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mathematics undergraduate is not likely to have the knowledge of special 
functions, continuum mechanics, etc. needed to fully appreciate the applica­
tions. A number of interesting problems appear at the ends of the chapters, 
and the authors claim that the reader who evades the problems will miss 72% 
of the value of the book. 

The problems treated in this text, as in the case of most books on partial 
differential equations, fall into the special category of well-posed problems. As 
pointed out by John in the book of Bers, John and Schechter, well-posed 
problems by no means exhaust the subject of partial differential equations. He 
observes that one may think of the solution of a well-posed problem as 
predicating the. outcome of an experiment for a given arrangement of 
apparatus. The determination of what arrangement will produce a desired 
effect or what arrangement led to certain observed effects will correspond in 
general to a much more difficult mathematical problem, a problem that may 
not be well posed. In partial differential equations one may in fact not know, 
for a given equation, what classes of initial and/or boundary value problems 
are well posed, i.e., he may not know what apparatus to use. 

A substantial percentage of interesting and important physical problems 
must of necessity be modeled as improperly posed mathematical problems, 
but since improperly posed problems can rarely be handled by standard 
analytical methods, such problems are largely ignored in books on partial 
differential equations. 
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Topological transformation groups 1: A categorical approach, J. de Vries, 
Mathematical Centre Tracts, no. 65, Mathematisch Centrum, Amsterdam, 
1975, v + 249 pp. 

In this review, I will rapidly trace some stability concepts from their 
physical origins, along a path of increasing abstraction, into varieties of 
compact transformation groups. Much of the work already done (including 
de Vries' book) represents secondary technical research for which the primary 
investigations are still wanting. 

I wish to thank Murray Eisenberg for helpful criticism and for the Markus 
and Palis references. 

1. From differential equations to continuous flows* A 'nice' autonomous 
differential equation 

x = ƒ(x), x E X c R", 

admits unique solutions TT(X< t) with <n(x, 0) = x, which are global in the 
sense that IT is defined on X X R. If we refer only to the facts that X is a 
topological space and that m\ X X R -» X is a continuous action on X by the 
topological group R of reals, we may still discuss some of the qualitative 
dynamical properties of the system. This is where 'topological dynamics' 
comes from. 
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An arbitrary continuous group action 77: X X R —> X of R on the topologi­
cal space X is called a continuous flow. Even if X = W it need not be true that 
a continuous flow is induced by a differential equation. See [Padulo and 
Arbib 1974, §2-2] for an introductory discussion. Some continuous flows find 
natural description without mentioning derivatives. One such example is 
'billiard ball flows' (see [Birkhoff 1927, § VI.7] and [Birkhoff 1942]). 

Consider the following hierarchy of stability concepts at a point x: 
asymptotically stable =» stable => stationary 

=> periodic =» almost periodic => Poisson stable. 

To elaborate, write ?flx for the neighborhood filter of x; write R+ for {/: 
t > 0}; write xt for 7T(JC, t)\îox A c R, xA - {xt: t E A}; L+(x) denotes the 
positive limit set of x, L*(x) = {y Œ X: 3tn with t„+\ > tn > n, y = 
lim xtn}\ A c R is relatively dense if 'gaps are bounded', that is, for some 
M > 0, every interval of length M intersects A. Then 

* is stationary if V/, xt = x. 
x is (Poincarè or Lyapunov) stable if x is stationary and if Vt/ E vĤ  

3K G v)^ with KR+ c t/. 
x is asymptotically stable if JC is stable and if 3U E vÛ  Vy G (/, x G 

x is periodic if 30 > 0 V/, JC/ = x(r + 0): the least such 9 is the period of x. 
x is almost periodic if V£7 E V)tx, { /ER: i f e U] is relatively dense. 
x is Poisson stable if Vt/ E v)^, {/ > 0; xt E {/} and {f < 0: xt E (/} are 

unbounded. 
A subset A of A' is invariant if At c A for all /. For any x, the ore/7 closure 

cls(xR) and L+(x) are closed, invariant sets. An inclusion-minimal nonempty 
closed invariant set is called a minimal set. 

