ç?+i> # > 0. There are homomorphisms 

(2.5.1) &zC^l-*F_s(C)/F„s„l(C), s > 1, 

given by a, ® • • • ® a, h» [at| • - • |aj + F_5_,(C). Since 

^ N • • • \°s] =2( - l ) ' [ ^ i | • • ' K°/-«*/+i| • ' • MmodF^^C), 
we may verify that (2.5.1) is a chain map, which induces an isomorphism 

(2.5.2) / / ( O ^ . J ^ F i , , 5 > 0 . 

Note that Fj = Z and F,1 = 0 when 5 > 0. 
The cochain complex B = Homz(F(C),&) has a descending filtration 

* » F ( 0 ) c • • • C B ( - J ) C • • • 

where B( — s) is the subcomplex of B orthogonal to F_J_1(C), and, for s > 0, 
5(5) = 0. Let {Fr,rfr}r>0 be the resulting spectral sequence. If H(C;k) is of 
finite type, then (2.5.2) yields 

E{~
s » O'J/^C,,-.,;*), J > 1. 

Now the descending filtration {A'Xo(s)} of ^ o also gives rise to a spectral 
sequence {©r,br}r>0 with 

® o - ' - 4 ; . ( - * ) / « - • » + ! ) • 

According to §4.3 [24], there are cochain maps 

(2.5.3) ®>(A'-l)-+A'Xo(-s)/A'Xo{-s + 1), s > 1, 

given by 



850 KUO-TSAI CHEN 

H>, ® • • • ® ws H> P V , • • • ws + >4'(-j + 1), 

where the cochain complex A*~x is obtained from ^ by setting (A*~l)p = 0 
when/? < 0,= Al/dA° when/? = 0, and = ^ / 7+1 when/? > 0. 

Consider the pairing 

(2.5.4) 

given by 

( / > 
• * *V>[oi| • 

A'XoXF(C)-»k 

• • K ] j H> ( / W I • • • w„, Mfkl* • * I0,])» 

where ju.f is the chain map given in §A2. This pairing induces a cochain map 

(2.5.5) A>Xo-*Homz(F(C),k). 

In the remainder of this section, we are going to verify that the cochain 
map (2.5.5) preserves filtration and induces, under the hypotheses of Theorem 
2.3.1 except the 1-connectedness condition for rM, 

(2.5.6) &;s « E,TS 

for r = 1 and therefore for any r > 1. 

LEMMA 2.5.1. If av . . . , os are simplices of C = à(M)x , r/ze« the plot chain 
*o' 

lMail ' * * \°s\ ^ of order s (Definition 1.6.1). 

PROOF. Recall that each ^[a,] = a, (or a, - (17^ in case of deg a, = 1) is a 
plot chain of order 1. For s > 1, /vf^l • • • \as] differs from the product 
jMail * * * K- i l x lM aJ o n 'y ^y reparametrization of corresponding cubes 
in the sense of Definition 1.5.2. If wx,..., wr are forms on M, then Lemma 
2.2.2 implies that 

aw, • • • wr) = I fwl • • • wr) 

owing to (1.6.2), 

= 2 ( fwi • ' * W/j X ( rW/+l • • * wrt;j 

It follows from the induction hypothesis that 

(2.5.7) (fwx'-w,) - ( / V ' - * , ) 

Hence the lemma is proved. 

COROLLARY. Far s > r, 

(2.5.8) ^ | W l - • • wr,MF[a,|- • • |a,]) = 0 . 

Using the above corollary together with (2.5.4) and (1.6.6), we may verify 
the next formula 

(2.5.9) (fwx • • • ^ , /vh l • • • |o,]) = (jf Wl) • • • (jT*,). 

x MaJ 
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Observe that (2.5.8) implies that the map (2.5.5) preserves filtration. More­
over (2.5.9) implies that the composite map 

(2.5.10) ®*(,4*-i)(2f;3)g-*_>£0-* 

sends w{ ® • • • ® ws to the cochain given by 

N - - - K ] + ̂ - i (c) i -» (jf». 

LEMMA 2.5.2. Le/ M be a differentiable space with H0(M) = Z. /ƒ A is a 
differential graded subalgebra of A(M) with dA° = A1 n dA°(M% then the 
cochain maps (2.5.3) are bijective. 

For a proof of the above lemma, we simply remark that Lemma 2.2.3 
makes the proof for Lemma 4.3.1 [24] also valid for the present situation. 

Observe that (2.5.10) induces isomorphisms which are the composite maps 

<g>sH(A*-l)^®ïs->E{-\ s> 1. 

The above lemma implies that the first arrow is an isomorphism. Finally 
(2.5.6) follows. 

2.5. Proof of Theorem 2.3.1. Under the hypotheses of the theorem, we have 
the following additional information: 

(i) Since H°(A*~l) = H\A) = 0 and ©f* « ®SH{A*~X\ the spectral 
sequence {©,,0,.} converges to H(A'Xo). 

(ii) Similarly, {@r,br} converges to°H*(F(C);k). 
(iii) Theorem A4.1 implies an isomorphism 

H*{ûTM\k) » H*(F(C);k). 

It follows from (2.5.6) together with (a) and (b) that 

H(A'Xo)^H*(F(C);k), 

which establishes the isomorphism (2.3.1). 
If (2.3.2) holds, then the naturality of JJLF gives rise to a factorization of the 

isomorphism (2.3.1): 

H(A'Xo) -> HDR (ÖM) -* H*(tiM;k) » H*(2TM;k) 

which preserves the cup product. Hence the proof is completed. 

2.6. The fundamental group. In the nonsimply connected case, the 0th 
cohomology group H°(AX^ does not, in general, determine the 0th homology 
group H0(tiTM;k% which can be regarded as the group algebra kirx{TM) of 
the fundamental group TTX{TM) over k. In this section, we describe relations 
between AXo and <ÏÏX(TM). It is necessary to explain first some group theoreti­
cal notions and facts. 

DEFINITION 2.6.1. The torsion free nilpotent residue of a group G is the 
normal subgroup that is the intersection of the kernels of all possible 
epimorphisms from G to a torsion free nilpotent group. A group is residually 
torsion free nilpotent if its torsion free nilpotent residue is trivial. 

Among examples of residually torsion free nilpotent groups are free groups 

) - M 
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and fundamental groups of Riemann surfaces. (This follows from Baumslag's 
work [7].) 

Let kG be the group algebra of a finitely generated group G, and let $ c be 
the augmentation ideal of kG which consists of all elements Sc,^, c,. E k, 
gt G (?, such that 2 c,. = 0. It is known (Proposition 2,2,1 [30]) that the torsion 
free residue of G consists of all g such that g - 1 G D r>\(%GY-

For simplicity, assertions in this section will be stated for a connected 
differentiable manifold M with a finite first Betti number. See [21] and [26] 
for general statements or further results. 

THEOREM 2.6.1. If A is a differential graded subalgebra of A(M) such that the 
inclusion A c A(M) induces a cohomology isomorphism, then 

@7r'r « Hom(373r+ l ,*), r > 1, 

where $ = %Vi{My 

COROLLARY 1. Fors > 0, H°(A'(-s)) » Hom(kir{(M)/%s+\k). 

COROLLARY 2. With respect to the pairing H°(AX^ X kn^M) -» k via 
integration, 

H°(A'xy- n,ar. 
Observe that H\AX) C (Axf. For a loop y at *0, denote by [y] the 

corresponding element of TT{(M). 

COROLLARY 3. An element [y] G TTX{M) belongs to the residually torsion free 
nilpotent residue if and only if 

<« , ( ? )> -0 , VuGH°(A'Xo). 

The next assertion is related to Stallings' work [63], (See also [64].) 

THEOREM 2.6.2. Let ƒ: M -> N be a differentiable map withf(x0) = y0, where 
N is also a connected differentiable manifold. If f induces an isomorphism 
HpR(N) œ HpR(M) and a monomorphism HlR(N) —> H%R{M), then f induces 
an isomorphism H°(B^ « H°(A'XJ, where A = A(M) and B = A(JV). 

Finally we mention that A' and H(AX^ are graded Hopf algebras. The 
ungraded Hopf algebra structure of A'XQ and that of H(A'X) have been 
considered in [21] and [26], 

2.7. Function algebra extensions by integration. Let m\ M -> M be the 
universal covering projection to a connected differentiable manifold M. Write 
F0 = 7T*A°(M) and W0 = 7r*A1(M). Let F be an intermediate algebra be­
tween F0 and A°(M), and set WF = FW0. 

We say that F' is the extension over F by integration if the algebra F' is 
obtained from F by adjoining all ƒ E A°(M) such that df G WF. 

