SEMIAMARTS AND FINITE VALUES

BY ULRICH KRENGEL AND LOUIS SUCHESTON Communicated by Alexandra Bellow, February 9, 1977

Let X_n be a sequence of real-valued random variables adapted to an increasing sequence of σ -algebras F_n . We denote by T, T_f , \overline{T} respectively the collection of bounded, finite, and arbitrary stopping times for $(F_n)_{n \in \mathbb{N}}$. This paper reports on recent progress concerning the theory of *semiamarts*, i.e. processes for which $(EX_\tau)_{\tau \in T}$ is bounded, initiated in [3], and the theory of *amarts*, i.e. processes for which $\lim_{\tau \in T} EX_\tau$ exists. We relate the notion of semiamart to processes of interest in the theory of optimal stopping (cf. [2]), namely X_n such that $|EX_\mu| < \infty$ for $\mu \in T_f$, or for $\mu \in \overline{T}$. For independent random variables X_n and for processes of the form $X_n = c_n^{-1} \sum_{i=1}^n Y_i$ with increasing c_n 's and independent nonnegative Y_i 's, a new dominated estimate

$$E(\sup X_n^+) \leq K \sup_{\mu \in \overline{T}} EX_{\mu} \quad (=KV(\overline{T}))$$

with K = 2 in the first and K < 5.46 in the second case, shows that such processes are semiamarts if and only if $\sup |X_n|$ is integrable. Also in the case when $F_n = F_m$ for all $n, m \in \mathbb{N}$, a semiamart has a necessarily integrable supremum. This observation is used to construct averages of aperiodic stationary sequences, which are not semiamarts—thereby strengthening a result announced by A. Bellow [1]. This can be done also in the "descending" case, i.e. when the time domain N is replaced by -N (see [3]); thus our results indicate that there are no connections between the amart theory and the ergodic theory of point transformations.

THEOREM 1 (RIESZ DECOMPOSITION FOR SEMIAMARTS). Every semiamart (X_n, F_n) can be represented as $X_n = Y_n + Z_n$ where (Y_n, F_n) is a martingale and (Z_n, F_n) is an L_1 -bounded semiamart such that for each $A \in \bigcup F_m$

$$\liminf_{n} \frac{1}{n} \sum_{i=1}^{n} \int_{A}^{\cdot} Z_{i} \leq 0 \leq \limsup_{n} \frac{1}{n} \sum_{i=1}^{n} \int_{A}^{\cdot} Z_{i}.$$

This generalizes the Riesz decomposition for amarts [3]. A variant of Theorem 1 permits us to give necessary and sufficient conditions for the uniqueness of the Riesz decomposition. One consequence of the Riesz decomposition is:

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45.

¹The research of this author is in part supported by the National Science Foundation.

Copyright © 1977, American Mathematical Society

THEOREM 2. Let X_n be a semiamart (amart) such that for some $\alpha \ge 1$ $\sum_{i=1}^{\infty} i^{-(1+\alpha)} E |X_i - X_{i-1}|^{2\alpha} < \infty$; then $\sup |X_n|/n < \infty$ a.s. (resp. $X_n/n \rightarrow 0$ a.s.).

Theorem 2 extends the strong law of large numbers for martingale differences; a somewhat weaker version of this, and of the next theorem, appears in [3].

THEOREM 3 (AMART OPTIONAL SAMPLING THEOREM). Let $\mu_n \in T_f$, $\mu_1 \leq \mu_2 \leq \mu_3 \leq \cdots$. Let X_n be an amart, $\hat{X}_n = X_{\mu_n}$ and assume

(a) $E|\hat{X}_n| < \infty \forall n \in \mathbb{N}$ and

(b) $\lim_{N \to \infty} \int_{\{\mu_n > N\}} |X_N| = 0 \quad \forall n \in \mathbb{N}.$

Then (\hat{X}_n, G_n) is an amart where $G_n = F_{\mu_n} = \{A \in F : A \cap \{\mu_n = k\} \in F_k \forall k\}$. If also $\mu_n \to \infty$ then the Riesz decomposition of \hat{X}_n has the martingale part $Y_n = Y_{\mu_n}$ and the potential part $\hat{Z}_n = Z_{\mu_n}$, where $Y_n + Z_n$ is the amart Riesz decomposition of X_n .

THEOREM 4. There exists a semiamart which converges a.s. and in L_1 but is not an amart.

There exist two simple methods of construction of amarts and semiamarts: (1) each adapted sequence X_n is a semiamart if $\sup |X_n| \in L_1$. Such a sequence is an amart iff in addition X_n converges a.s.; (2) quasimartingales are amarts.