For the continuous flow +: R x R ^ R (induced by x = 1) no point is 
Poisson stable, but xR is minimal for every x. On the other hand, compact 
minimal sets enjoy stability properties as was first observed by [G. D. 
Birkhoff 1912] who proved that if X is a {compact} (complete metric) space 
then cls(xR) is a compact minimal set (if and only if) {if} x is almost 
periodic. Thus for, say, the flow on Rn induced by a differential equation, it is 
important to consider compact invariant subsets. 

For a more detailed historical sketch see [Sell 1976]. For further discussion 
see [Bhatia and Szegö 1970], [Cartwright 1964], [Hâjek 1968], [Nemytskii and 
Stepanov 1960], [Sell 1971] and the bibliographies there. 

2. From continuous flows to topological dynamics. A topological transforma­
tion group is a continuous action n: X X T ~> X of a topological group T on 
a topological space X. The special case T = R recovers continuous flows. A 
continuous trajectory 7T(JC, - ) admits a 'step-approximation' 

n\—* TT(X< n • Af) 

for n an integer and Af fixed (and small), giving rise to the concept of a 
discrete flow where T = Z, the discrete group of integers. In differentiable 
dynamics, X is a smooth manifold, T is a Lie group and m is smooth; see 
[Bredon 1972], [Brockett], [Smale 1967] and their bibliographies. 

Given an arbitrary topological transformation group (X, 7\ TT) and an 
element x of X, 
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x is stationary if Vf E T xt = x. 
* is periodic if 30 7e e with x = x0; the subgroup of such 0 is the period of 

x. 
It is a little more challenging to generalize 'almost periodic' and 'Poisson 

stable'. Say that A c T is syndetic if AK = T for some compact subset ZC of 
7\ For 7 = R, syndetic is equivalent to relatively dense. Dense implies 
syndetic if T is locally compact. Also, say that A c T is replete if V compact 
/w in T3tv t2 E rwith/jÀ^ c A. Then 

JC is almost periodic if\/U E %x, {t E T: xt E V) is syndetic. 
x is recurrent if Vf/ E vJt̂ , (f E 7: x/ E t/} intersects every replete 

subsemigroup of 7\ 
For T = R, recurrent is equivalent to Poisson stable. As before, 'stationary' 

implies 'periodic' implies 'almost periodic' implies 'recurrent', although the 
last implication assumes local compactness of X [Gottschalk and Hedlund 
1955,7.05]. 

If S is a subgroup of T, the restriction of <n induces a topological transfor­
mation group X X S -* X. The motivating example i s Z c R which may be 
abstracted by observing that Z is a closed syndetic normal subgroup of R. Of 
particular vitality in topological dynamics are those concepts which appear 
the same when viewed in either the discrete or continuous context, that is, 
which hold if and only if they hold under a fixed, but arbitrary, syndetic 
normal subgroup. 'Stationary' and 'periodic' behave poorly. To see this, 
consider a point x on an orbit of period 1 for a simple harmonic oscillator 
and observe that x is stationary under Z but is not periodic under aL if a is 
irrational. But such x is at least almost periodic under aZ. In fact, the 
following two 'inheritance theorems' (with a common proof-see [Gottschalk 
and Hedlund 1955, 3.36]) hold: 

Let T be locally compact, let S be a closed syndetic normal subgroup of T and 
let x E X. Then x is {almost periodic) {recurrent} under T if and only if x is 
{almostperiodic) {recurrent) under S. 

Birkhoff's theorem also generalizes [Gottschalk and Hedlund 1955, 4.05, 
4.07]: 

If X is a compact minimal set, every element of X is almost periodic. If X is 
regular and x is almost periodic, c\s{xT) is a minimal set. 