Consider the sequence F0 c Fx c . . . C Fr c . . . such that F r + 1 is the 
extension over Fr by integration, r > 0. Let F = U Fr. The next two theo­
rems are stated under the assumption that M is a connected differentiable 
manifold with HJ^M) of finite type. 
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THEOREM 2.7.1. The function algebra F separates M if and only if the 
fundamental group 7r,(M) is residually torsion free nilpotent. 

We say that the lower central series of a group G: 

G- G0D GXD ...DGrD ... 

stablizes modulo torsion if, for r sufficiently large, Gr/Gr+X is finite. 

THEOREM 2.7.2. The algebra F is finitely generated over F0 if and only if the 
lower central series ofiTx{M) stablizes modulo torsion. 

The above theorems have been proved in [30]. These theorems seem to 
indicate the possibility of extending the classical Picard-Vessiot theory to 
differentiable manifolds. The usual Picard-Vessiot theory treats functions of 
one variable. In Kolchin's differential algebraic version [45], there are theo­
rems relating extensions by integrals and nilpotent Galois groups. 

CHAPTER III. LOOP SPACE HOMOLOGY 

We are going to present a method for computing the loop space homology. 
The method provides the Ex term of the spectral sequence of the cobar 
construction with a new differential, which will induce the differentials of 
subsequent terms Er, r > 1. A generalized notion of linear connections [44] 
and a differentiable version of twisting cochains [11], [39] will be used. 
Theorems 3.4.1 and 3.3.3 constitute the basis for this method. 

Our present version of the method (of formal power series connections) was 
introduced in [24] and improved in [27] and [30]. It should be mentioned that 
our work in this respect can be traced back to [13], which is related to an 
early work of Magnus [49]. 

3.1. An introduction to the method. Consider a simply connected manifold 
M. Choose for H^(M\k) a basis 1, z,, . . . , zm so that zt G Hp(M;k),pi > 0. 
Let k[X] = k[Xv . . . , Xm] be the graded free associative algebra generated 
by the indeterminates Xv . . ., Xm with deg Xt = /?. — 1. 

Write A(M)[X] = A(M) <S> k[X], which can be regarded as the free 
associative algebra generated by Xv . . . , Xm over A(M). The exterior dif­
ferentiation d and the operator / extend from A(M) to A(M)[X] by acting on 
coefficients. Thus, for example, d(wXlX2) = dwXxX2\ J(wXxX2) = 
(Jw)XxX2. 

By a derivation of k[X], we mean a linear endomorphism 9 of the graded 
vector space k[X] of degree - 1 such that, for homogeneous elements u and v 
ofk[Xl 

(3.1.1) d(uv) = (du)v + (-l)degMw6ü. 

Thus 9 is uniquely determined by 9A",, . . . , dXm. We may extend 9 to a 
derivation of A(M)[^] over A(M). 

The next assertion will follow as a corollary of Theorem 3.4.1. 

THEOREM 3.1.1. Let 9 be a derivation of k[X] and let 

be an element of A(M)[X] such that wv . . . , wm are closed forms on M {whose 
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de Rham cohomology classes are) dual to the basis zv . . . , zm. If 

(3.1.2) 3w + rf(o-J(oAw = 0, 
then (k[X],d) is a differential graded algebra (whose differential 3 is of degree 
— 1), and there is an isomorphism of graded algebras 

Ht(QM;k)t*H(k[X],d)9 

which is induced by the chain map 

such that 

c h» (he) + 2 (fwi,c}xt + 2 (fm + ™iPc)XiXj 

+ 2 \fWiWJWk + WiWij + WiJWk + W ,̂C ƒ*,*,** + • • •. 

REMARK. If H^(M) is free, we may choose zv . . . , zm to represent an 
integral basis for H^(M). Suppose that 

*xk = 2 CyXiXj* c's GZ,l < k < m. 

According to Theorem 3.6.1, if H(Z[X],d) is torsion free, then there is an 
isomorphism of rings 

(3.1.3) Ht(QM)*tH(Z[X]9d). 

EXAMPLE 3.1.1. Let X be an indeterminate corresponding to the fundamen­
tal class £ G Hn(Sn), n > 1. Then k[X] is the usual polynomial algebra of a 
single generator of degree n — 1. Let w be an «-form on S" with JSnW = 1. 
Let co = wX and let 9 be the trivial derivation of k[X] such that dX = 0. 
Then (3.1.2) holds, and there is an isomorphism of rings ©*: H^(ÜSn) « 
Z[X]. (This ring isomorphism was first determined by Bott and Samelson 
[9].) 

Let c G Cn_}(ÜSn) be a cycle such that c is the generator of the ring 
H^(Q,Sn) with 0*(c) = X. We may demand that c is an integral linear 
combination of cubes of QM c P(M\ each of which starts and ends 
smoothly so that c r = c X . . . X c ( r times) is well defined. Write 

ur = / w • • • w (r times). 

Since ©^ is a ring isomorphism, we obtain 

= <l,cr> + / fw,cr\x + / Jww,c f W 2 + . . . = (ur,c
r)Xr 

so that <wr,c
r> = 1. Therefore 1, f*°w, fx

x°ww, • • • represent integral cohomol­
ogy classes dual to 1, c, c2, . . . • 

EXAMPLE 3.1.2. The complex projective «-space CPn, n > 1, has an integral 
homology basis 1, zv . . . , fn, whose dual cohomology basis is represented by 
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1, w, . . . , wn = w A * * 'Aw (/?-fold), where w is a closed 2-form on CPn. 
Choose co and 3 such that co = 2 ^ , ^ / ' ^ and dXj = S^^A^JÇ..,., 1 <j < 
n, with 3*, = 0. Observe that (3. Upholds. Thus 

H+(QCPn;k)&H(k[Xl9...,Xn]j). 

As a matter of fact, one may verify that dZ[Xv . . . , Xn] is a direct summand 
of Z[XV . . . , .ATJ so that there is a ring isomorphism 

Ht(QCP")**H(Z[Xl9...9X„]9d). 

(The homology of ÏÏCP" is known. See Ganea [38].) 
EXAMPLE 3.1.3. Let M be an (n — l)-connected closed differentiable 2n-

manifold, n > 2. Choose a basis for H^(M;k)9 which gives rise to inde-
terminates Xv . . . , Xb9 Xb+l, where b = bn is the middle Betti number, and 
deg Xb+l = 2/i — l. Choose closed «-forms wl9 . . . , wb and a closed 2«-form 
wb+] so that they represent the dual cohomology basis. For /,y = 1, . . . , 6, 
there exist {In — l)-forms H .̂ SO that 

yW/ A w, = - ctJwb+, + rfity, ^ G *. 

Set dXx = • • • = dXb = 0, 9 ^ + 1 = 2 I < v o # and co - 2 1 < / 0 + 1 w,* , + 
^ K / V X ^ / / ^ anc* observe that (3.1.2) holds. Hence 

H*{QM9k) » # ( * [ * , , . . . , ^ + 1 ] , 3 ) . 

EXAMPLE 3.1.4. Let M be a simply connected closed differentiable 5-mani-
fold. Let b = b2 = b3 be the middle Betti number. Choose a basis for 
H^(M\k) and let X]9 . . . , X2b+i be corresponding indeterminates with deg Xt 

= 1 for 1 < i < b9 = 2 for ft < / < 26, and = 3 for / = 26 + 1. Choose 
closed forms wv . . . , w26+1, which represent the dual cohomology basis. 
Write/?, = deg wr For 1 < i9j < b9 there exist 3-forms wtj so that dwtj — Jwt 

A w- = 0. When/?,- + pj = 5, let wtJ be a 4-form with 

dwy - /w, A w, = ^.M;2Z)+1, ^ E fc. 

For 1 < /,y, k < b, JWj A w# + Jwy A wA. is a 5-form representing a Massey 
product so that, for some 4-form wjJk, 

dwiJk - Jwt A wJk - Jwy A wk = c^w26+1, c^ G A:. 

Set 

\<i<2b+\ pt+pj<5 \<i,j,k<b 

and 

9^2^+1 = zL cijXiXj + Ẑ  cijkXiXjXk 
Pi +pj < 5 1 < /,y',/c < b 

with 3A", = • • • = dX2b = 0. Then (3.1.2) holds, and 

Ht(QM;k) « /ƒ(&[*„ . . . , X2b+l],d). 

3.2. Transport. In order to give a full account of Theorem 3.1.1, the free 
associative algebra k[X] needs to be completed to a noncommutative formal 
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power series algebra /cffX]], whose elements are infinite formal sums of the 
type 

*o + 2«/*/+ ^ + S v A * --^ + ••• 
with a's in k. 

