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main topics: Local Observables and Constructive Field Theory. Much thought 
has been given to the formulation of axioms in terms of local observables (e.g. 
a lattice of algebras of bounded operators) whose physical interpretation 
includes all possible experimental measurements which could be carried out in 
a space (or space-time) region. This section covers much early work of Haag, 
Kastler and Araki, but covers only a small part of the interesting results on 
superselection rules established by Haag, Doplicher and Roberts. The second 
aspect of Part 6 is an introduction to the existence problem for fields satisfying 
the axioms and to the analysis of detailed properties of solutions to model 
equations. This "constructive field theory" has been another major focus in the 
study of quantum fields over the past ten years. The authors devote the final 
section of their book to a brief but comprehensive survey of this work up to 
1971, when their manuscript was completed. 

All in all, the book provides a readable introduction to a large area of 
mathematical physics. In trying to include many things, the authors are 
occasionally incomplete or sloppy in minor ways. However, the book comple­
ments well the older books on axiomatic field theory by Jost and by Streater 
and Wightman, and a recent review by Streater in Reports of progress in 
physics. A mathematician interested in physics must be willing to learn some 
of the language and definitions of the physicist. This book is a good place to 
begin. 

ARTHUR JAFFE 
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
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Proof theory, by Gaisi Takeuti, Studies in Logic and the Foundations of 
Mathematics, vol. 81, North-Holland/American Elsevier, Amsterdam, Ox­
ford, New York, 1975, vii + 372 pp., $35.50. 

Takeuti places himself squarely in the line of development of Hubert and 
Gentzen, which we begin by retracing. Proof theory was conceived by Hubert 
as the means to carry out his grand program to secure the foundations of 
mathematics by purely mathematical means which were to be of the most 
elementary and evident kind. The logical structure of mathematical practice 
had been successfully mirrored within a variety of formal systems S for 
algebra, geometry, number theory, analysis, and set theory, all logically based 
in the predicate calculus (the logic of propositional connectives and quanti­
fiers). The consistency of each such S is a combinatorial proposition which 
may be shown to be equivalent to a number-theoretical statement of the form 
(for all natural numbers n)f(n) = g(n)9 where/, g are effectively computable. 
Hubert expected to be able to derive such statements using only quantifier-free 
logic, recursive definitions of functions and proof by induction. Each deriva­
tion of a specific numerical statement by these means has a finite model. This 
differs from the situation where quantifiers are essentially involved in the 
reasoning; thus even where the variables of S range over natural numbers one 
may say that application of the reasoning of the predicate calculus in S 
implicitly involves infinitistic concepts. 

To elaborate a bit: Hubert spoke of the quantifier-free numerical statements 
as the "real" ones, and of statements involving noncombinatorial concepts or 
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quantifiers as the "ideal" ones. He likened the use of the latter to the use of 
imaginary quantities or ideal divisors; the introduction of those had been 
justified by "consistency" proofs which showed how they could be eliminated 
in favor of combinations of familiar objects. Similarly, Hubert aimed to 
eliminate the use of infinitistic concepts and logic in derivations of finitistically 
meaningful statements. For this purpose, formal consistency of S would be 
sufficient as long as S contains a bare minimum of arithmetic; the reason is 
that in this case for each particular n0 with f(n0) ¥> g(n0), S proves f(nQ) 
# g(n0); hence if S is consistent and f(ri) = g(n) is provable in S, then for 
each n0,f(n0) = g(n0) must be true. The proof of consistency itself would 
have to be carried out entirely by finitary mathematical reasoning if the 
program were not to be circular. 