The classification of compact minimal sets is a central research problem in 
topological dynamics. For further discussion see [Auslander, Green and 
Hahn 1963], [Ellis 1969], [Gottschalk 1958, 1963, 1964], [Gottschalk and 
Hedlund 1955], and [Montgomery and Zippin 1955], For an extensive bibliog­
raphy see [Gottschalk 1966]. For a discussion of 'Lyapunov stability vs. 
uniform almost periodicity' see [Sell 1971, p. 106]. 

3. Emoting. I think it is possible to write a good book on mainstream 
topological dynamics which includes sensitive applications of principles from 
category theory. I do not think de Vries' book has achieved either objective. 
In writing this review, I hope to make clear some of the issues that the 
would-be author needs to know about. This section is devoted to emotional 
issues. 
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De Vries' book contains a quarter of a thousand pages and has sections 
entitled 'preliminaries' and 'generalities'. On p. 1 it claims to be a self-con­
tained treatise. Quoting from the preface and p. 32 we find 

"We intend to lead the reader over a more or less artificial path 
between a number of 'vantage points' [of the theory of topological 
transformation groups] . . . " 

"We shall not enter into the history and the development 
of the concept of a ttg. Nor shall we try to convince the 
reader of the importance of ttgs." 

The book moves from one detailed topic to the next with no overview. I can 
only wonder for whom this book was written (no help there from the author). 
The would-be author needs to include history and overview, needs to provide 
discussion of and pointers to the mainstreams and needs to avoid artificial 
paths. (The 'notes' in the book are interesting and well researched. De Vries is 
well qualified as a would-be author as I hope will be evident in Topological 
transformation groups 2.) 

The thesis of the book may be inferred from two quotes from the preface: 

" . . . we have chosen to take a mainly categorical point of view, with 
the aim of unifying parts of the existing theory of ttgs." 

" . . . facts about a certain category of ttgs should be expressed in 
terms of the underlying categories of topological groups and topological 
spaces. (Although this tactic will probably hurt the feelings of every 
pure category theorist, it is a consequence of their wish that each 
'working mathematician' should try to use category theory for the 
description of the objects he is studying.)" 

This thesis is neither motivated nor discussed. It is simply amply done. As 
such, de Vries' book will further polarize opponents of category theory; this 
problem, discussed further below, needs to be addressed head on by the 
would-be author. 

My colleague Michael Arbib points out that the textbook title Control 
theory with matrices is old-fashioned in 1976. I hope the time will come when 
I can feel the same way about 'the categorical point of view'. A mainly 
categorical point of view is rather overbearing in topological dynamics. In 
TTG 2, de Vries needs to explain why TTG 1 is relevant. 

The comment about the feelings and wishes of us category theorists, pure 
or impure, I will let pass by save to mention that the second sentence of [Mac 
Lane 1971] has been brutally misrepresented. 

Category theory offers a few basic results (for example, the adjoint functor 
theorems, the existence of Kan extensions, the construction of limits of 
arbitrary diagrams from products and equalizers) whose incisive use in 
context establishes healthy directions of inquiry, albeit without providing the 
desired depth of analysis. In other words, substantial applications of category 
theory will not come from people who know only category theory. It is ironic 
that the strongest opponents of category theory are often those most qualified 
to make use of it. At the risk of being brash, I refer the reader to [Manes 
1974] for what I mean by an application of category theory. A function space 
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construction is given which is sufficiently concrete to allow the design of 
examples with prescribed properties and which yields precisely the class of 
dual Banach spaces. I challenge the reader to prove this without using the 
special adjoint functor theorem (which is an unexplored and fascinating 
general technique to construct Banach spaces). 