For this section, the indeterminates Xv . • . , Xm will have no attached 
geometrical significance. If M is a differentiable space, let A(M)[[X]] be the 
completion of A(M)[X], i.e. the noncommutative formal power series algebra 
of the indeterminates Xv . . . , Xm over A(M). 

We consider also the algebra A(P(M))[[X]]. The Poincaré operator ƒ', as 
given by (1.5.3), can be extended to a map 

f:A(P(M))[[X]]^A(P(M))[[X]] 

by acting on coefficients. Recall the map/?,: P(M) -> M, 0 < / < 1, given by 
y \->y(t). Extend also/?,*: A(M)-> A(P(M)) to 

P?:A(M)[[X]]^>A(P(M))[[X]]. 

If uv . . . , ur E A(M)[[Ar]], we likewise define 

The differential formula in Proposition 1.5.1 becomes also valid for 
A(P(M))[[X]]. So do the formulas (1.6.1)-(1.6.6). 

DEFINITION 3.2.1. A formal (power series) connection on a differentiable 
space M is an element of A(M)[[Ar]] of the type 

(3.2.1) <o = 2 »,*, + • • • + 2 "V,*,, • • • X,. + • • • 

where the coefficients are forms of positive degree on M. The curvature of <o 
is the element K = d<o — 7co A w of A(M)[[*]]. 

Let the symbol cor stand for w • • • co (r times). Let the Poincaré operator ƒ' 
act on the coefficients of each element of A(P(M))[X]. Define J'co = f'pfco 
and, for A- > 1, 

ƒ«'-ƒ'(/ƒ«'") A/** 
DEFINITION 3.2.2. The transport of a formal connection <o is the element 

T = 1 + ƒ <o + ƒ <o2 + • • • + ƒ cor + • • • 

oîA(P(M))[[X]]. 
Write the transport T in the form of 

(3.2.2) T = 1 + 2 7)*, + 2 W + ' ' '• 
Verify that 
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Tijk =f(wiWjwk + W/Wy* + wijwk + ^ ) ' • ' • e t c ' 

Thus our present definition of the transport coincides with that given in §2.1 
[27]. Observe also that T is the unique solution of the equation 

(3.2.3) T=\+j\jT/\p*o>). 

REMARK. This equation can be used to define more general connections in 
the sense of [27], 

By making use of Proposition 1.5.2 and its extension to A(P(M))[[X]], one 
may verify that 

dT = - ƒ K + ( - ƒ/ceo + ƒ JUK ) + • • • 

(3.2.4) 

+ 2 J (A>)W + • • • ~/)J(oAr+ JTApfw. 
/+ 7 -= r - i 

Let a: (/ -» />(M) be a compact plot. Define 

(3.2.5) < 7 » = <l,a> + 2 < * » * , + S < ? » * / * , • + ' ' '• 

It follows from (1.6.6) and its extension to A(P(M))[[X]] that, if a': U'-* 
P(M) is another compact plot such that the product plot a X a' is well 
defined, then 

(3.2.6) <7> X a') = <r,a><7>'>. 

The above formula gives rise to a multiplication preserving "generalized 
holonomy map" 

(3.2.7) ©:C # (QM)-»*[ [* ] ] 

given by c (-> <7", c>, where C^ŒA/) is the normalized cubical chain comp­
lex of £2 A/. 

Material in this section can be found in [24] with a slightly different 
presentation. 

3.3. Twisting cochains. Our problem in this section is to equip /cjJA']] with a 
suitable differential 3 so that the map 0 becomes a chain map. 

Recall that every element of /cftA']] can be written as 

(3.3.1) fl-fl0 + 2 * / * , + " ' + S v A ' ' * ^ + •••• 
Let $ be the augmentation ideal of A:[[A']], which consists of all elements a 
such that a0 = 0. The sth power y of J consists of all a such that at ...,. = 0 
for r < s. 

A derivation 3 of A:[[A']] is a linear endomorphism of A:[[Ar]] satisfying the 
following conditions: 

(a) If u and v are homogeneous elements of /:[[Ar]], then 

d(uv) = (3w)ü + (-l)degMw3t;. 
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(b) For 1 < i < m, dX, E %2. 
(c) For any a E k[[X]] as given in (3.3.1), 

Every derivation of k[[X]] can be extended to a derivation of A(M)[[X]] in 
the obvious sense. 

THEOREM 3.3.1. Let co be a formal connection on a differentiable space M, 
and K, its curvature. Ifd is a derivation of k[[X]] such that 

(3.3.2) 3co + K = 0 
holds, then 

(3.3.3) dT = dT- p$o>AT+ JTA P*o>-

PROOF. Substitute K by — 3co. Then (3.2.4) becomes (3.3.3). 

COROLLARY. Under the same hypothesis as the theorem, if T\QM denotes the 
restriction of T onüM, then 

(33.4) dT\QM=dT\aM. 

REMARK. The condition (3.3.2) can be written in the form of (3.1.2) which is 
a differentiable version of the condition for a twisting cochain [11], [39]. 
Strictly speaking, co may not be called a twisting cochain at this moment, 
because 33 is not necessarily trivial. 

From now on, we assume that M is a differentiable space with H0(M) — Z 
and H^(M) of finite type. Let 1,£v . . . , zm be a basis of H^(M;k) with 
ij E Hp(M;k). For simplicity, assume that m is finite. The corresponding 
indeterminates Xv . . . , Xm are such that deg Xt = pt- 1. 

DEFINITION 3.3.1. A formal homology connection on M is a pair (to,3) 
consisting of a formal connection co as given by (3.2.1) and a derivation 3 of 
M[^]] satisfying the twisting cochain condition (3.3.2) such that 

(a) Wp . . . , wm are closed forms dual to z,, . . . , zm\ 
(b)degw/V..,. =p{ + • • • +pr- r + 1, r > 1. 

PROPOSITION 3.3.2. If (co,3) is a formal homology connection on M, then 
33=0. 

The above assertion follows from the fact that the associated "generalized 
holonomy map" 0 has a dense image in /cftA']] and the fact that 33<r,c> = 
<r,33c> = 0,c E C*(QM). 

Let A be a differential graded subalgebra of A(AZ). We shall consider a 
direct sum decomposition of A of the type 
(3.3.5) A = $ 0 d%S 0 SS 

where (a) § is a graded subspace of closed form of A; (b) 28 is a graded 
subspace of A containing no closed forms other than 0. Then § œ H{A). 

THEOREM 3.3.3. Let M be a differentiable space as described above. Let A be 
a differential graded subalgebra of A(M) such that H(A)œ H*(M;k) via 
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integration. Then, for every direct sum decomposition of A of the type (3.3.5), 
there exists a unique formal homology connection (<o,3) with to being given as in 
(3.2.1) such that wt E $ and w^,w^, . . . E 28, ij,k,... = 1,. . . ,m. 

The proof for Theorem 1.3.1 [30] is also valid for the above theorem, which 
is in a more general setting. 

See also the remarks to Theorem 1.3.1 and Proposition 1.3.3 [30] regarding 
consequences of the uniqueness property of (<o,3). In particular, <o and K are 
both "Lie elements". 

Let [wt] denote the cohomology class of the closed form wr Verify that the 
twisting cochain condition (3.3.2) makes 

(3.3.6) Ml-'2cJkXJXk + >>-, 

where the coefficients c's are determined by cup products [Jwj A wk] = 

3.4. A theorem on loop space homology. Let (co,3) be a given formal 
homology connection on M. Make k[[X]] graded by assigning deg Xi = pt -
1, 1 < i < m. In (3.2.1), we have consequently 

degw / r . 4 - 1 + d e g ^ . -Xir. 

The twisting cochain condition (3.3.2) forces the derivation 3 to be a graded 
map of degree — 1. 

Equip A:[[.Y]] with an ascending filtration by powers of the augmentation 
ideal $. Then (&[[X]],3) is a filtered chain complex, whose spectral sequence 
{ < W } r > 0 is such that ®°_s = 3 7 3 T ' , s > 1, eg = k[[X]]/% « k9 and 
6j = 0 for s > 0. Since dX, E 32 , we have 

@L, = $TAf+I » ®*3/32 « ®*#*-,(M;*), s > 1. 

If each Â  is of degree > 0, then the free algebra k[X]9 as a subalgebra of 
^[[^]]> is stable under 3 and is therefore also a filtered chain complex. The 
associated spectral sequence, being isomorphic to {©r,br}r>0' w i^ be a l s o 

denoted by {&r£r}r>0. In this case, the spectral sequence converges to 
H(k[X]9d). 

