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A holomorphic curve in a complex manifold M is a nonconstant holomor-
phic map ƒ: C-»M. In 1927, R. Nevanlinna [18] created a new theory 
concerning the distribution of values of a holomorphic curve ƒ in the complex 
projective line CP1. Nevanlinna's main result is that ƒ assumes almost all 
values in CP1 "equally often," and those values that ƒ fails to assume often 
enough have total "defect" at most 2. H. Cartan [7] generalized this "defect 
relation" to holomorphic curves ƒ in CP", counting how often ƒ takes 
values in hyperplanes; L> Ahlfors [2] later reproved and extended Cartan's 
result, which he cast in a geometric form. Recently, J. Carlson and P. 
Griffiths [6] obtained new defect relations for holomorphic maps ƒ : Cn -> M, 
where M is an «-dimensional algebraic manifold, counting how often ƒ takes 
values in divisors of a fixed holomorphic line bundle on Af. Nevertheless, 
except for the results of Nevanlinna, Cartan and Ahlfors, very little is 
presently known about the distribution of values of holomorphic curves. 

The first three sections describe the results of R. Nevanlinna [18], Cartan 
[7] and Ahlfors [2], and Carlson and Griffiths [6], respectively. (H. Cartan's 
brief, but not very well-known, proof of the defect relation for holomorphic 
curves in CP" is given in §2.) §4 states some open problems on the distribu­
tion of values and existence of holomorphic curves in algebraic manifolds, as 
well as giving some recent results of R. Brody and of M. Green [4], [5], [14]. 
Finally, §5 gives a new proof of the Cartan-Ahlfors defect relation, which 
places it within the geometric framework of Carlson and Griffiths [6]. 

Other recent expositions of value distribution theory, which concentrate on 
mappings of several complex variables, are contained in the monograph by P. 
Griffiths [27] and the survey article by W. Stoll [29]. 

I learned about value distribution theory from Phillip Griffiths, Reese 
Harvey, and Yum-Tong Siu, whom I wish to thank for sharing their insights 
with me. 

1. Nevanlinna theory. Let ƒ be a nonconstant meromorphic function on the 
complex line C. We regard ƒ as a holomorphic curve in the complex projective 
line CP1 by identifying CP1 with the Riemann sphere C u {oo}. The earliest 
result on the values of ƒ is Liouville's Theorem (1847) that ƒ cannot omit an 
open set in CP1; i.e., /(C) is dense in CP1. In 1879, Picard improved this 
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result by proving that ƒ can omit at most two values in CP1, and in fact if ƒ is 
transcendental, then ƒ attains all but at most two values infinitely many times 
(Picard's proof uses the uniformization of C — {0, 1} by the upper half 
plane). In 1896, E. Borel [3] gave a new proof of Picard's Theorem using the 
concept of the rate of growth of an entire function. In 1927, R. Nevanlinna 
[18] refined Borel's idea and developed a new branch of complex function 
theory culminating with the Nevanlinna Defect Relation (see (1.11)), which 
substantially sharpens Picard's Theorem. 

We now describe Nevanlinna's elegant theory of meromorphic functions 
on the complex line. Let r0 > 0 be fixed. We let 

(1.1) ' / W - f /*« 

where co = (V — 1 /n)dd log||w|| (w = (w0: w{) E CP1) is the "spherical" area 
form on CP1 normalized so that /co = 1, and A(r) = {z G C: \z\ < r}. I.e., 
tf{r) is the volume of/(A(r)) counted with multiplicities. The order function of 
ƒ is given by 

(1.2) 7}(r) = (rtf(s)s~l ds, for r > r0. 

(The above definition of the Nevanlinna order function is due to Ahlfors [1] 
and Shimizu [22] and agrees with Nevanlinna's definition modulo a bounded 
term.) We shall use the notation 

(1.3) Mr<S>=±j2\{rei9)dO. 

By integrating (1.2) by parts and then applying Stokes' theorem, we obtain 
the alternate description of the order function, 

(1.4) 7}(r) = M rlog||/ | |-M rolog||/ | | , 

where/: C -> C2 - {0} represents ƒ (i.e., ƒ = (/0: ƒ,)). We say that ƒ is of finite 
order if 7}(r) < rx + 0(1) for some finite X. Let a G CP1 be arbitrary. We let 
nj(a, r) denote the number of solutions of ƒ = a (counted with multiplicities) 
in A(r). The counting function N(a, r) is given by 

(1.5) N(a9 r) = Nf(a, r) = ƒ nf(a9 s)s~~l ds, for r > r0. 