In addition to these general aims, Hubert devised a specific syntactic 
scheme, called the e-calculus, to carry through his program. In that scheme 
quantifiers are eliminated in favor of e-terms; at first sight it appeared 
reasonable to eliminate c-terms entirely from derivations of end-statements 
not containing them. Preliminary successes with the e-calculus were made in 
the 20's for the predicate calculus and for a fragment of Peano's axioms for 
elementary number theory by Ackermann and von Neumann, cf. [H, B]. Also 
Herbrand found another very original and appealing but complicated reduc­
tion of the theorems of the predicate calculus to the propositional calculus (cf. 
[H] or [vH, pp. 525-581]). However, the system PA of Peano's arithmetic itself 
turned out to provide an unexpectedly difficult obstacle, for reasons soon 
revealed by GödePs incompleteness theorems: no consistent extension S of PA 
could prove its own consistency. Thus finitist means as conceived up to that 
point could not possibly work for PA ; nor was there any real evidence that 
finitist methods in their full extent could somehow reach beyond PA let alone 
beyond systems of set theory. 

This was a great shock for the Hubert program, but not a complete reversal. 
The pieces were picked up by Gentzen who transformed the subject in a series 
of original and penetrating papers from 1934-1943 (now conveniently trans­
lated and collected in [G]). This was accomplished in three ways: (1) by 
introducing new kinds of logical systems to facilitate the studies, namely the 
so-called sequential calculi; (2) by isolating for these as chief result the so-
called cut-elimination theorem, guaranteeing that every derivation could be 
replaced by a direct one; and (3) by introducing elementary forms of 
transfinite induction as a principal means to go beyond number theory while 
staying within a quantifier-free formalism. 

Hilbert's ideas had developed during a period felt as that of a crisis in 
foundations, particularly following the appearance of the paradoxes in set 
theory. At the same time Brouwer challenged the whole platonist-realist 
conception of mathematics, rejected most of it as meaningless or unjustified 
and proceeded to rebuild mathematics on the basis of intuitionistic (construc­
tive) tenets. Hubert had hoped to "save" all of classical mathematics by his 
program and at the same time aimed to use only the most concrete intuition­
istic methods. However, once the dam was broken, it was no longer clear 
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which constructive methods were to be admitted in extensions of the program. 
Takeuti's general point of view in this subject is perhaps best revealed by 

the following quotation from his book (p. 96). 
"Comparison of our standpoint with some other standpoints may help one 

to understand our standpoint better. First, consider set theory. Our standpoint 
does not assume the absolute world as set theory does, which we can think of 
as being based on the notion of an "infinite mind". It is obvious that, on the 
contrary, it tries to avoid the absolute world of an "infinite mind" as much as 
possible. It is true that in the study of number theory, which does not involve 
the notion of sets, the absolute world of numbers 0, 1,2, . . . is not such a 
complicated notion; to an infinite mind it would be quite clear and transpar­
ent. Nevertheless, our minds being finite, it is, after all, an imaginary world to 
us, no matter how clear and transparent it may appear. Therefore we need 
reassurance of such a world in one way or another. 

Next, consider intuitionism. Although our standpoint and that of intuition-
ism have much in common, the difference may be expressed as follows. 

Our standpoint avoids abstract notions as much as possible, except those 
which are eventually reduced to concrete operations or Gedankenexperimente 
on concretely given sequences. Of course we also have to deal with operations 
on operations, etc. However, such operations, too, can be thought of as 
Gedankenexperimente on (concrete) operations. 

By contrast, intuitionism emphatically deals with abstract notions. This is 
seen by the fact that its basic notion of "construction" (or "proof") is 
absolutely abstract, and this abstract nature also seems necessary for its 
impredicative concept of "implication". It is not the aim of intuitionism to 
reduce these abstract notions to concrete notions as we do. 

We believe that our standpoint is a natural extension of Hubert's finitist 
standpoint, similar to that introduced by Gentzen, and so we call it the 
Hilbert-Gentzen finitist standpoint. 