THEOREM 3.4.1. Let M be a topological differentiable space with a base point 
x0 and having the following properties: 

(a) The inclusions A(M)XQ C A(AZ) C A(rM) induce isomorphisms 

(b) H^{M) is of finite type. 
If (co,3) is a formal homology connection on M and if {&r,br} is the spectral 
sequence ofF(A(M)Xo) as defined in §2.5, then the chain map 

(3.4.1) ^ (A(A/)J *C,{QM) ^k[[X]] 

induces isomorphisms 

Er ®zkz* r , r > 1. 
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PROOF. Use an argument similar to that in the proof of Lemma 2.5.1 and 
show that the chain map (3.4.1) preserves multiplication. Since iiF[a] E $, the 
chain map (3.4.1) preserves filtration and gives rise to spectral sequence 
homomorphisms Er ®zk -» ©r, r > 1. 

When r = 1, we have 

EL, ®zk^ ®sH^{(M;k) «a r / s r 1 - ei„ s > i. 
The theorem then follows. 

COROLLARY. Under the same hypotheses as the theorem, if TM is simply 
connected, then there is an isomorphism of algebras 

HJ$tTM\k)&HJ(k[X]$). 

DEFINITION 3.4.1. A formal homology connection (<o,9) is quadratic if 
dXt = IcJ^Xj, 1 < i < m. 

If (<o,9) is quadratic, then the differential 9 is determined by the cohomol-
ogy cup product according to (3.3.6), and the chain complex (/:[[Ar]],9) is 
therefore intrinsically defined for the differentiable space M. 

LEMMA 3.4.2. Under the same hypotheses as Theorem 3.3.3, if a direct sum 
decomposition A = $ © </2B © 2B of the type (3.3.5) is such that rf2B © 28 is an 
ideal of the differential graded algebra A, then the uniquely associated formal 
homology connection (co,9) is quadratic. 

PROOF. For w e A, let w denote the coset w + (rf$B © 938) and write 

« - 2 w,*, + 2 WyXiXj + • • ' - 2 ™iXr 
Since 9<o + K = 0, we have 

2 wfiXi = 9cô = JZ) A w = 2 cjk^iXjXk, 

Hence &Y, = 1cjkXjXk. 
The simplest case for which the lemma applies is that of y4 = $. This case 

includes compact symmetric spaces. All but one of the examples in §3.1 
exhibit manifolds having a quadratic formal homology connection. The above 
lemma applies to those examples. In the next example, m is no longer finite. 

EXAMPLE 3.4,1. Consider US", n > 2, as a topological differentiable space. 
Recall the isomorphisms (A2.6). Use Lemma 1.3.1 to establish the canonical 
chain equivalence 

A(i25")^-.A(7 .fl5")% 

where TJ is the constant loop at the base point x0 E Sn. 
According to Example 2.3.1, A(ÜSn) has a differential graded subalgebra 

A' with a basis consisting of closed forms 1, ux, . . . , ur,..., where 

ur = | V ' • 'W (r times) and Jur /\ us = «r<swr4.r 

There is an isomorphism AXQ « //*(S25";/c). 
Let Xl9X29... be indeterminates corresponding to the dual basis of 

//S|C(S25W;A:) so that deg Xi = (n - 1)/ - 1. Let (co,9) be the quadratic formal 



ITERATED PATH INTEGRALS 861 

homology connection such that to = S/>Iw/A
r
/ and dX( - 2r+J«B/wrsA

r
rA

r
J, / > 

1. Then the Corollary to Theorem 3.4.1 applies, and there is an isomorphism 
of algebras 

H*(TiïtiSn;k) « H(k[XvX2,... ],6). 

Take note that TtitiSn is of the same homotopy type as the twice iterated 
continuous loop space fi^S"*. 

For compact Kâhler manifolds [69], there is a remarkable result in [31], 
which can be translated into our setting. 

THEOREM 3.4.3 (DELIGNE-GRIFFITHS-MORGAN-SULLIVAN). Every compact 
Kàhler manifold M has a quadratic formal connection. 

PROOF. Let A(M) be the de Rham complex of complex valued forms on M. 
The exterior differential can be written as a sum d = df + d" so that, for 
ƒ E A°(M), d'f is a (l,0)-form. Recall the rfW'-lemma: 

Ker d' n Im d" » Ker d" n l m r f ' - Im d'd". 
Set A = Ker d\ which is a differential graded subalgebra of A(M). Using the 
dW-lemma, verify that the inclusion induces an isomorphism H(A)œ 
H%R{M). 

On the other hand, the d'd"-lemma also implies that dA = d"A c d'A(M) 
so that d'A{M) is a differential graded ideal of A. The induced differential of 
the quotient A/d'A(M) = H{A(M),d') is trivial. The oTrf'Memma is again 
used to verify that the quotient map induces an isomorphism H(A)w 
A/d'A(M). 

Let 28 be a direct summand of d'A{M) complementary to dA so that there 
is a direct sum decomposition A = § © d%& © $8 which meets the require­
ment of Lemma 3.4.2. Hence the theorem follows. 

3.5, On the nonsimply connected case. In this section, we discuss the role of 
the degree 0 component of a formal homology connection in relation to the 
fundamental group. Since our aim is to convey a general idea, we shall 
assume, for the sake of simplicity, that M is a connected differentiable 
manifold with a finitely generated fundamental group. 

Let (<o,9) be a formal homology connection on M with co given as in (3.2.1) 
such that deg Xt = 0 for 1 < i < m0,= 1 for m0 < i < m0 + ml9 and > 1 
for m0 + mx < i < m. Write Yt = XmQ+i for 1 < / < mv Denote by A:^]]^ 
the degree q component of the graded algebra A:[[̂ f]]. Then ^[[A"]^ = 
k[[Xx,...,Xmo]]. 

Write 9? =dk[[X]]x. Since 3 ^ = 0, 1 < i < m0, each element of 9Î is a 
(finite or infinite) sum of elements of the type adY(b with a,b E A ; ^ ] ^ and 
1 < / < mv 

Denote by co0 the degree 0 component of the formal connection co. Then all 
coefficients of co0 are 1-forms so that coQ can be taken as a k [[X ]]0-valued 
1-form on M. Its curvature K0 = do)0 + <o0 A ^o *s a ^[[A"]^-valued 2-form on 
M. The transport T0 of the formal connection <o0 is precisely the degree 0 
component of the transport T of co. For any path y in M write T0(y) = 
<r0,(y)> = <r,(y)>. 

The degree 0 component of the twisting cochain condition (3.3.2) is 
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(3.5.1) 3(0, + K0 - 0 

where co, = 21<Kwlwmo+,. Y,.. Let co0 be the /^[A^/SK-valued 1-form obtained 
from the /cffA^-valued 1-form co0. Then the curvature of (ô0 is ic0 » - 3(ö0 = 
0. This means that cô0 is locally flat, and the associated holonomy map 
reduces to a multiplicative homomorphism 

@0:^(M)^k[[X]]0/^^H0(k[[X]],Q). 

given by [y]^T0(y) + 5R. 
The next theorem is a corollary of Theorem 2.1.1 [30]. 

THEOREM 3.5.1. If ((o,3) is a formal homology connection on M, then the 
kernel of the above homomorphism 0O is the torsion free nilpotent residue 
{Definition 2.6.1) ofnrx(M). 

COROLLARY 1 (STALLINGS). If H2{M) = 0, then vx{M) contains a free 
subgroup of rank m0. 

COROLLARY 2. If M has a quadratic formal homology connection and if the 
cup product Hl(M;k) ® Hl(M;k) -> H2(M;k) is trivial, then TT^M) contains 
a free subgroup of rank m0. 

Under the hypotheses of both corollaries, we have N = 0 and @0: irx{M) -» 
^[[^llo- T h e argument for the proof of Theorem 4.1 [22] will lead to the above 
corollaries. 

COROLLARY 'S. If M is a Riemann surface, then @0 is infective. 

This corollary follows from the fact that ir{(M) is residually torsion free 
nilpotent. 

3.6. Integral homological applications. The spectral sequence of the cobar 
construction F(A(M)JCo) ®z k is {Er ®z k, Dr ® z 1}. There is a canonical 
map £ r-»£' '" ®zk. 

If Er is Z-free and if Er ®zk = Er+X ®zk, then the above map is 
injective, and dr = 0 so that Er = Er+{. Thus, if Er is Z-free, then a 
collapsing Er ®zk = E00 ®zk implies a collapsing Er = E°°. 

In §3.3, we may demand that the basis {1, f,, . . . , zm} of H^{M,k) be 
integral; i.e. it is also a Z-module basis for the image of the canonical map 
H^(M) -> H^(M;k). Then wx, . . ., wm represent integral cohomology classes. 
In this case, the associated indeterminates X{,. . ., Xm are said to be integral. 

If ((0,3) is quadratic, then Z[X], as a subring of k[X], is stable under 3, 
and gives rise to an integral chain complex. If H^(M) is free, then 

El » Z[X], E2œ H(Z[X],d). 