It follows from the above that 

(1.6) Tf(r)=[ N(a9r)o>(a), 

i.e., 7}(r) is the average value of N(a, r). 
Nevanlinna's First Main Theorem (see (2.6)) tells us that 

(1.7) N(a9r)< 7}(r) + 0(1) 

for all a G CP1. We shall let Sf(r) be the symbol for any function on (r0, + oo) 
with the property that 

0-8) Sf(r) < O (log rTs (r)) for r g £ , 
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for some set E c (r0, + oo) of finite length. (In fact, we can require that 

Sf(r) < O (log Tf(r)) + o(logr) for r g £ ; 

see [21, p. 169]. If ƒ is of finite order, we can require that (1.8) hold without 
exceptional intervals; i.e., Sf(r) < O (log r) for all r > r0.) Nevanlinna's deep 
result is his Second Main Theorem 

(1.9) (q - 2)7}(r) < 2 N (ap r) + Sf (r), 
. / - I 

where { # , , . . . , aq) is any collection of distinct points in CP1. The Nevan-
linna defects 8 (a) are defined by 

(1.10) 8(a)=liminf 

It follows from (1.9) that 

(1.11) 2 S ( a ) < 2 , 

where the summation is over all a G CP1. Equation (1.11) is the well-known 
Nevanlinna Defect Relation, which implies Picard's Theorem since 8(a) = 1 if 
ƒ is transcendental and f~x(a) is a finite set. 

EXAMPLES, (i) Let f(z) = ez + e*2, where 0 < X < 1. Then 

Tf(r) = r/m + 0(1), 5(oo) = 1, 8(0) = X, 

and all the other defects are zero (see [2]). 
(ii) Let f(z) = fz

0e~tqdt, where q is a positive integer. Then 

2>(r)-[l + ö(l)]rV^ 
5(oo) = l, «(c^2**/*) = 1/?, for 1 < k < ?, 

where ĉ  = fQGCe~xqdx, and all the other defects are zero (see [18, p. 21]). 
Nevanlinna's Second Main Theorem (1.9) is a consequence of the following 

deep result: 

(1.12) LEMMA ON THE LOGARITHMIC DERIVATIVE [18]. Let g: C->C u {oo} 
be a nonconstant meromorphic function. Then 

Mrlog+\gf/g\< Sg(r). 

We use the notation log4"* = max(log x, 0). In fact Lemma (1.12) is the crux 
of value distribution theory, and all results in the subject use this lemma 
either directly or implicitly. It follows from (1.12) that 

(1.13) M rlog+ |g (-V^|< Sg(r) 

for m = 1, 2, 3, . . . . 

2. Holomorphic curves in CP". We next discuss the Cartan-Ahlfors generali­
zation of the Second Main Theorem (1.9) to holomorphic curves in CP", and 
we give Cartan's brief proof, which utilizes the lemma on the logarithmic 
derivative. Let w = (w0: . . . :wn) denote the homogeneous coordinates in 
CP". We let 

N(a,r) 

Tf(r) 
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(2.1) co = ( V ^ l /7T)33 log||w|| 

denote the Kâhler form (of the Fubini-Study metric) on CP", normalized so 
that co represents the positive generator of H\CPn

9 Z). 
Let/: C -» CP" be a holomorphic curve such that/(C) is not contained in a 

hyperplane of CP". We define the order function Tf(r) exactly as in (1.1) and 
(1.2). Equation (1.4) remains valid, where/: C-»CW+1 — {0} is a representa­
tive of/. A nonzero linear functional A on CM+1 determines the hyperplane 
{w: A(w) = 0} c CPW, which we shall also denote by A. For such a hyper­
plane A, we let rij(A, r) denote the number of zeroes of A ° ƒ (counted with 
multiplicities) in A(r), and we define N(A9 r) as in (1.5). It follows from 
Jensen's formula that 

(2.2) N(A, r) - Mrlog|^ o ƒ |-M,olog|,4 ° ƒ |. 

One also has the averaging formula 

(2.3) W - f N(A,r)o>»(A), 
•/CP" 

which generalizes (1.6). From (1.4) and (2.2), we obtain the First Main 
Theorem 

(2.4) N(A, r) + m(A, r) - Tf(r) + 0(1) 

where the proximity term m{A,r) is given by 

(2.5) m(A, r) = Mr log(||^|| \\f\\/\A « ƒ |) > 0. 

(We shall not mention the proximity term again.) Thus 

(2.6) N(A,r)<Tf(r)+0(l). 

We let W denote the Wronskian of ƒ, 

(2.7) W 

ƒ 0 («) J n 
(n) 

o, 

Rf = Div W. 

and we write 
(2.8) 

Thus 

(2.9) N(Rf,r) = Nw(0,r). 