Many areas of mathematics (not just category theory) have branched in 
directions of research which are disconnected from their original motivations. 
This applies to topological dynamics. Even the basic idea of a continuous 
flow is restrictive since, for example, the flows xt = ±(t + x2)l/2 induced by 
the scalar equation 2xx = 1 are not global. (Some authors replace x = f(x) 
with the 'equivalent' global system x = ƒ(*)/( 1 + ||/(*)||), but equivalence is 
only in the sense of 'same trajectories'; what physicist is willing to reformulate 
Newton's Law as F = GMm/(r\\ + r))?) (However, see [Markus 1971] for 
the role of homeomorphisms which preserve sensed orbits in questions of 
structural stability.) One can discuss local flows per se (see e.g. [Sell 1971] and 
[Hajek 1968]). For another example, witness that compact minimal sets (see 
e.g. [Ellis 1965], [Floyd 1949], [Gottschalk 1963]) are often abstract discrete 
flows for which x|~» x\ is not of the form 9r( —, 1) for any continuous action 
IT (e.g., xH> x\ may not be homotopic to the identity). 

Similar problems occur in the differentiable case [Palis 1974]. Really gutsy 
questions such as 'Which compact minimal discrete flows arise as cls(xN) 
under the flow induced by a differential equation on a manifold?' have so far 
been too difficult to answer. 

We began with a differential equation and have, so far, ended up with a 
compact minimal set. Something was lost. The would-be author must not 
think that 'compact minimal sets = abstract qualitative theory of differential 
equations' but should be aware of the relationships and the history. In the 
remainder of the review we enter some of the heartland of topological 
dynamics with one ear open for categorical echoes. 

4. Function spaces. Usually, stability properties of x hold for all>> in xT and 
become properties of the motion TT(X, — ) in the set C(T, X) of continuous 
functions. Let CC(T, X) denote the compact-open topology. If T is locally 
compact separated then 

CC(T,X)X T±>Cc(T,X):(f<t)\-»fLt 

(where Lt(s) = ts) is a continuous action, and the passage x|—» TT(X, - ) is a 
continuous equivariant injection. CC(R, R) is the Bebutov dynamical system 
[Bhatia and Szegö 1970], [Sell 1971]. It is not hard to see that x is almost 
periodic in (X, <n) if and only if TT(X, - ) is almost periodic in (Cc(7\ A'), L). 
Similarly, x is Lagrange stable in (X, TT) (that is, cls(x7n) is compact) if and 
only if TT(X, — ) is Lagrange stable in (CC(T, X\ L). 

If X is a complete uniform space, if CU(T, X) denotes the topology of 
uniform convergence, and if \T\ denotes T with the discrete topology (qua 
group or set, depending on context), then 

Cu(T9X)X\T\^CM(T9X):(f9t)i->fLg 

is a continuous action. Lagrange stable points in CU(T, X) are called von 
Neumann almost periodic functions [von Neumann 1934]. The almost periodic 
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points of CM(JT, A") are called Bohr almost periodic functions [Bohr 1947]. For 
T = R and X = C, Bohr characterized such functions as the uniform limits of 
trigonometric polynomials. In §2.2, de Vries provides proofs that von Neu­
mann almost periodic implies Bohr almost periodic (and conversely, if T is 
abelian); this is unlike the situation encountered with continuous flows 
wherein Lagrange stable is implied by almost periodic, but not conversely in 
general. 

We may sum up by saying that CC(T< X) is a natural object if one is 
interested in 'X under some flow' whereas CM(JT, X) has firm roots in 
harmonic analysis. For a clearer perspective on the role of Bohr almost 
periodic functions in the theory of differential equations, see [Sell 1976] and 
[Fink 1974]. 