THEOREM 3.6.1. Under the same hypotheses as the Corollary to Theorem 
3.4.1, /ƒ ((o,3) is a quadratic formal homology connection as described above and 
if both H*(M) andH(Z[Xv ..., XJ,d) are Z-free, then 

H^TM)^H(Z[Xv...,Xm],d). 

PROOF. Since (co,3) is quadratic, the spectral sequence of k[X] has a 
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collapsing ©2 = H(k[X],d) = ©°°. Therefore, according to Theorem 3.4.1, 
E2 ®z k = E™ ®z k which implies E2 = £°°, and the theorem is proved. 

This theorem has been applied in Examples 3.1.1 and 3.1.2. The next 
theorem illustrates how a formal homology connection determines certain 
"leading" terms of the spectral sequence {Er,dr}, which are sometimes 
geometrically meaningful. 

THEOREM 3.6.2. Under the hypothesis of Theorem 3.6.1, let (GO,3) be a formal 
homology connection, whose indeterminates are chosen to be integral. Let r > 2 
and q > 0. If Hq,{M) is Z-free for q' < q, and if deg Xt < q implies 

(3.6.1) 3*,. G 3 ' , 

then, for each indeterminate Xk of degree q, 

3^ = SC^„- - -^mod^ + 1 

such that each coefficient c*...ir is an integer. Moreover Erirr+q^x is isomorphic 
with the quotient of the free Z- module on the set of monomials Xi • • • Xt 

with deg Xf • • • Xt = q — 1 over the submodule spanned by all 
2cl

k
i...,Xi-

î--X,witkàtgXk-q. 

PROOF. The condition (3.6.1) implies 
i W),c(3r r -Vi ' * '< * 

so that 

&_„+4, ©i-,u9, = c s v s r •),, ?' < q 
and 

©L,,1+ , '©!- , : ,+,-(3/3S2 ) , . 

Since Hq,(M) is Z-free for q' < #, so is El_ss+q>. A refinement of the 
argument at the beginning of this section leads to 

Ex * • • 
^ -s,s + q' 

and 

In the commutative diagram 

ErZ 

ErZ 

-1 
l , l + < 7 

cf-1 

-1 
r,f+<7-l 

• = EL^+f, q' < q, 

— — £L_ll+q. 

v n j r -
^ V&_ - i ! i + , *<3 /3 2 ) , 

b ' - 1 

v / ç r - 1 ^ /c\r/<rvr+l\ 
^(S .^+c . - l ~(v$ /J )<,_!, 

the image of the upper horizontal arrow is spanned by all Xk + $P with 
deg Xk = q, and the image of the lower horizontal arrow is spanned by all 
Xix • • -Xir + ^ r + 1 with deg Xi{ • • - ^ = <? - 1. The theorem then follows. 

EXAMPLE 3.6.1. Let L be a link having two components Lj and L2, which 
are smoothly embedded circles in S3. Let M = S3 — L. Then HX{M) has a 
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basis {zvz2} where zt is represented by a circle around Li9 i - 1,2, and H2(M) 
is free cyclic with a generator i3. Let X^A^Xj be the corresponding inde-
terminates so that deg Xx = deg X2 = 0 and deg X^ = 1. 

Choose a direct sum decomposition of A = A(M) of the type (3.3.5), which 
gives rise to a formal homology connection ((o,3) with 

CO = W{X{ + ^2^2 + W3X5 + • • *, 

According to Proposition 1.3.3 [30], co and each 3X. must be Lie elements. Let 
[, ] denote the Lie bracket. Then 

<o0 = w]Xl + w2X2 + wl2[Xl9X2] + • • • , 

K0 = </<o0 + (o0Aw0= (dwl2 + w, A w2)[ JT^ j ] + • • • 
and 

3*3 - c12[*,,*2] + ••-, 
where c12 must be an integer according to Theorem 3.6.2. The condition 
(3.5.1) yields [w{ Aw 2 ]= — c12[w3], which implies that the integer c12 is, up 
to a difference in sign, the linking number of Lx and L2. 

FIGURE 1 

Figure 1 shows the projection of a link L with cx2 = 0. Without giving a 
detailed computation, we just mention that, in this case, 

dX3»(m-l)[[[Xl9X2]9Xx]9X2]^ •••• 

This example indicates a need to relate Theorem 3.6.2 to Milnor's in­
variants [52] and Massey products [50]. 

CHAPTER IV. BAR CONSTRUCTION AND FREE PATH FIBRATION 

Let M be a differentiable space with x0 E M. Let A be a differential 
graded subalgebra of A(AQ. We first show that, under mild conditions, the 
reduced bar construction B(A) is isomorphic to A'XQ. We then consider the 
free path fibration P(M)-> M X M given by y H> (y(0),y(l)). Denote by Ef 

(the total space of) the pullback via a differentiable map ƒ: N -* M X M. A 
subcomplex A\ of A(£}) is constructed from A' and A(/V). The algebraic 
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structure of Aj is determined and is closely related to the two-sided bar 
construction [12], [60]. We state Theorem 4.3.1 which gives an isomorphism 
H (A}) « H*(Ef;k) when H (A) « HDR(M) and M and N are manifolds with 
M simply connected and having homology of finite type. 

In order to illustrate the significance of this theorem, we mention the 
following examples: 

(a) If ƒ: iV0 X Nx -̂ > M X M is an inclusion, then Ef is the space of paths 
from N0 to Nx in M. 

(b) If ƒ: M -» M X M is the diagonal map, then Ef is the free loop space of 
M. 

(c) If ƒ = p X ƒ': E' X M' ->M X M, /? being a fibration, and if E'r is the 
pullback of the fibration/?: E' -» M via ƒ : A/' -» M, then £ƒ and £y are of 
the same homotopy type. 

In particular, the last example points out that Theorem 4.3.1 provides an 
analytic realization of a theorem of Eilenberg and Moore [35]. (See [65] for a 
general discussion on fibrations and path spaces.) 

4.1. The bar construction. Let A be an arbitrary differential graded algebra 
with a differential d of degree 1 such that Ap = 0 for p < 0 and A0 = k. The 
multiplication will be denoted by /\, and our primary example is the case of 
A being a differential graded subalgebra of the de Rham complex of a 
differentiable space. 

Let W' and W" be respectively differential graded right and left ^-mod­
ules. Let w,wvw2, . . . denote (homogeneous) elements of A + , and let x and y 
denote respectively elements of W' and W''. We use A also to denote the 
action by A. 

Let B(W\A,W") = 2 © Br{W\A,W") be such that 

Br{W\A,W") « W' ® (®rA + )® W" 

for r > 0,= W' ® W" for r = 0 and = 0 for r < 0. Thus Br(W\A,W") is 
spanned by elements of the type x[wx\ • • -|wr]j;, whose degree is defined to 
be 

degx + ( - 1 + deg w,) + • • •+ (— 1 + deg wr) + degy. 

The differential dB is given by 

4B(*[W I | ' " K W = 4^11' "Kl-V - ^ A w,[w2|- -\wr]y 

+ 2 ( - l ) ' j T j c [ y W l | - • -Kw / . 1 | r f iv / | W / + 1 | - - - |MV]^ 
1< ; < r 

- S ( - \)'JX[JWI\ • • • \Jw,-X\JWi A H'i+,|H', + 2| • • • \wr]y 

+ J(x[wl\- ••\wr_l])wrAy + J(x[wl\- --\wr])dx. 

There is a filtration F of B ( W",/l, W") with 

F-"B(W',A,W") = 2 Br(W\A,W"). 

Then W' ® W" = F°5(W",<4, W") c F~XB(W\A,W") c . . . , and 
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FSB(W',A,W") = 0 for s > 0. Therefore the filtration is complete. The 
resulting spectral sequence is known as the Eilenberg-Moore sequence. (See 
[61], [73].) Its Ex term, as a chain complex, is isomorphic to 
B(H(W'),H(A\H(W"% where H(A% H(W')9H(W") are equipped with 
trivial differentials. 

With some difference in the sign convention, our definition of 
B ( W\A, W") is identical to the one used in [60]. 

Regard /casa differential graded ,4-module, whose ,4-action is induced by 
the augmentation A -» k. Then B{A) = B(k,A,k) is known as the reduced 
bar construction of A. The bar construction of W" over A is B(A,A,W") 
[48]. 

If the differential d of A is trivial, then B(A,A,k) is acyclic and is therefore 
the usual bar resolution. 

Based on the differential formula in Proposition 1.5.1, we give a definition 
of B(W\A,W") where A is a differential graded subalgebra of A(M) where 
A ° is not necessarily k. 

The next theorem follows from Lemma 2.5.2. 