THEOREM 5. In general a semiamart or amart cannot be decomposed into two summands arising from constructions (1) and (2). In fact, there exists a nonnegative predictable amart which is a potential (the martingale part in its Riesz decomposition vanishes), with $\sup_n E(X_n \log^+ X_n) \leq 1$ and $E \sup_n X_n = \infty$.

THEOREM 6. Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of adapted random variables for the increasing sequence $(\mathbb{F}_n)_{n \in \mathbb{N}}$, with $\sup E|X_n| = M < \infty$. (X_n) is a semiamart iff for each $v \in \overline{T}$ such that $E(1_{\{v < \infty\}}X_v)$ is defined as an extended real number, one has $|E(1_{\{v < \infty\}}X_v)| < \infty$. If the o-algebra \mathbb{F}_{∞} generated by all \mathbb{F}_n 's is nonatomic, a further equivalent condition is: for each $v \in T_f$ such that EX_v is defined as an extended real number, one has $|EX_v| < \infty$.

If $(EX_{\tau})_{\tau \in T}$ is unbounded from above one can find ν with $EX_{\nu}^{-} < \infty$ and $EX_{\nu}^{+} = \infty$. Thus the theorem can be interpreted as saying that for L_1 -bounded processes with infinite value $V(T) = \sup_{\tau \in T} EX_{\tau}$, the value $V(\overline{T})$ is assumed, and $V(T_f)$ is assumed if F_{∞} is nonatomic. In the descending case $V(T_f) = \infty$ is assumed if (X_n) is L_1 -bounded or each F_{-n} is nonatomic. Since then $V(T_f) = \infty$ is equivalent to $V(T) = \infty$, this yields an analogous characterization of descending semiamarts.

THEOREM 7. If (X_n) is adapted to (F_n) and X_{n+1} is independent of F_n for all n, then E sup $X_n^+ \leq 2V(\overline{T})$.

We only showed the existence of a constant K_0 such that $2 \le K_0 \le 4$,

and E sup $X_n^+ \leq K_0 V(\overline{T})$. That K_0 may be chosen equal to 2 is due to D. Garling.

Now let (Y_n) be adapted to the increasing family (F_n) and assume that Y_{n+1} is independent of F_n for all *n*. Call (X_n) a sequence of averages of nonnegative independent random variables if X_n is of the form $X_n = c_n^{-1} \sum_{i=1}^n Y_i$ with $1 \le c_1 < c_2 < \cdots$.

THEOREM 8. If (X_n) is a sequence of averages of nonnegative independent random variables then $E(\sup X_n) < 5.46$ where $V = V(\overline{T}) = V(T_f) = V(T)$.

This result has an interesting probabilistic interpretation. If X_n is the fortune of a player at time *n*, then *V* is the maximal expected gain of a player *A* using nonanticipating stopping rules. $E \sup X_n$ equals $\sup_{\mu} EX_{\mu}$ where the supremum is over all measurable random variables $\mu: \Omega \to N$. Thus $E \sup X_n$ is the maximal expected gain of a player *B* endowed with complete foresight. The theorem may be interpreted as saying that, whatever be the sequence of distributions, the odds 5.46:1 are favorable to *A* even against an omniscient opponent *B* playing the same game.

A consequence of Theorem 9 is that a sequence of averages of nonnegative independent random variables is a semiamart for (F_n) iff sup $X_n \in L_1$.

Call a point-transformation S aperiodic if there exists no measurable B with P(B) > 0 such that for some $n \in \mathbb{N}$ and all measurable $A \subset B$, the symmetric differences $A \bigtriangleup S^{-n}A$ has measure 0. The result of A. Bellow [1] is strengthened by

THEOREM 9. If S is an aperiodic invertible measure preserving transformation of (Ω, F, P) then there exists an $f \in L_1^+$ for which $X_n = n^{-1} \Sigma_{k=0}^{n-1} f \circ S^k$ is not a semiamart, ascending or descending.

REFERENCES

1. A. Bellow, Stability properties of the class of asymptotic martingales, Bull. Amer. Math. Soc. 82 (1976), 338-340.

2. Y. S. Chow, H. Robbins and D. Siegmund, Great expectations: the theory of optimal stopping, Houghton Mifflin, Boston, Mass., 1971. MR 48 #10007.

3. G. A. Edgar and L. Sucheston, Amarts: A class of asymptotic martingales. A. Discrete parameter, J. Multivariate Analysis 6 (1976), 193-221.

INSTITUTE FOR MATHEMATICAL STATISTICS, UNIVERSITY OF GOTTINGEN, GOTTINGEN, FEDERAL REPUBLIC OF GERMANY

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210