5. Homomorphisms. A homomorphism (ƒ, \p): (X, S, TT) -» ( K, T, p) is a 
continuous group homomorphism \p: S —> T and a continuous map/: X -» Y 
subject to the equivariance condition p(f(x)< \p(s)) = /TT(.X, s). Following de 
Vries, let TTG denote the resulting category and let Topr be the subcategory 
*$ = id / . De Vries also considers the category TTG* of ( ƒ, \p): (X, S, TT) —* 
(Y,T,f)) where ^: T~>S and p(/(x), 0 = M * ^ ( 0 ) . About half of de 
Vries' book is about these categories and their Kelley space [Kelley 1955, p. 
230] variants with regard to internal properties such as completeness and 
external properties such as nice functors to simpler categories. This is a 
secondary investigation. A primary question is whether homomorphisms of 
dynamical systems contain information or are interesting. I think they do and 
they are. Not being aware of suitable references, I will record a few examples 
of the simplest kind. I hope that the results recorded in de Vries' book 
eventually find applications stemming from investigations of the sort hinted 
at by these examples. 

EXAMPLE 1. Let A: RW-»R" be a matrix with Jordan form / = PAP'K 
Then TT(JC, t) = eAtx, p(y, t) = eJty are the flows corresponding to x = Ax. 
y = Jy. If P is real, ep: (R", TT) -» (Rw, p) is an isomorphism in TopR. 

EXAMPLE 2. 'Rolling a wheel at constant speed' is a homomorphism in 
TopR. Consider x = 1 on R with flow TT(X, t) = x + /, let S1 be the unit 
circumference, and consider the flow p{y, t) = y + t induced by the unit 
tangent vectorfield. Then the mod 1 projection/: (R, TT)~-*(S\ p) is a homo­
morphism. 

EXAMPLE 3. The simple harmonic oscillator x — - K2x induces the con­
tinuous flow 

*x(x>y) = (x cos(A7) + (y/K)sin(Kt)> - Kx sin(A7) + y cos(Kt)) 

on R2 (x = position, y = i ) . If K > L > 0, (R2, TTK) admits no homomor­
phism to (R2,TTL) in TopR, but these flows are isomorphic in TTG via 
MO = (K/L)tJ(x,y) = (x, (L/K)y). For each r * 0, g,(jc, y) = (rx, ry) is 
an automorphism of (R2, TTK) in TopR. 

EXAMPLE 4. Topr has products [Mac Lane 1971, III.4] in the obvious way (r 
acts independently on each coordinate). Consider (R, + ) as in Example 2. If 
(X, 7r) is a continuous flow, the trajectories of (X, TT) x (R, 4- ) are the 
solution curves of (X, TT). 'Projection' (X, TT) X (R, + ) -» (X, TT) is a homo­
morphism in TopR. 
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EXAMPLE 5. Consider the nonautonomous scalar equation x = 2tx. Then if 
<p(x91) = x exp(f2), (p(x, — ) is a solution with <p(x, 0) = x9 but <p is not a 
flow. The associated autonomous system is (x, w)' » (lux, 1) with flow 
7r(x, W; t) = (x exp(-w2) exp((w + t)2), u + *)• Here (R2, TT) is not isomor­
phic to (R, p) X (R, + ) for any p. This flow is reversible in the sense that 
i/>(0 = - t, f(x, u) = (x9 - w) is an automorphism in TTG. In general, if T 
is abelian, IT(-9U0): (X9 TT) -> (X, TT) is an automorphism ('change of time 
origin') in TopT. Thus for the flow above, 

f(x, u) = (x exp(-w2) exp((w - w0)
2), « - w0) 

is an automorphism. 
EXAMPLE 6. De Vries gives the following motivation for considering TTG*. 

Given ( Y, T9 p) and XT c * c K, W = {/ G 7: xt = A: for all x in * } is a 
normal subgroup of T. If ƒ: A' ~> K is the inclusion map and if $: T ~* T/ N is 
the canonical surjection, (ƒ, \p) is a morphism in TTG*. In the context of 
Example 2 with X = Y, T/ N is the circle group. 