THEOREM 4.1.1. Let M be a differentiable space with H0(M) = Z. Let A be a 
differential graded subalgebra of A(M) with A0 = k and A1 n dA°(M) = 0. 
Then, for any x0 E M, the map B(A)-> A'XQ given by 

[w,| • • • \wr] h> P V , • • • wr 

is an isomorphism of differential graded algebras. 

This theorem makes available methods of homological algebra for comput-
ingH(A'Xi). 

EXAMPLE 4.1.1. Consider the case of M and A satisfying the hypotheses of 
the above theorem such that A has a trivial differential and is isomorphic to a 
graded polynomial algebra on n generators of respective even degrees 
ev . . . , en. By using a Koszul resolution, we conclude that 

H(A'Xo) » H(B (A)) = TorA(k,k) 

which is isomorphic to an exterior algebra on n generators of respective odd 
degrees ex - 1, . . . , en - 1. (See Theorem 2.2, Chapter VII, [48].) 

4.2. The free path "fibration". The terms "fibration" and "pullback" will 
not be defined in generality. The differentiable map (p0,p{): P(M)-> M X 
M given by y h* (y(0),y(l)) will be referred to as the free path fibration of 
the differentiable space M. Let N be also a differentiable space. For every 
differentiable map f: N -> M X M, there is a "pullback" diagram 

->P(M) 

KPo' Pi) 

+ M x M 

such that (a) Ef is the differentiable subspace oî N X P(M) consisting of all 

(4.2.1) 

N-
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(y, y) such that fy = (y(0),y(l)); (b) irf is given by (>>,y) \^y; and (c) ƒ is 
given by (y,y) h» y. Thus <f>: U-» £} is a plot if and only if both TTJ ° <f> and 
ƒ o <j> are plots. 

For every differential graded subalgebra A of A(M), write ^ = 7rfA(N) /\ 
f*A' which is a subcomplex of A(Ef). 

REMARK. Let W be a subcomplex of A(N) such that /"p*^ C.W,i- 0,1, 
where p,: M X M —> A/, / = 0,1, are the two projections. Then 

f*p*A = <nff*p*A c ir/ ^ , / = 0,1. 

Sometimes, it will be convenient to consider the more general notion of 
(A9W)'f= rfW/\f*A'. 

For s > 0, define Af( — s) to be the subcomplex of Aj spanned by all 
Trfv Af*fw\ ' "Wr9 wx, . . . , wr E A, r < s, v E A(N). Set Aj(s) = 0 when 
s > 0. Then {Aj(s)} is a complete descending filtration of Aj. 

We shall attempt to determine the algebraic structure of the cochain 
complex Aj. _ 

Equip the tensor product A(N) ® B(A) with a differential d such that 

(4.2.2) - / t>A/V3>i® |>2 | - - K ] 

+ ( - l)"JvAf*PÎWr ® ' | > i | - • ' K - i ] 

where djf denotes the differential of the reduced bar construction and 

*, = (degwr)(deg [wx\- ••|w,_1]). 

We do not verify that dd = 0. For cases of our interest, this will be a 
consequence of the next theorem. 

THEOREM 4.2.1. Let M be a differentiable space with H0(M) = Z. Let A be a 
differential graded subalgebra of A(M) such that A0 = k and Ax n dA°(M) = 
0. Then there is an isomorphism of cochain complexes 

(4.2.3) A(N)® B(A)^Aj 

given by v ® [w,| • • • \wr] (-> 7jy*i; A / * / W I • • • wr 

PROOF. The formula (4.2.2) is designed so that the map (4.2.3) commutes 
with the differential. If A{N) ® B(A) is equipped with the filtration {A(N) 
® FsB(k,A,k)}, then the map (4.2.3) also respects the filtration. It suffices to 
show that the associated graded map is an isomorphism, or, equivalently, 
that, for s > 1, the map 

(4.2.4) A(N)® Bs(k,A,k)-±A}(-s)/A}(-s + 1) 

given by v ® [w,| • • • \ws] |-* rfv A ƒ*ƒH'i • • • w* + A'f( — s + 1) is an 
isomorphism. 

Since the map (4.2.4) is evidently surjective, we are going to establish its 
injectiveness. Let y0 G Af andj^0 = (^o^i)- We claim that, given any p-sim­
plex o: Ap -> N and any compact plot chain c of P(M\x0,xx) on U strongly 
of order s, there exists a compact plot chain c of Ef such that 
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(4.2.5) Uf*vAf*fwi- '-wr,c\ -
when r < s. 

(v,o)l \wx • • -w5,c\ when r = s. 

(See Definition I.6.3.) 
There are sufficiently many /?-simplices of the differentiable space N to 

separate elements of AP(N) via integration, and there are sufficiently many 
compact plot chains of P(M;x09xx) strongly of order s to separate elements of 
Bs(k,A,k) owing to Lemma 2.2.3. Therefore it remains to verify the men­
tioned claim, which implies that the map (4.2.4) is an injection. 

By reparametrizing the plot chain c if necessary, we may assume that c is a 
linear combination of plots of P(M;x09xx), each of which starts and ends 
smoothly. Construct a/?-simplex à of P(N) which ends smoothly such that 
5(0(0) = <*(£) and a(|)(l) = y0, V£ G AP. Let a0 and 5, be /?-simplices of 
P(M) such that, for £ E Ap and t G /, 

(/ô(o)(0-(ôo(0(0^i(€)(l-0)-
Let 7r: AP X (ƒ-> Ap denote the projection. Then both a0 X c and <jj ° 7r are 
well-defined plot chains on Ap X [/. Furthermore c' = (a0 X c) • (öl ° 7r) is a 
well-defined plot chain on Ap X [/. (See §1.6.) Observe that c = (a ° 7r,c') is a 
plot chain of £y c N X P(M) on Â  X U. 

Write w = rfv Af*Jw\ • • • wg. We may assume that deg w = p + dim t/. 
As a form on Â  X U, 

u-c = (TT/Ü)-A ( f* ƒ w, • • w\ 

where (trfv)^ - t ) a x l and, according to (1.6.1) and (1.6.2), 

Since the plot chain c is strongly of order s, (Jw/+1 • • -Wj)c = 0 if / > 0 or 
j < r or deg Wj • • -ws > dim U. On the other hand, va = 0 if deg D > />. In 
summarizing, we obtain 

va X J ƒ w, • • -w5 J when deg t; = p, 

0 when deg Ü ¥= p. 

Repeating the above argument, we also conclude that, for r < s> 

lrfvAf*fw\- --wJ =0. 

Hence the theorem is proved. 
REMARK. In case of A0 containing k properly, demand that dA° -_Al n 

dA°(M). Choose a differential graded subalgebra A of A such that A0 - k 
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and A1 = A1 © dA°. Then the above theorem gives rise to an isomorphism 

(4.2.6) A(N )®B(Â)**Â}*A}. 

The fact that A} = A} follows from formulas (4.1.2)-(4.1.4) [24]. (For this 
purpose, ƒ (x0) and f(xY) in those formulas need to be replaced by ƒ ° p0 and 
ƒ ° px respectively.) 

COROLLARY. Under the hypotheses of the theorem, the E{ term of the spectral 
sequence of Aj- is isomorphic to HDR(N) ® B{H{A)). 

4.3. A theorem on the pullback cohomology. The next assertion can be 
proved by using the Serre spectral sequence and Weil's work [68]. A proof in 
detail will appear elsewhere. 

THEOREM 4.3.1. Let M and N be manifolds with M being simply connected 
and H^(M) of finite type. Let A be a differential graded subalgebra of A(M) 
such that the inclusion A c A(M) induces an isomorphism H(A) œ H%R(M). 
If Ej is the pullback of the free path fibration via a differential map ƒ: 
N —> M X M as in (4.2.1), then there is an isomorphism 

H(A})œH*(Ef;k) 
through integration over simplices of Ef. 

Wu [72] has treated the pullback cohomology of a simplicial fibration 
through minimal models. Our construction of Aj- is analytical. 

APPENDIX. THE COBAR CONSTRUCTION 

Let M be a differentiable space with x0 E M. Assume that H0(M) = Z. 
Recall that A(M)XQ is the chain complex spanned by simplices of M whose 
vertices are at x0. For simplicity, write C = A(M)XQ. 

The cobar construction F(C) is the graded free associative ring generated 
by the set of simplices of C excluding the 0-simplex. 

Let <7P . . . , ar be simplices of positive degree of C. Denote by [aj the 
generator of F(C) corresponding to the simplex or We assign deg [aj = — 1 
+ deg a, and write [ox\ • • -\or] = [a{] • • -[aj. Set [a,| • • -|ar] = 1 when r = 
0. 