Now a Gentzen-style consistency proof is carried out as follows: 
(1) Construct a suitable standard ordering, in the strictly finitist standpoint. 
(2) Convince oneself, in the Hilbert-Gentzen standpoint, that it is indeed a 

well-ordering. 
(3) Otherwise use only strictly finitist means in the consistency proof." 
An opposing point of view is taken by Kreisel in a long series of critical 

examinations of the subject (cf. [Kl] and [K2] particularly). He starts simply 
by asserting that there is not the shadow of a doubt as to the consistency of 
Zermelo-Fraenkel set theory let alone analysis or number theory. He argues 
that the paradoxes had nothing to do with the axiom of infinity, but stemmed 
rather from a confusion between sets and properties. Zermelo separated these 
and offered a perfectly clear explanation of what his axioms were supposed to 
be about, namely the cumulative hierarchy of sets (the result of iterating the 
cumulative power set operation Û ^ Û U 9(a)). Finally, and more generally, 
proofs which use abstract principles are not only more intelligible but, as a 
matter of fact, more reliable. From this point of view, the professed aim of 
proof theory to secure the foundations of mathematics is an ideological 
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hangover which is no longer tenable. The conclusion drawn from all this is not 
completely negative; Kreisel does not doubt that there is an interest in past 
and current proof-theoretical work, but has constantly been searching for 
further concepts and results (one might even say "mini-programs") to bring 
that out. While he has not made much headway with the more traditional 
proof-theorists (such as Schutte and Takeuti), I suspect most logicians (and 
mathematicians generally) will be sympathetic to this view and will be puzzled 
by some of the contortions of the present book. It goes against the grain to 
prove results by specially restricted methods when they are recognized already 
to be true, unless one sees sharpenings of the conclusions or interesting side-
products. I shall try to suggest a point of view intermediate between Takeuti's 
and Kreisel's at the conclusion of this review. 

The book is divided into three parts. Part I reviews Gentzen's approach to 
the first-order predicate calculus and PA. Part II is anomalous; it deals with 
second-order, finite order, and infinitary systems by nonconstructive methods, 
since no constructive means of the kind sought by Takeuti have been found 
to work in these cases. Part III presents a detailed constructive consistency 
proof of a certain subsystem of second-order arithmetic ("analysis"). 

The Gentzen sequential calculus LK differs from the familiar kind where 
one generates formulas A from initial formulas (axioms) by rules of inference 
of the form: from A{9 ...9An infer A. Instead, one generates consequence 
relations between formulas, indicated by A{9 . . . , An -» A or simply T -* A 
where T = A[9... 9 An; this is read: A is a consequence of T. Now the axioms 
are certain special T -* A and the rules of inference take the form: from 
(hypotheses) T{ -* A{9..., Tn -» An infer (the conclusion) V -* A. Initially, 
Gentzen set up a system NK of natural deduction which closely follows 
ordinary reasoning. There the paradigm case is for implication D9 with the 
two rules: 

(D'introduction) from T, A -» B infer T -» (A D B\ and 

(D -elimination) from Y -> A and V -* (A D B) infer V -» B. 

Gentzen found this awkward to deal with for his proof-theoretical work and 
shifted to LK9 in which one derives more generally (and more symmetrically) 
sequents T -» A where T — A{9...9An and A = B{9..., Bm; T -» A is inter­
preted as: the disjunction of Bl9 . . . , Bm is a consequence of the conjunction 
of Ax,..., An. Now the rules for D take the form: 

(left D) from T -» A, A and B9 T -> A infer (A D B)9T -» A. 

(right D) from A9 T -» A, B infer T -> A, (A D B). 

Each connective and quantifier has, similarly, characteristic left and right 
rules. The axioms (in the predicate calculus) are all those of the form A -> A. 
In addition, one has structural rules (permutation, contraction, etc.), and the 
rule 
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(cut) from r -* A, A and A, F -» A' infer I\ F -> A, A'. 

Except for this, each rule has the subformula property: every formula in any 
hypothesis of the rule is a subformula of some formula of the conclusion. Thus 
any cut-free derivation has a direct character. On the other hand, the cut-rule 
is needed to establish the equivalence of LK with usual (complete) calculi for 
the predicate calculus in an elementary way. Gentzen's principal result for LK 
was the cut-elimination theorem, which shows how to replace each derivation 
<® of a sequent T -* A by a cut-free derivation <>D* of the same sequent. The 
passage <>D H» D̂* is effective and proceeds by induction on a certain measure 
of complexity of ^ (compounded from the locations of each cut-rule applied 
in % together with the complexity of the "cut-formula" at that point). 