In 1933, H. Cartan [7] obtained the Second Main Theorem 

(2.10) (q - n - l)7}(r) < 2 N(AJ9 r) - N(Rf, r) + Sf(r)9 

J-i 

for any collection {A{,..., Aq) of hyperplanes in general position. Cartan's 
Second Main Theorem (2.10) generalizes (1.9). Defining the defects exactly as 
in (1.10) one obtains immediately from (2.10) the Defect Relation 
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(2.11) 2 8(Aj) < n + 1, 

for Al9... 9Ag as above. 
In 1941, Ahlfors [2] proved (2.10) as well as similar inequalities for the 

"osculating curves", introducing an elegant geometric method that was later 
exploited by Carlson and Griffiths [6]. Other new proofs of (2.10) have been 
given by Cowen and Griffiths [10], by Chern [8] (for the case n = 2) and by 
Yamaguchi [26]. We now give Cartan's proof, which uses only the Lemma on 
the Logarithmic Derivative and elementary linear algebra. In §5 we shall give 
another new proof of (2.10) by making the map "equidimensional" and 
applying [6]. 

Let ƒ: C-+CP" be as above and let ƒ: C->Cn + 1 - {0} represent ƒ. Let 
q > n + 1, and let Av . . •, A E (Cw+1)* represent hyperplanes in CP* in 
general position; i.e., any n + 1 of the Aj are linearly independent. Let 
gj = Aj ° ƒ for j = 1 , . . . , q. Thus, each gj is a linear combination of the ft 

(0 < i < n), and each ft is a linear combination of any n + 1 of the g.. Note 
that 

(2.12) 2 N (AJ9 r)~N (Rp r) = Mr log 
*! • « f 

W + 0(1). 

Let 2 e C be fixed. Permute the g, so that 

(2.13) |*i(*)| < M * ) | < ' • • <|«,(*)| 

Suppose W(z) ^ 0. Then 

_ ! L _ L 3 
f i * • ' g, 

(2.14) 

where 

(2.15) 

and 

W 
= A 

« l £«+i 

D 

g\n) 

1 

f("V*t 

„(«) 
5 « + l 

1 

= A ^ at r, 

\ = det(Al...A„+l) E C - {0}. 
Note that X depends only on the permutation of the g} (given by (2.13)). Since 
the^ are linear combinations of gx,..., g„+l, we have by (2.13) the estimate 

| / ( * ) | < ' | & , + i ( * ) | < - - - < c | * ( * ) | , 

where c is independent of z. Therefore 

(2.16) (q - n - l)log|| ƒ || < log| g„+2 ...gq\ + c> at z. 
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Combining (2.14) and (2.16), we obtain 

Si • • • & 
( * - n - l ) l o g | | / | | < l o g + log|2)| + c" at z, 

W 

where the constant c" = c' + max log 1/|X| is independent of z. We can 
replace the gj by the functions gj = gy//0 in (2.15) without altering D. Thus 

l og | i ) | <2 log + | gy ) / è |+ log(/i + 1)! (1 < 7 < 9, 1 < i < n), 

and therefore 

(2.17) (9 - « - l)log|[ƒ || < logj g ' '^gg |+Slog+ |gyVgyl + 0(l)-

Averaging (2.17) over the circle {|z| = r] and applying (1.4) and (2.12), we 
obtain 

(q - n - l)7}(r) < 2 > 0 V ) ~ * ( ^ ' ) + ^ r S l o g | ^ l > / ^ | +O(l)-

The Second Main Theorem (2.10) then follows by applying the Lemma on the 
Logarithmic Derivative (1.13) and observing that 

W < 7 > ( r ) + 0 ( l ) . 

As a consequence of the Defect Relation (2.11), one obtains Borel's 
theorem [3] that ƒ cannot omit n + 2 hyperplanes in general position. Re­
cently, M. Green [11] showed that ƒ cannot omit any set of n + 2 distinct 
hyperplanes. 

W. Stoll [23] showed in 1953 that if/: Cn -»CP" is a meromorphic map 
such that f(Cm) is not contained in a hyperplane of CPrt (m and AZ arbitrary), 
then the Defect Relation (2.11) holds. Recently, A. Vitter [25] generalized 
Cartan's proof to yield Stoll's defect relation. The key step in Vitter's 
generalization is a "Lemma on the Logarithmic Partial Derivatives." (If 
m > n, then the result follows from Griffiths and King [16].) 

3. Generalizations to several variables. We digress from the topic of this 
article, holomorphic curves, to discuss holomorphic and meromorphic maps 
from Cn into projective algebraic manifolds, which we shall later apply to the 
study of holomorphic curves. For further discussions of value distribution 
theory in several complex variables, see [27] and [29]. 

The first generalization of the Second Main Theorem to functions of 
several complex variables was Stoll's 1953 work [23] mentioned at the end of 
§2. As in the theory of Cartan [7] and Ahlfors [2], Stoll's results concern the 
intersection of the image off with hyperplanes in CPW. In 1972, J. Carlson 
and P. Griffiths [6] achieved a major breakthrough by obtaining defect 
relations for hypersurfaces other than hyperplanes. A special case of the 
result of Carlson and Griffiths is that if Dl9. . . , Dq are smooth hypersurfaces 
of degree d in CP" with "normal crossings," and if/: Cn -» CP" is a holomor­
phic map of maximal rank, then 

(3.1) 2S(Dj) < (AZ+ \)/d. 