Homomorphisms often preserve stability properties. Given (ƒ, ^): (A\ S, 7r) 
-*(J \ 7\ p) in TTG and x in X,f(x) is periodic if x is; ƒ (A*) is Lagrange 
stable if x is (side condition: Y is Hausdorff); f(x) is (almost periodic) 
{recurrent} if x is (side condition: $ is onto); and, (K, 7\ p) is minimal if 
(X, S, IT) is, providing ƒ and \f/ are onto. Morphisms in TTG* often fail to 
preserve stability properties. 

6. Varieties. In this section, X is always compact Hausdorff. 
In [Manes 1976, § 4.1] compact transformation groups are dealt with as 

'sets with algebraic structure', that is, the full subcategory Compr of Topr (A' 
is compact Hausdorff) is 'monadic over Set' where Set is the category of sets 
and functions. In other words, a compact transformation group may be 
regarded as a set equipped with certain operations subject to certain equa­
tions without loss of information (the topology is included). This produces, in 
effect, a pleasant rapprochement between the ideas of G. D. Birkhoff (a 
major figure in founding the formal theory of dynamical systems) and his son 
Garrett (who in [Birkhoff 1935] founded universal algebra). Since the exposi­
tion in [Manes 1976] proceeds from first principles we will avoid an exposi­
tion of 'monad theory' here, preferring to describe this point of view of 
Comp7 in more standard language. 

it A 
A - • V(A) 

' 44. 

/ f* 

Let T be discrete. For any set A, T acts on A X T via (a, t)s = (#, ts) so 
that the /?-compactification fi (A x T) (viewed as the set of ultrafilters on 
A X T) equipped with the continuous extensions of (tf, t)\-~> (a, ts) (s E S) 
is in Compr. In fact, (i(A X T) is freely generated by A in the sense that, as 
shown in the diagram, any function ƒ from A to the underlying set of a 
compact transformation group admits a unique continuous equivariant exten-
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sion ƒ*; specifically, V(A) = fl(A X T)9 (%A)(a) is the principal ultrafilter 
on (a, e) and for % e J3(A X T) , / # (^ l ) is the convergent point of 

[B cX:f~l {(a, t)EAxT: *(ƒ(*), t)eB}e$l}e p\X\. 

More generally, let V be any variety in Comp'r', that is, a full subcategory 
closed under products, subobjects (i.e., injective homomorphisms into) and 
quotients (i.e., surjective homomorphisms out of). Then, using the general 
adjoint functor theorem [Mac Lane 1971, V.6], every set A freely generates an 
object V(A) of V (see the diagram). V(A) is a quotient of ft (A X T) and ƒ* 
is well defined on equivalence classes, but this is as close as one comes to a 
construction of V{A) in general. Compr is a variety in Compel For any class 
A in Comp,r' the variety Var(A) generated by A coincides with the class of all 
quotients of subobjects of products of elements of A. 

Given (A', TT) in a variety V, if 4̂ is a subset of X with inclusion function /: 
A ~> X, the subobject (A} = cls(AT) generated by A is the image of Z#: 
V(A)->(X, TT). Let us call a minimal (X,TT) which happens to be in V a 
X-minimal set. Every V-minimal set is a quotient of V(\) (where 1 is 
a one-element set). Under the binary operation 

V(l)X V(l)-+V(l):(p,q)\-+ 1 ^ K ( 1 ) C K ( 1 ) , 

V{\) is a monoid. More generally, V{\) acts on any (X, TT) in V via 

\X\XV(l)^\X\:(x,p)\-*(\x^xyP). 

Notice that <x> is the orbit of x under V{\) for all x in X so that, in some 
sense, a continuous group action has been converted into a discrete monoid 
action. 

The enveloping semigroup E(X, TT) of (X, TT) [Ellis 1960a, 1969] is <id^> c 
(A\ TT)'*1, that is, E(X, TT) is the pointwise closure of {TT( —, t): t E T). Then 
E(X, TT) is just V(l) if V — Var(X, TT). This makes contact with the tradition 
in universal algebra of studying an algebra in terms of the variety it generates 
(i.e., its equational theory), and suggests the importance of E(X,TT). Even 
when T = R, E (X, TT) can fail to be a group and can fail to be commutative. 