After going over this, Takeuti draws some familiar model-theoretic conse­
quences of the completeness of LK without the cut-rule, such as interpolation 
and definability theorems. However, these only require the existence for each 
valid sequent T -» A of some cut-free derivation of T -» A. It is shown that the 
completeness of cut-free LK can be established directly without combinatorial 
difficulties. (This is said to be by the method of Schutte, though Beth, 
Smullyan, and others should also be credited.) 

Another application given later (pp. 124-126) of the cut-elimination theo­
rem for LK is the nonfinite axiomatizability of PA. This was first proved by 
Ryll-Nardzewski by a special method; Kreisel and Wang then found proof-
theoretical arguments which permitted Montague to extend nonfinitizability to 
a variety of theories. (No credits are given by the author in connection with 
any of this work.) 

Though Gentzen used the same basic logical apparatus as LK for number 
theory, the situation was now different since one needed a new rule: 

(Induction) from A(x), T -> A, A(x + 1) infer ,4(0), T -> A, A(t). 
When t is a numeral this can be replaced by a finite sequence of cuts, using 
A(0), T -» A, ,4(1); A(\\ Y -» A, A(2)\ etc. However, in general, induction 
must be applied to get conclusions with variable t. Cut-elimination does not 
hold in this system. Gentzen only obtained a weaker result, but which is 
sufficient to establish the consistency of PA, namely: there is no derivation of 
the empty sequent -» . In any such derivation we can replace free variables by 
numerals and make reductions of induction at least in the "end-piece" of the 
derivation. Again a measure of complexity is involved, though no longer finite; 
it is assigned in the set of ordinals less than e0 (the limit of co, <ow, <ow<°, . . . ), 
Using Cantor normal form, a computable ordering of the natural numbers is 
naturally set up whose order type is e0. Then the principle of transfinite 
induction up to e0 applied to any particular number-theoretic property is 
equivalent to a statement in the language of number theory. Gentzen showed 
that with each derivation of -> of ordinal a may be associated a new 
derivation of -* with an ordinal /? < a. This is all done in an elementary 
effective way, so the only nonfinitist principle used to show consistency of PA 
is that of transfinite induction up to e0. 

It may be noted that transfinite induction is already present in a disguised 
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form in the classical method of descent in number theory. One way to show 
that there do not exist solutions of f(m,n) = 0, is by showing 

\fn{3mf(n,m) = 0 D 3n{ < n3mf(n,m) = 0}, 

or 

VA*{Vflj < ritimf{n{,m) ¥*• 0 D Vmf(n,m) ^ 0}. 

Assigning ordinal <o • « + m to the pair («, ra), quantifier-free induction up to w 
allows one to conclude ƒ («,m) # 0 for all «, m. 

Gentzen showed that for each initial segment < a of the natural recursive 
ordering of type eö the scheme of transfinite induction on < a is provable in 
PA. Repeating this, Takeuti goes to some pains (pp. 87-95) to show how by 
concrete operations, "Gedankenexperimenten" on such, etc. one establishes 
that "whenever a concrete method of constructing decreasing sequences of 
ordinals is given, any such decreasing sequence is finite". The reviewer finds it 
a bit deceptive that his argument is suggested as somehow more concrete or 
finitist than full number theory itself, since the central notion E{ƒ, a, n) of an 
operation ƒ being an (a, «)-eliminator is defined by induction on n as follows: 

E(f9p9n + 1) iff \fg\fa[E(g,a,n) D E(f(g\a • «*,*)]. 