(The definition of the defects 8 (Dj) is given below.) We now give an outline 
of the Carlson-Griffiths theory. 
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Let M be a projective algebraic manifold, and let L be a holomorphic line 
bundle on M. Suppose L is given a hermitian metric h. The normalized 
curvature form TJ G cx(L) of A is defined by 

(3.2) t! = (V=ï /2ir)93 log A(*, *), 

where e is any nonvanishing local holomorphic section of L. 
We let 

co = (V^l /77)83 log||z|| on C - {0}, 

/r(z) = min[log+(r/||z||),log(r/r0)] 

for z G C", r > r0 where r0 is a fixed positive number, as before. 
Let ƒ: C -> M be a holomorphic map. Carlson and Griffiths [6] define the 

order function of ƒ with respect to L, 

(3.3) T(L, r) - 7}(L, r) - f ƒ• q A Z^""1. 

(If/: C -» CPn and L is the hyperplane section bundle with curvature form co, 
then Tf(L9 r) agrees with the order function 7}(r) defined in §2.) Definition 
(3.3) does not depend, modulo an 0(1) term, on the choice of the metric for 
L. Note that if TJ is everywhere positive definite (in which case one says that L 
is positive), then Tf(L, r) is positive. Now suppose that L is positive, and 
suppose that D is a positive divisor on M associated to L; i.e., D is the divisor 
(zero-set with multiplicities) of a holomorphic section of L. One defines the 
counting function 

(3.4) N(D,r)=( lro>n~l 

Jf*D 

(where the multiplicities of the divisor f*D are taken into account when 
evaluating the integral), provided that the image of ƒ is not contained in the 
support of D. Identifying the set of positive divisors of L with the projective 
space P(^), where E = T(M, 0 (L)), we have the averaging formula 

(3.5) T(L9 r) - ( N(D, r)o>(D) + 0(1), 

where p = dim J? — 1. (See, for example, [20].) The Carlson-Griffiths First 
Main Theorem gives the inequality 

(3.6) N(D9r) < T(L9r)+ 0(1), 

The main result of Carlson and Griffiths [6] is the Second Main Theorem 
and defect relation for equidimensional maps, which we state below. A 
hypersurface D is said to have normal crossings if locally D is given as the 
zero locus of the product zx . . . zk (1 < k < dim M) where zx,..., zm are 
local coordinates in M. We let KM denote the line bundle of holomorphic 
forms of top degree on M. We let Sf(r) have the same meaning as in (1.8), 
with 7}(r) replaced by Tf(L9 r)9 where L is any positive line bundle on M. A 
map ƒ: Cn -» M, where dim M = n9 is said to be nondegenerate if ƒ has rank 
n at some point of C"; if ƒ is nondegenerate, we let Rf denote the divisor of 
the Jacobian determinant of ƒ. With this notation in mind, we can now state 
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the Carlson-Griffiths Second Main Theorem: 

(3.7) THEOREM [6]. Let ƒ: Cn -» M be a nondegenerate holomorphic map, 
where M is an n-dimensional compact complex manifold. Let L be a positive 
line bundle on M, and let D be a positive divisor associated to L. Suppose that 
D is the union of smooth hypersurfaces (with multiplicity one) and D has normal 
crossings. Then 

7}(L, r) + Tf(KM> r) < N(D, r) - N(Rp r) + Sf(r). 

Combining (3.6) and (3.7), we obtain the inequality 

(3-8) Tf(KM,r)<Sf(r). 

Since (3.8) is contradictory if KM is positive, we have the following con­
sequence of (3.7): 

(3.9) COROLLARY [6]. If M is an n-dimensional compact complex manifold 
with KM positive, then there do not exist any nondegenerate holomorphic maps 
f: C" -> M. 

Theorem (3.7) also yields defect relations. As before, we define the defect 

N(D9r) 
(3.10) 8(D) = liminf 1 -

T(L9r) 

and note that 0 < 8(D) < 1. Let 

(3.11) X(L) = inf{* € R: tcx(L) + ct(KM) > 0}, 

where y > 0, for y E H2(M, R), means that y can be represented by an 
everywhere positive-semi-definite (1, l)-form on M. (Carlson and Griffiths [6] 
use the notation X(L) - [c1(/C*r)/c1(L)]. If H2(M, R) « R, then \(L) = 
cx(K%j)/cx(L).) Suppose Dl9 • . . , Dq are smooth hypersurfaces with normal 
crossings such that each D} is the divisor of a section of L. Applying Theorem 
(3.7) to the line bundle Lq, and using the fact that [X(L) + e]T(L, r) + 
T(KW r) > 0(1) for e > 0, one obtains the Carlson-Griffiths Defect Relations 

(3.12) Ii8(DJ)<\(L). 