A universal \-minimal set is a V-minimal set admitting at least one 
homomorphism (necessarily surjective) to every V-minimal set. Say that 
(A\ TT) is coalescent if each of its endomorphisms is an automorphism. Every 
minimal subset of V{\) (such exists by Zorn's lemma) is coalescent, hence is 
the unique-up-to-isomorphism universal V-minimal set. Thus the universal 
V-minimal set exists uniquely and is a monoid acting on every object in V. 
The universal V-minimal set has a strictly monoid-theoretic characterization: 
it is any minimal right ideal of the monoid V(\) (see [Ellis 1960b]). In 
particular, any minimal right ideal of E (X, TT) provides the universal minimal 
set of Var(A", TT). Also, for example, there exists a fixed minimal continuous 
flow whose quotients form precisely the class of all minimal continuous flows. 

The general principle here is 'properties which stay closed under products, 
subobjects and quotients admit universal objects'. 

We close this section by discussing two varieties which have received much 
attention in the literature. 

file:///-minimal
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The proximal relation P(X, 77) of (X, 77) consists of all pairs (x,y) which are 
proximal in the sense that for every entourage (neighborhood of the diagonal) 
a there exists t in T with (xt, yt) in a. By [Auslander 1963], (X, 77) is the 
universal minimal set of Var(̂ T, 77) if and only if (X, 77) is minimal, and for all 
JC,y there exists/: (X, 77) -» (X, 77) with (ƒ(*), y) G P(X, 77). 

(X, 77) is distal if P (A", 77) is the equality relation. Some equivalent char­
acterizations [Ellis 1969, Chapter 5]: (a) every function in E(X, 77) is injective; 
(b) every function in E{X, 77) is bijective; (c) every point in (X, 77) X (A', 77) is 
almost periodic. In [Ellis 1958, p. 405], Ellis credits Hubert with using 'distal' 
to topologically characterize the concept of a rigid group of motions. It is 
known [Wu 1968] that if (X, 77) is minimal, distal and metrizable then (X, 77) 
is coalescent. If T is abelian and if (X, 77) is minimal but not distal, P (X, 77) is 
neither closed nor an equivalence relation [Keynes 1967]. 

(X, 77) is equicontinuous if {7r( —, t): t E T} is equicontinuous. Equivalent 
characterizations [Ellis 1969, Chapter 4]: (a) (X, 77) is uniformly almost peri­
odic, that is, for all entourages a there exists syndetic A c T such that 
xA c xa for all x; (b) E(X, 77) is a compact topological group of homeomor-
phisms of X. 

'Distal' and 'equicontinuous' are varieties; denote them Dist, Eq. Thus 
Eq c Dist, and, for (X, 77) distal, each point is almost periodic. Minimal, 
distal, nonequicontinuous differentiable flows on compact homogeneous 
spaces of nilpotent Lie groups are constructed in [Auslander, Hahn and 
Markus 1963]. Any intersection of varieties is a variety. The {distal} 
{equicontinuous} structure group of {X, 77) [Ellis and Gottschalk 1960] is the 
monoid V(\) in the variety {Var(*, 77) n Dist} (Var(X, 77) n Eq}. We ob­
serve that whenever (X, 77) G Var( Y, p) that E(X, 77) is a simultaneous 
monoid and transformation group quotient of E(Y, p) (consider the /th 
component of the corresponding theory map [Manes 1976, §3.2]). This 
explains why V{\) above is a group. 

7, Kan what may. The problem of associating a continuous flow to an 
abstract discrete flow is well motivated and it is natural, therefore, to ask 
about adjoints of the functor TopR-»Topz of §2. Using a very general 
principle concerning Kan extensions [Mac Lane 1971, Theorem X.3.1] (with a 
little extra ad hoc work owing to the group topologies) it is immediate that 
this functor has left and right adjoints. The left adjoint is well known 
[Gottschalk 1973, p. 123] and is discussed in de Vries' book as 3.3.8, 5.3.6. 
The right adjoint seems not to be in the literature and will be discussed below. 