There is an augmentation eF: F(C)-^ Z given by eF[a,| • • -|ar] = 1 or 0 
according as r = 0 or > 0. 

Equip F(C) with a differential dF, which respects the multiplication such 
that, for any «-simplex a of C, 

</f[o]-[9o]- S ( - l ) ' M ^ - ) ] 

where (/)a and a(7) are respectively the first /- and the lasty-faces of a. 
The purpose of this Appendix is to construct a natural chain map 

liF:F(C)-»C*(tiM) 

(on the category of pointed differentiable spaces), where C* denotes the 
normalized cubical chain complex. (Recall that our convention specifies 
degeneracy with respect to the first coordinate.) 
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Theorem A4.1 is an adaptation of a theorem of Adams [1] that, for a 
simply connected topological space M,\iF induces a homology isomorphism. 
The naturality of fxF makes such an isomorphism differentiably meaningful 
for topological differentiable spaces. For example, if M is a simply connected 
manifold, then the isomorphism 

^ : / / ( F ( A ( M ) X o ) ) « ^ ( Q M ) 

becomes valid in the smooth sense. 
Our construction of fiF differs technically from that of Adams in order to 

take care of differentiability requirements and to allow possible applications 
to certain nonsimply connected cases. On the large, we follow Adams' 
original work, which is geometrical and suits the needs of this Appendix. A 
recent result of Dwyer [32] seems to indicate that Theorem A4.1 can be 
improved to include the case where irx(M) acts nilpotently on HJQM). 

Al. Moore paths. A usual Moore path is a map [0,#] -» Af, where a > 0. 
Moore paths possess the advantage of having an associative multiplication. In 
the same spirit, we define a Moore path of a differentiable space M to be a 
pair (y,a), where y: / -» M is a (smooth) path, and a is a nonnegative number 
which can become zero only when y is a constant path. Denote by P(M) the 
differentiable subspace of P(M) X R consisting of all Moore paths of M. 

If (y\a') and (y",a") are Moore paths of M with y'(l) = y"(0), define the 
product 

(y,a) - ( y V ) * (y",a") 

such that a = a' + a" and 

J y W < ) > for /e[0, f l ' /a] , 

|y"((ö' - a') I a") for/ e[a'/a,\]9 

provided a' > 0 and a" > 0. When a' = 0 (resp. a" = 0), define y = y" (resp. 
y'). Of course, the product exists only when the map y: I -> M is indeed a 
plot of M. 

Let ÜM (resp. P(M;-,x0), P(M;x0 , -)) be the differentiable subspace of 
P(M) consisting of all Moore paths (y,#) with y E ÜM (resp. P(M\ — ,x0), 
P(M;x0 , -)) . 

Every plot <*:[/-» P(M) can be taken as a pair (a,a) where a: U'-» P(M) 
is a plot and a: U --> R is a nonnegative valued function on £/. We say that a 
plot a = (a,#) of P(M) is smoothed if a is strictly positive and if the plot a 
starts and ends smoothly. (See §2.2.) 

Let a: U-+ P(M) and a': U' -* £(M) be smoothed plots with a(£)0) = 
JC0 = a'(£')(0), V(£,0 E U X U'. Let 77 and 77' be projections from U X U' to 
(/ and I/' respectively. Define 

a *« ' = (0 , a + a'): 1/ X Uf->P(M) 

by (£,£') h> a(0 * «'(£')• According to Corollary, Lemma 2.2.1, /? is a plot of 
P(M) resulting from the plots a ° m, a' ° m' and the function a /(a + a'). 
Moreover, the plot /? starts and ends smoothly. Thus there is an associative 
multiplication for the set of smoothed plots of ÏÏM. In particular, if a and a' 
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are smoothed cubes of QM, verify that 

(Al.l) a (a * a')-da * a' + (-l)d e 8^a * 3a'. 

Write r}Xo = (yXofi) EÜM. Then the 0-cube (TJX^ serves as a unit element 
for the multiplication * of smoothed plots of ÜM. 

Let t>0 , . . . , vn be the vertices of the standard «-simplex A", which is 
embedded in Rn+l so that v0 = (1,0,. . . , 0), vx = (0,1,0,.. . , 0 ) , . . . , vn = 
(0 0,1). 

In the remainder of this section, we are going to construct, inductively on 
n > 1, cubes 0n: 7" - 1-» P(A": v0,vn), which will be used to construct the 
chain map \iF. 

A cube <t>: In -> U C Rm is said to be constant along normals to /" if, if 
there exists e > 0 such that, for any J e f , 9<^/3|' = 0 when either £' < e 
or 1 - £' < e, 1 < i < n. 

LEMMA Al.l. Let U be a convex subset of Rm. Let \p: / w + i - » U be a 
continuous map such that its restriction to each n-face of In+l is smooth and 
constant along normals to its boundary. Then \p can be extended to a smooth 
map<t>:In+l-+ U. 

PROOF. First extend \p to a neighborhood N of 7W+I in 7"+1 such that ^ is 
constant along normals to ƒn+1. Choose x0 G U and set 

<K0 = (l - x(ö*KÖ + x(£)*o 
where x: / w + 1 - ^ / i s a C00 function such that x(0 = 1 about in+l. This 
proves the lemma. 

Let fn, If: A' -* A" be respectively the first and the last /-face injections and 
let 9,-: A""1 -* A" be the #th face injection. Let \ e : I"~2 -* Z""1, 1 < i < /? -
1, e = 0,1, be the Zth front- and aft-face injections given by 

(€ ' , . . . , I', . . . , € " " ' ) K (€ ' , . . . , €'-1,e^'+I, . . . , * " - ' ) . 

Denote by a„: i>(A'!) -> i? the energy function given by 

an{y)= j^[dx'(y{t))/dt)]2dt. 

We embed P(ùs?) in JP(A") by identifying the path y and the Moore path 
(y,an(y)). In this sense, the multiplication * makes sense for plots of /'(A"). 

Choose a C°° function f: 1^1 such that £(0 = 0 (resp. 1) for / 
sufficiently close to 0 (resp. 1). 

LEMMA A1.2. For n > 1, /Aere exist cubes 0n: I
n~l -* P(àn;v0,vn) satisfying 

the following conditions'. 
(a) For 1 < ƒ < n - 1, 

^ \ ° = n m - i and 0n°\î = P(fnOi*P(ln
n-i)9n-v 

(b) 77ze A"-valued function <f>0 is constant along normals to ln. 

PROOF. Let 9X be given by 

«(0) (0 - ( i -? (0H+f(0o i -
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For n > 1, we need to construct <t>9: In = I X In~x -» A" whose restrictions 
to the (n — l)-faces are determined inductively by the following require­
ments: 

(i) fy,(0,8 - v0 and <^(1,£) - vn for £ G /"-1 . 
(ii) For 1 < i < H — 1, 
<k(ti\...,€'-1,o^'+1,..., J-"1) - W - i G 1 , • • -> & • • -«""'KO) 

and 

* I ! | ( ^ , , . . . , € ' - | , U ' + ^ . . . , € I , - I ) 
- (Pttf'MG1,..., €'-f ) * * ( / ; . , )*,-,(€'+l>..., « - 1 ))(/). 

Verify that these requirements are consistent on the (n — 2)-faces and that 
the restriction of <f>0 to each (n — l)-face is constant along normals to its 
boundary. Hence we may apply Lemma A 1.1 to complete the proof. 

Observe that /„*_ x = 30 and/„^, = 9„ so that, for n > 2, 

w»-2(-i)W,-W 
,A1<n - 2 (-iyi ,(3<)^-1-Jp(/;_ IR_1-(-i)V(/;_1)ön-, 
(Al .2) o</<» 

0<i<n 

LEMMA A 1.3. For every n-form w on A", 

ƒ w = / w. 
^ 'A" 

PROOF. Write w — du, u being an (« - l)-form on A". Observe that \[$9, 
€ = 0,1, are constant cubes and that the image of each A/ + i^ = <t>gn0 ,, 
1 < i < /i — 1, lies in the (n — 2)-skeleton of In. Hence 

r w = = r „_ 2 ( - i ) ' f w + f w + (~i)rtf « 

= 1 M = I W. 
•'8A" •'A'1 

COROLLARY. V4,S a continuous map of pairs, 

^ : (ƒ»,ƒ» )->(A",À") 

w of degree 1. 

A2. The natural chain map /xF. For every «-simplex a: A" -» A/, « > 1, 
denote by a the (« — l)-cube 

In~l->P(An) -+P(M). 