Hence we are using the whole number-theoretic apparatus with quantifier 
logic, differing only from ordinary arithmetic in that the logic is intuitionistic. 
But the reduction of classical to intuitionistic number theory is quite simple by 
GödePs "negative" translation (p. 21). Here is the first place where a doubting 
reader will find it difficult to explain what is accomplished by all this and in 
what respect our "reassurance" has been increased. 

By examining the arguments in more detail, some consequences beyond 
mere consistency are drawn, such as Kreisel's (uncredited) characterization of 
the provably recursive functions of PA by number-theoretic forms of recursion 
up to a for each a < e0. 

The first half of Part II is devoted to a proof of the cut-elimination theorem 
for simple-type theory. This was conjectured by Takeuti some 25 years ago, 
and he attempted proof-theoretical attacks on it with only partial success (the 
greatest being represented in Part III). A positive solution by semantical 
methods was finally obtained by Tait for second-order logic (in 1966) and 
independently by Prawitz and Takahashi for full finite order logic (in 1967). 
These solutions were based on the semantical reformulation of the problem by 
Schutte (though not mentioned in this connection) as one of extending certain 
partial to total valuations. The significant improvements by Girard and thence 
Martin-Löf and Prawitz (cf. [SL], 1971) are mentioned, but only as producing 
"a variant and somewhat more elegant form of cut-elimination". It should 
have been explained that an essential improvement of these over the semanti­
cal results consists in showing that certain natural reduction procedures 
always lead from given derivations tf) of T -» A to cut-free derivations D̂* of 
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r -» A. On the other hand, the semantical proofs merely give the existence of 
some <3)* from the existence of D̂. The semantical proof by Prawitz and 
Takahashi is gone over in the book; it would have helped to have more 
informal explanation of its workings. 

The main obstacle to an extension of Gentzen-style arguments to type 
theory is that there is no useful means of complexity by which a formula 
3cp • A(q>) has greater complexity than A(V), where V is an abstract, say 
V = {xr\B(xr)}. The trouble is that B may have greater complexity than A. 
As pointed out by Kreisel, this is also the principal obstacle to the usefulness 
of the cut-elimination theorem for second- (or higher-) order logic: the 
subformula property is not met in any useful sense by the rule: 

(right 3) from T -» A, A(V) infer T -> A, 3yA((p) 
(nor, similarly, by the left V rule). On the other hand, it can still be shown that 
consistency of higher order arithmetic (analysis) is a consequence of this cut-
elimination theorem. 

Next the book moves on to infinitary systems (using infinitely long 
conjunctions, disjunctions, and quantifier sequences). One can establish 
cut-elimination theorems directly analogous to the result for LK. There is only 
the vaguest hope expressed that this may help with the official Hilbert-Gentzen 
program adopted by the author. Rather, work on these is of interest in 
connection with model theory and set theory. The latter enters the discussion 
of the logic with so-called heterogeneous quantifiers, e.g., 
V XQ ZJ X\ V ^ 2 3 X* ' * ' A \Xç\, X\ , x 2 , x 3 , . . , ) (the "game" quantifier). For the ob­
vious semantics of this in terms of Skolem functions we do not have the 
negation of the preceding equivalent to 

Z3 XQ \rX\ Z3 Xy V X* ' * * "~l/l \XQ , Xt , X^ > Xï , • • • ) 

unless a form of the axiom of determinateness AD holds. The matter is delicate, if 
not of dubious value, since AD conflicts with the axiom of choice. 

Part III is devoted to a proof of the consistency of a subsystem of second-
order arithmetic based on the n} (one set quantifier) comprehension principle, 
and related systems. For this purpose, special kinds of recursive orderings are 
set up called ordinal diagrams. In contrast to the ordering < e which 
corresponds naturally to the generation of ordinals under c0 by 4-, • and expw 