Let A be any category (we will require A to have a few limits and colimits 
below). If T is a group, a T-object in A [Tondeur 1965] is a pair (A, 77) where 
A is an object of A and 77; T-> A\xt(A) is a group homomorphism. The reader 
may formulate 'equivariant map' so as to obtain the category A r of T-objects 
in A, generalizing Topr. 

Generalizing the inclusion map of Z in R, let \p: T-*S be a group 
homomorphism and let U^: A s - » A r be the obvious induced functor. Let 
(/4,77) be a T-object in A. Let {>r, s; tQ (</\ s; />} denote, respectively, that 
r, s G 5, / G T and >//(/) = {sr~1} {rs~1}. Let As = A for each 5 in 5. Then 
the free S-object over {A, 77) with respect to U^ (that is, the value of the left 
adjoint of (A on (A, 77)) is constructed as the colimit of the diagram (shown) 
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of A-morphisms with nodes {As: s E S) and edges 7r(t): Ar^As whenever 
>r, s; f<. The cofree object is similarly constructed as the limit of TT(Î)\ 

As -» Ar with <r, s\ t). (All of this can be done in the relative case [Dubuc 
1970], This is necessary for obtaining the tensor and horn functors induced by 
t/j, the 'change of rings' functor in module theory, and is also necessary in the 
Kelley space categories studied by de Vries.) 

colimit for left adjoint limit for right adjoint 

Let us now turn to the case of interest, U^: Top5 -» Topr. Strictly speaking, 
this is an example of the general case discussed above only if S and T are 
discrete. However the guesswork required to generalize the discrete case is 
very minor, amounting to 'try continuous maps with the compact-open 
topology'. The extra assumptions we impose are that \p is a continuous group 
homomorphism and that S is locally compact Hausdorff. 

As a side observation, notice that U^ explains the categories TTG and 
TTG*. For (ƒ, ^): (X, T, ir) -> ( K, S\ p) in TTG if and only if ƒ: (A\ <n) -> 
V)( Y% p) in Topr, and (g, ^): (Jf, S » -> ( r, T, p) in TTG* if and only if g: 
VAX, 77) —» ( K, p) in Topr. Finding adjoints represents these as morphisms in 
Top5. 

Fix (7, p) in Topr. A $-motion in (y, p) is a Topr-morphism ƒ: U^S -* 
( y, p) (where 5 acts on itself by group multiplication), that is, ƒ is continuous 
and ƒ(s • i//(0) = p(f(s\ t). Notice that ƒ is an extension of the T-motion of 
f(e) as shown in the diagram. 

Let Mot^(y, p) be the set of all ^-motions in ( y, p) with the compact-open 
topology. Then (ƒ, s)\->fLs is an action of 5 on Mot^(y,p) and is a 
continuous action by de Vries 2.1.3. This construction provides the cofree 
object over (Y, p), the unique coextension /?# in Top5 as shown in the 
diagram being defined by h#(x) = hir{x, — ). In the special case where ( y, p) 
is U^(X, IT) and h = id, h# is called the costructure map of (A\ IT) (the 
terminology is standard in monad theory). 

For an example, let T = Z and S = R and consider the flow (R2, R, 77) 

M 0 t* ( r ' J ^ Mot,(F, p) ^ • (F, p) 

* # \ tf**#x # 

(ZN) V Z IT) 
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induced by x = - x. If \p(n) = 2<nn, every point of t/^(R2, TT) is stationary. 
Mot^£/^(R2,7r) is the loop space of R2. On the other hand, if \p(n) = 2man 
with a irrational, the costructure map of (R2, TT) is an isomorphism. 
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