For example, let M = CP", and let L = L%, where LH is the hyperplane 
section bundle on CP\ Then #2(CPW, Z) « Z, cx(LH) = 1, c^K^) = n + 
1. Thus \(L%) = (n + l)/rf, and we obtain the defect relation (3.1). (The case 
d = 1 of (3.1) gives StolFs defect relation for equidimensional holomorphic 
maps.) 

The distribution of values of a holomorphic map ƒ: Cw ~» CPW with respect 
to algebraic submanifolds of CPW of codimension greater than one is an 
entirely different story. For example, the Fatou-Bieberbach map ƒ: C2 ~» C2 

omits a (rather large) open set, so there are no defect relations with respect to 
points in CP2. Furthermore, J""1 {point} may grow much faster than ƒ (for 
n > 2), so the First Main Theorem is not valid for codimension greater than 
one (see [9]). 

The Second Main Theorem (3.7) and the Defect Relations (3.12) have been 
extended in [16] to the case where C" is replaced by any affine algebraic 
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manifold V with dim V > n ** dim Af, and in [21] where ƒ is allowed to be a 
meromorphic map and D can have singularities other than normal crossings. 
If D has singularities, then there is an extra term in (3.7) and the defect 
relations are of the form 25 CD,) < X(L) + s(L, D) where s(L9 D) depends 
only on L and the algebraic structure of the singularities of the divisor 
D = IJ Dj. In particular, it follows from [2, pp. 173-175] that (3.7) remains 
valid when ƒ is meromorphic and D is any divisor of L with only normal 
crossing singularities (e.g., a component of D may intersect itself normally). 
Thus, a nondegenerate meromorphic map from Cn to CPW cannot omit a 
hypersurface of degree greater than n + 1 with only normal crossing singular­
ities. 

4. Open problems on holomorphic curves. One of the major open problems 
in value distribution theory is whether the Carlson-Griffiths Defect Relations 
(3.12) for equidimensional maps hold for holomorphic curves. Conjecture I 
below restates this question, which has been previously asked by P. Griffiths 
[15] and M. Green. 

A holomorphic curve ƒ: C -> M in an algebraic manifold M is said to be 
algebraically nondegenerate if /(C) is not contained in any algebraic hyper­
surface of M. 

CONJECTURE I. Let L be a positive line bundle on a projective algebraic 
manifold Af, and let Dv . . . , Dq be smooth multiplicity-one divisors of L with 
normal crossings. Let ƒ: C ~» M be an algebraically nondegenerate holomorphic 
curve. Then, using the notation of §3, 

The following two conjectures are special cases of Conjecture I. 

CONJECTURE la. Let M be a projective algebraic manifold with KM positive. 
Then there are no algebraically nondegenerate holomorphic curves in M. 

CONJECTURE lb. Let f: C -» CPW be an algebraically nondegenerate holomor­
phic curve, and let D{, . . . , Dq be smooth hypersurfaces in CP" of degree d, 
such that Dx U • • • u Dq has normal crossings. Then 

^S(Dj) <(>*+ \)/d. 

Conjecture la for the case dim M = 1 follows from Liouville's Theorem 
and the fact that the compact complex curves of genus greater than 1 are 
uniformized by the disk. The case d = 1 of Conjecture lb is Cartan's Defect 
Relation (2.11). 

A consequence of Conjecture I would be the Picard-type Theorem that an 
algebraically nondegenerate holomorphic curve in M cannot omit any divisor 
of L if X(L) < 1, or equivalently if Kv ® L is positive. For example, if 
M = CPW this Picard-type Theorem can be stated as follows: 

CONJECTURE IC. Let D be a hypersurface with normal crossings in CPW of 
degree at least n + 2. Then there are no algebraically nondegenerate holomor­
phic curves f: C -> CP" - D. 

Some special cases of Conjectures la and Ic have been studied by M. 
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Green [12], [14]. Let Vd denote the "Fermât variety" of degree d, 

[w G CP": wtf + wf + • • • + wf = 0}. 

Suppose ƒ: C -» Vd is a holomorphic curve. M. Green [14] proved that /(C) 
lies in a hyperplane section of Vd if d > n2 - 1. Conjecture la would imply 
that ƒ is algebraically degenerate if d > n + 1. Now suppose we are given a 
holomorphic curve g: C ~» CPn - Krf. M. Green [14] proved that g(C) lies in 
a projective hyperplane if d > n(n + 1). Conjecture Ic would imply that g is 
algebraically degenerate if d > n + 1. N. Toda [24] also studied maps g: C -» 
CP" - J^ and obtained a similar result. 

EXAMPLE ([14, p. 74] OR [13, p. 7]). Let/: C -» CP2 - V4 be given by 

/0(z) - 1 + e4\ fx(z) - t f = T ( l - e4<), /2(z) - ^ 8 e ' . 