Then, for any «-form w on M, <ƒw,a> = Jaw. 
Denote by a the smoothed (n - l)-cube (a,a„ <> 0n) of P(M). It follows 

from (A 1.2) that 
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- 2 (~iy (pa* g(w,0 
0 < / < w 

where a(/) =* 9,. ° a denotes the /th face of a. 
Let Ci(OM) be the (unnormalized) cubical chain complex of the Moore 

loop space KM. Define a graded ring homomorphism 

jiF:F(C)-»C'*(QM) 

such that fiF[o] = a - (77̂ ) or g according as deg a « 1 or > 1, Recall that 
(TJXQ) serves as the unit element for the multiplication * of C+(QM). Denote 
by \xF the composite map 

lip 

where the second arrow is induced by the forgetful map Q M ~» ÛM. Then \iF 

is natural on the category of pointed differentiable spaces. The formula 
(A2.1) implies that 

9/%i>] - MF[*] 
so that \iF is indeed a chain map. 

We shall be interested in the case of M being a topological differentiable 
space with an underlying topological space TM such that the inclusion 
A(A/)Jfo c &(TM)XQ induces homology isomorphism. There are two chain 
maps fxF(M) and JXF(TM), which give rise to a commutative diagram 

Jt/rfiW)* 
H(F(A(M)Xo)) £ • H&IM) 

(A2.5) as 

UArrM)* 
co' 

If \iF{T^)^ is an isomorphism, then /zF(A/)* is only a monomorphism. If, 
moreover, H^(ÜM) » H^(tiTM), then /^(A/)* becomes an isomorphism. 

For a topological differentiable space M, there are three loop spaces at a 
given base point x0, namely, 

(a) the differentiable loop space ÜM; 
(b) the underlying topological space TtiM with compact open topology; 
(c) the continuous loop space firM. 

In the case of M being a differentiable manifold, there are canonical isomor­
phisms 

(A2.6) /f,(QM) « H*{TÜM) » H*(tiTM). 

The first isomorphism can be obtained by applying Lemma 1.3.1, and the 
second isomorphism follows from the known result that the inclusion TÜM c 
tiTM is a homotopy equivalence. (This can be proved by using the proof of 
Theorem 17.1 [53].) 
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A3. The acyclic twisted tensor product F(C) ®ZC. The remainder of this 
Appendix is devoted to a proof of Theorem A4.1. Hereafter, M will denote a 
topological space. Then C = A(M) is the usual singular chain complex with 
all vertices at the base point x0. We are going to equip F(C)®ZC with a 
differential dL so that the chain complex is acyclic. Our main effort in this 
section is to extend the natural chain map JU,F to a natural chain map 

H:F{C)®ZC-*C*{PM) 

where PM = P ( M ; J C 0 , - ) . 

Let (7,(7,, . . . , or be simplices of C, where a,, . . . , ar are of positive degree. 
Then F{C)®ZC has, as a basis, all elements of the type 

whose degree is equal to deg[aj • • -|ar] + deg a. 
Define the differential dL so that 

dL(u ®z a) - (dFu) ®z o + ( - l)degtWL([ ]a), 

and, when n = deg a > 0, 

4 [ ] a = [ ] 9 a - S ( - l ) W K - o . 
0 < / < « 

When n = 0, we have a = (x0) and dL[ ](x0) = 0. Define the graded map of 
degree 1 

sL'F{C)®zC^F{C)®zC 

such that sL([a{\ • • • |ar]a) = 0 or [aj • • • |ar-1]ar according as n > 0 or = 0. 
Verify that dxsL + sLdL= \ — eL and rfLdL = 0, where eL is the obvious 
augmentation of F(C) ®ZC. Therefore the chain complex F(C) ®ZC is 
acyclic. 

Write PM = P(M;x0, — ). It will follow from Lemma A3.1 that, for every 
«-simplex o of C, we can construct an «-cube 

such that, when n = 0, ç^ = (TJ^, and, when « > 0, 

(A3.1) 3£,= 2 (-!)'<>>- 2 (-l)'/V(</>o) *£,,„,, 
0 < / < A 7 0 < / < / 7 

Define /xL: F(C) ® Z C ^ C'*(PM) such that 

Then (A3.1) becomes 3/tL([ ]a) = fLLdL[ ]a. It follows from (Al.l) that (lL is a 
chain map. Define \xL to be the composite map 

w-w^-^^v ^.^i* ^, , —. m. canonical _ , _ _ _. 
F(C)® Z C-^C; (PM) -> C^PM). 

Let 7>(A";t>0, —) be given the compact open topology. For any v',y" E 
/>(A";ü0,-)and0 < .s < 1, define 

ys = (l-s)Y + sy" ŒP(A";v0,-) 
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such that ys(t) = (1 - s)y'(t) + sy"(t). Then the arc length an(ys) depends 
continuously on s. 

LEMMA A3.1. There exists a family of continuous maps 

Tn:I
n->P(àn;v0,-), n>0, 

such that, for (t£) in a neighborhood of {0} X In, 

(A-32) T „ ( 0 ( 0 = v0, 

and, for 1 < i < n, 

(A3.3) " ' V 'J " ' 

where 0V02, . . . are as defined in §A1. 

PROOF. The map T0 is uniquely defined. For n > 1, the condition (A3.2) 
ensures that rn ° A/ are well-defined maps into P(A";t;0, —). 

Verify that the conditions (A3.3) are consistent on the (n — 2)-skeleton of 
In so that the restriction TJ/W is well defined through the induction hypothe­
sis. Choose y E P(An;v0,-) and £0 G In - in. Define rn such that, for any 
£ e ƒ ", 

Then #„ ° T„ is continuous. Hence the lemma is proved. 
If a: A"-* M is an «-simplex, define ca = P(o)rn and ^ = (ca,tf„ o T„). 

Then (A3.1) follows. 
REMARK. Since every vertex of rn must be a path from v0 to some vertex of 

A", each vertex of the cube ca must lie in OM. 

A4. The Adams theorem. Our adaption of the main theorem of Adams [1] 
reads as follows: 

THEOREM A4.1. If M is a simply connected topological space with a base point 
x0, then the chain map 

induces an isomorphism 

H(F(A(M)Xo))~H*(QM). 

PROOF. For this proof, C^(PM) will denote the subcomplex of the normal­
ized cubical chain complex of PM spanned by those nondegenerate cubes 
whose vertices are in ÜM. Then C^(PM) is acyclic and has the usual 
filtration F such that FpC^(PM) is the subcomplex spanned by all nondegen­
erate «-cubes a of PM such that either n < p or a(£\ . . . , £")(1) depends 
only on the last p coordinates. This filtration gives rise to a Serre spectral 
sequence {Sr,dr}r>0 with 

5;,, « Hq{ÜM) ®zCp (where C = A(M) J 

and 

Sp
2

q^Hp+q(M;Hq^M)). 
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(See [59] or [41].) 
On the other hand, the chain complex F(C) ®ZC also has a filtration F 

such that Fp(F(C)®zC) is_the subcomplex spanned by all [ax\ • ••|
0#Ja» 

r > 0, with deg a < /?. Let {Sr,dr}r>0 denote the resulting spectral sequence. 
Verify, in a standard manner, the isomorphism 

(A4.1) Sp
2

q*Hp+q(C;Hq(F(C))), p,q > 0. 

Owing to a remark in the last section, the natural chain map ftL: F(C) 
®ZC-» C^(PM) is well defined with CJ^PM) being spanned by cubes with 
vertices in QM. We assert that \xL respects the titrations. In fact, let p: 
C^{PM) -> C+(PM) denote the canonical chain map. Then for any/?-simplex 
o and simplices av . . . , or of positive degree in C, 

ML([<M' - - l a r ] a ) " P ( / * F [ < M # -'|*r] * & ) 

is a linear combination of (H + /?)-cubes a, n = deg[aj| • • • |ar], such that 

a{i\ . . . , SW,. . . , i, ')(l) - c0(r,\ . . . , ,*)(1). 

Therefore ixL{Fp(F(C) ®ZC)) C FpC*(PM). 
The chain map JUL induces spectral sequence homomorphisms. Among 

these homomorphisms, there are homomorphisms 

(A4.2) Hp(C) a* S p
2

0 - ^ 2
0 « tfp(Af ), p > 0, 

which are induced by the natural chain map 

given by a (-»/?, * /*L ([ ]a). (Recall that/^r PM-> M is given by y h-> y(l).) 
The method of acyclic models can be used to establish the maps (A4.2) are 
isomorphisms. _ 

Now both spectral sequences {Sr} and {Sr} converge. Since both chain 
complexes C^(PM) and F(C) ®ZC are acyclic, /JIL induces trivial isomor­
phisms 

(A4.3) S£ « Sp% p9q > 0. 

Appealing to the comparison theorem (see, e.g. Theorem 11.1 [48]), we obtain 
the isomorphisms 

Hq{F{C)) « SlqZslqtt Hq(QM), q>0. 
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