Then /(C) is contained in the irreducible quartic 

2w4 + (w0 + Wj/V — 1 ) (w0 — Wj/V —1 ) = 0. 

This example shows that the conclusion of Conjecture Ic is false if one 
assumes only that/(C) does not lie in a hyperplane. 

A question which naturally arises from the above example is whether any 
holomorphic curve in CP" — Z>, where D is given as in Conjecture Ic, must lie 
in an algebraic hypersurface of degree at most equal to the degree of D. The 
answer to this question is unknown. However, the following new example 
constructed by M. Green and R. Molzon suggests that the answer to this 
question probably is "no": 

EXAMPLE. Consider the homogeneous polynomials 

Qx = wxw3 + a(w0w3 - wf), Q2 = w0w2 + aw2
v 

where a is a complex constant. Let M be the algebraic hypersurface in CP3 

given by the equation 

01^1 + 02*2 = 0. 
One can easily check that M is nonsingular if a = 0. Therefore, M is 

nonsingular for sufficiently small a. (In fact, M is singular for only finitely 
many values of a.) Choose a ^ O such that M is nonsingular, and let 
ƒ: C -> CP3 be given by 

/ 0 ( z ) - l + z, / j ^ - o z O + z), / 2 ( z ) = -a 3z 2 ( l + z), /3(z) = a6z4. 

Since Qx ° ƒ = Q2 ° ƒ = 0, it follows that ƒ is a holomorphic curve in M. Let 
L = LH\M, where Z^ is the hyperplane section bundle in CP3. We note that 
KM = Ld e g M"4 = L, and thus X(L) = - 1 . Therefore, the conclusion of Con­
jecture I does not hold in this case for any collection of divisors of L. Of 
course, the curve ƒ is algebraically degenerate, /(C) being contained in a 
divisor of L2, but not in a divisor of L. Thus Conjecture I is false in general if 
we replace algebraic nondegeneracy by the requirement that/(C) does not lie 
in a divisor of L. (However, I do not know of any such counterexample with 
X(L) positive.) This example also shows that if KM is positive as in Conjecture 
la, then the holomorphic curves in M do not necessarily lie in divisors of KM. 
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Suppose that M is an algebraic surface imbedded in some CPn and let L be 
a positive line bundle on M. It is not known if there is a bound on the degree 
of /(C), where ƒ is an algebraically degenerate holomorphic curve such that 
the defect relation of Conjecture I fails. In particular, Conjecture la suggests 
the following question: 

PROBLEM. Let M be a projective algebraic surface such that KM is positive. 
Is there only a finite number of rational and elliptic curves in Ml 

This problem could perhaps best be attacked by transcendental methods. 
We can instead assume that M contains no rational or elliptic curves, and 

state in place of Conjecture la: 

CONJECTURE II. Let M be a projective algebraic manifold that contains no 
rational or elliptic curves. Then there are no holomorphic curves in M. 

The hyperbolic manifolds (see [17]) have the property that they contain no 
holomorphic curves. A result of Brody's thesis is that the converse is true for 
compact manifolds: 

THEOREM (R. BRODY [4]). Let M be a compact complex manifold. Then M is 
hyperbolic if and only if M contains no holomorphic curves. 

Thus, Conjecture II is equivalent to the statement that a projective alge­
braic manifold is hyperbolic if and only if it contains no rational or elliptic 
curves. The problem of describing the hyperbolic algebraic manifolds of 
dimension > 2 is quite difficult. (A compact complex curve is hyperbolic if 
and only if its genus is greater than 1.) Brody and Green [5] recently 
constructed a one-parameter family {Mt} of algebraic hypersurfaces in CP3 

such that Mt is hyperbolic f or t ^ 0 but M0 is not hyperbolic (M0 - V2d, 
d > 25). Their example answers two old questions. First, it provides simply-
connected compact hyperbolic manifolds, which were conjectured not to 
exist. Second, it shows that hyperbolicity is not a topological invariant, 
contrary to an assertion of Bloch» 

A result similar to Conjecture la was recently obtained by T. Ochiai. Let M 
be an «-dimensional projective algebraic manifold. Ochiai [28] proved that if 
the space of holomorphic one-forms on M has dimension greater than n 
and if the Albanese map of M is an imbedding, then every holomorphic curve 
in M is algebraically degenerate. 

5. Yet another proof of the Cartan-Ahlfors theorem. We use the results of 
Carlson and Griffiths [6] to give a new geometric proof of the Second Main 
Theorem (2.10). This proof arose from an unsuccessful attempt to prove 
Conjecture I. 

We first prove Theorem (2.10) for the case where/: C-»CP" is definite 
order map (and /(C) is not contained in a hyperplane). Choose a representa­
tion ƒ : C ~> C + 1 - {0} of ƒ such that the fj are of finite order. (For example, 
let <j> be a Weierstrass product such that Div <j> = f*Div w0, and let fj = 
«kfC^/wo)-) We shall construct a meromorphic map F from C1 X CPW~l into 
CP" such that F(t, (1:0: . . . :0)) = ƒ(*), and such that the order and count­
ing functions of F are roughly equal to those off. Let F: C1 X Cn -» C + 1 be 
given by 
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(5.1) F{t, z0, zl9.. . , zn_x) - zj (t) + zj\t) + • . . + *„_, ƒ ^ - " (O . 

The map F is then defined by the commutative diagram of meromorphic maps 

C1 x C" —^->C" + 1 

C1 x CP""1 —^->CP" 

where the vertical arrows are the natural (meromorphic) maps. Let RF denote 
the divisor of the Jacobian determinant of F. One easily verifies the identity 

(5.2) RF= RfX C P * 1 + C1 X H, 

where Rf is given by (2.8) and H is the hyperplane {zn^x = 0}. Let 

l,(t, z) = /,(*), P = ( V ^ T /lm)dt A * + «' 

on C1 X CPW_1, where co' is the normalized Kàhler form (recall (2.1)) of 
CPW_1. For a divisor D on C1 X CP""1, we write 

(5.3) N(D,r) = (lr/l
n-1. 

We define the counting function for a hyperplane A in CPW by 

N(A,r) = N(J*A,r). 

It follows from (5.2) and (5.3) that 

(5.4) N(RF,r) = N(Rf,r) + y(r), 

where 

We similarly define the order function 

(5.5) y(r) - (a - 1) ^ ^ ƒ U O * A * - ^ y 1 ('2 - r0
2). 

(5.6) f(r) - 7>(r) - JF*<O A W ' 1 , 

where co is given by (2.1). (The form i7*^ has locally integrable coefficients on 
C1 X CP""1, and of course is C00 where F is holomorphic. See [21, p. 161].) 

We shall use the notation 

(5.7) Avez<J>(z)=f <t>ù>n~l 

JCpn-l 

for a function <j> on CP"~ K We let Fz: C-*CP" be given by F2(t) = F(t9 z), for 
each z eCP". Note that F (1 :0 :... : 0 )=/. We write 

TM(r)-TFa(r), N2(A9 r) = NFg(A9 r). 

(5.8) LEMMA. f(r) = Ave,7;(r) + y(r). 

PROOF. Let 
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(5.9) F (t, z) = Ft (0 = ƒ (0 + f /'(O + • . . + ^ i ƒ <-»(,), 
z0 z0 

regarded as an (/* + l)-tuple of meromorphic functions (for t G C, z G 
CP""1). Note that for almost all z G CP"""1» Fz has values in C + I - {0} and 
is a representative of F2. From the identity of currents 

(5.10) ( V ^ T /w)33 log||F|| - F*<o - div z0 

(see [21, Lemma 2.6] and [6, 1.12]), we conclude that 

f(r) - ( ^ | ± - 33 log||F||, /,/?«-' ) + Y(r). 

Evaluating the pairing in the above formula, one obtains 

( " ^ ~ ddlog\\Fl l,fi"~l \ - ƒ 33 logHFIIA/y"1 « Ave2r2(r) 

(where the integral is over those points of C1 X (CP* - {z0 = 0}) where 
F ¥= 0), which proves the lemma. 

Using the identity 

(5.11) ( V ^ T /TT)33 log|i4 ° F | = F*Div^ - Divz0, 

for A G (Cw+I)*, one can repeat the above proof to obtain the following 
analogue of Lemma (5.8) for the counting function: 

(5.12) LEMMA. N(A, r) = A\ezNz(A, r) + y(r), for any hyperplane A c 
CP". 

One can show that the First Main Theorem 

N(A,r) < f{r)+ 0(1) 

(where A is a projective hyperplane) is valid for our modified order and 
counting functions. (This F.M.T. is needed only for the proof of the S.M.T. 
below.) Let {Ax,..., Aq) be a collection of hyperplanes in general position. 
Using the methods of Carlson and Griffiths [6], we obtain the Second Main 
Theorem 

(5.13) (f - it - l)T(r) < 2 N(AJ9r) - N(RF,r) - ny(r) + SF(r). 

PROOF OF (5.13). (This proof assumes familiarity with [6], [16] or [21] and 
can be omitted without loss of continuity.) We consider the Carlson-Griffiths 
singular volume form ^ on CP" (see p. 566 of [6]) that blows up along the 
hypersurface D = Ax u • • • U Aq. We let F*V =* £j3w. The proof of Lemma 
3.7 in [21] (which extends Lemma 1.14 in [6] or Lemma 6.20 in [16] to 
meromorphic mappings) yields the current identity 

(5.14) ( V ^ T /2TT)33 log € + Ric j8" - F*Ric * - F*D + RF. 

Note that (5.14) contains the extra term Ric /?", and that 
RicjÖ" = -uw'. 

The Second Main Theorem (5.13) follows from (5.14) as in the proof of the 
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S.M.T. in [6], [15], or [21, pp. 168-169], except in place of \i(r) we define 

ju(r) = ±MrAvezlog£(/,z). 

(The extra term — ny(r) in (5.13) comes from the term Ric /J" in (5.14).) 
Combining (5.4), (5.8), (5.12), and the Second Main Theorem (5.13), we 

obtain the inequality 

(5.15) (q - n - l)Avez7;(r) < 2 *™MAj> r) ~ N(Rf> r) + SF{T). 

The Second Main Theorem (2.10) is a consequence of (5.15), (5.8) and the 
following two estimates: 

(5.16) LEMMA. \Tf(r) - AvQ2T2(r)\ < Sf(r). 

(5.17) LEMMA. \Nf(A9 r) - AVQ2N2(A, r)\ < Sf(r). 

(Recall that Sf(r) < O (log r) when ƒ is of finite order.) We shall use the 
following inequality in the proof of (5.16) and (5.17): Suppose g is a 
meromorphic function on C, and let 

& - S + (V*o)* ' + • • • + (zn^/z0)g^l\ 
for each z = (z0: . . . :zn_x) e CP""1 with z0 ^ 0 . Then 

(5.18) 0 < Ave2log|g2|- log|g|< 2 log+ |g ( / ) /s |+ 5 log n. 

To verify (5.18), we note that for w = (w0, , , , , ^ , ) 6 C " - {0}, we have 

(5.19) Ave>g(|z • w|/|z0|) - log||w|| < 2 l o g > y | + £log n. 

The inequality (5.18) follows from (5.19) with w, = gU)/g (for 0 < j < 
n- 1). 

To prove (5.17), we let ^ G (C"+1)* represent a hyperplane in CP", and we 
let g = ,4 o ƒ. Then gz = 4̂ ° Fz. Inequality (5.17) follows by averaging (5.18) 
over the circle {|f| = r] and applying (2.2) and the Lemma of the Logarith­
mic Derivative (1.13). 

We now verify (5.16): We note that 

log||/ | |= Ave>g(|/ .w|/ |w0 | ) < Ave„Ave,(|£. w|/|w0|) 

- Avezlog||Fz||. 

(z e CP""1, w G CP".) The inequality in (5.20) follows from the first inequal­
ity in (5.18) applied to the function g = WQ1(/-W), and the equalities in 
(5.20) follow from (5.19). It then follows from (1.4) that 7}(r) < Avez T2(r) + 
0(1). To obtain the reverse inequality we note that 

log||£|| < max,log|(Fz)J+ log(/i + 1) 

< log||/1|+ max,log|(£)//~| + \og{n + 1) (0 < j < n). 

Averaging over z and applying (5.18) with g = fp we then conclude that 
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Ave,log||Fz||< log||/1|+ 2 l o g + | / j ° / ^ | + log(» T 1) + ilog» 

(0 < j < n, 1 < / < n - 1). Applying (1.4) and (1.13), we obtain 

Ave zr z(r)< 7}(r) + $ ( r ) , 

which completes the proof of (5.16) and thus of Theorem (2.10) for the case 
where ƒ has finite order. 

We now briefly indicate how the proof is modified for the case where ƒ is of 
infinite order. In this case, we let / # : C-»CW+1 - {0} be an arbitrary 
representation off, and we let 

/-0//o*)/# . 
be regarded as an (« + l)-tuple of meromorphic functions. Let E — 
Support(Div f * ) , and choose an entire function «f> such that Div 4> = E (with 
multiplicity 1). We let xj, = ƒ„*$"-', and define / : C1 X C" -*C"+ I by 

F(t,z) = W)[zJ (t) + zj'(t) + • • • + zn.J <-'>(/)], 

which induces F as before. We obtain the identity 

RF= RfX C P n l + C1 X H + (n2 - 1)£ X C P n l 

in place of (5.2). The proof then proceeds as before except we subtract the 
quantity (n2 — l)N(E, r) from the right-hand side of (5.15). Also, in Lemmas 
(5.16) and (5.17) we replace the term 7}(r) by 2}(r) + (n - 1)#(.E, r), and 
Nj(A, r) by A (̂̂ 4, r) + (n — l)N(E, r). To prove the revised Lemmas (5.16) 
and (5.17) we need to use the fact that 

2 J ( r ) < 2 } ( r ) + 0 ( l ) , 

and hence Sj(r) < Sf(r). 
In order to generalize this proof to apply to Conjecture I, one would need 

to construct F such that Lemmas (5.8), (5.12), (5.16), and (5.17) hold. This 
appears to be a formidable task. 
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