(and also considerable extensions of such), these orderings seem to be 
suggested only by their use in proof-theoretical reduction procedures. It is 
shown by intuitionistic arguments involving iterated generalized inductive 
definitions that these orderings are well founded. However, the author says 
that the proofs presented are "not very constructive", and promises improve­
ment in a future publication. The proofs of consistency using ordinal diagrams 
are themselves quite complicated. It would be completely unpersuasive to 
claim that these give us greater reassurance as to this part of formalized 
analysis. Some applications of the proof are given in the conclusion, among 
them bounds for the provable recursive well-orderings and provable recursive 
functions of these systems as classified by the orderings of ordinal diagrams; 
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it is not claimed that these bounds are best possible. 
Reference to the literature is scanty. Schütte's book [S] (a new revised and 

English translation of which is forthcoming) is mentioned particularly, but 
there is intentionally little overlap even though [S] also works heavily with 
sequential style calculi. The main difference is that Schutte systematically 
employs infinitary systems as a tool to treat finitary systems. Ordinals have an 
intrinsic role for these, as lengths of derivations. Thus, for example, PA is 
embedded in a system LK^ with the infinitary <o-rule; with each derivation^ 
of PA is associated a derivation ty+ of LK^\ The cut-elimination theorem 
holds in full for LK^ just as for LK. It turns out that for the succession of 
transformations <3) H» <3) + H > (<3) + )* with <3) in PA and (*D+)* cut-free, the final 
derivation has length < e0. Moreover, these derivations can be handled 
finitistically, by effective descriptions of their form. There is no loss in this 
approach for any consistency results and related applications such as given in 
this book while there is a real gain in transparence and understanding. (The 
approach is briefly indicated on pp. 123-124 and in §30, but with no 
discussion of the advantages.) 

Before concluding there are a few further small criticisms I would like to 
make: 

pp. 30-31. The cut-elimination theorem is used to prove the consistency of 
LK. It should be mentioned that its consistency may be trivially established 
with the one-element model. 

p. 38. The nonderivability in intuitionistic logic of some classically valid 
statements is left to the reader with no indication of proof; these would seem 
to need some sort of readability interpretation, which is nowhere mentioned 
in the book. 

p. 75. GödePs theorem on the definability of all primitive recursive functions 
in terms of + and • is stated without proof or reference to the literature, as if 
it were routine-which it is not. 

p. 142. The following proposition is curiously asserted: "If the cut-
elimination theorem holds for GlLC, then G] LC is consistent." The reason 
given for putting it this way is that "the proof of cut-elimination for G] LC is 
nonconstructive, and hence, on the basis of our finitist standpoint, we cannot 
claim the consistency of GXLC from that proof." But (cf. the remark above for 
p. 30), the consistency of simple type theory is immediate using a one-element 
model, as Gentzen realized long ago [G, #5]. Of course, the situation is quite 
different if one adds an axiom of infinity in some form or other. 

pp. 292-293. The discussion of programs of "quasi" foundations is vague 
and uninformative; there are no references to the literature. Roughly speaking, 
Takeuti is arguing (rightly) against semiconstructive developments of ana­
logues of classical analysis, such as recursive or hyperarithmetical analysis. 
However, no mention is made of systems with weak comprehension schemes 
which have recursion-theoretic or hyperarithmetic interpretations and in 
which classical analysis is actually generalized. Particular (predicative) systems 
of this kind were discussed by the reviewer in papers going back to 1964; for 
a more up-to-date approach, see [F2]. 
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In general, throughout the book credit for individual results and reference 
to the literature is casual and haphazard. 

Returning finally to the general question of aims, and against which 
accomplishments are to be measured, one may say that Takeuti's viewpoint is 
not convincingly supported by his work. The opposite approach of Kreisel 
[Kl, Part II] and [K2] is persuasive, at least to the following extent: proofs 
themselves should be the central objects of interest; proof theory is developing 
precise theories related to informal ideas about proofs and which illuminate 
our daily experience with them. Secondarily, proof theory gives us means to 
interrelate formal systems (e.g., by conservative extension results) and to 
characterize the power of formal systems (provable recursive well-orderings, 
functions, functional, etc.) which cannot be obtained by other metamathema-
tical methods. Finally, the theory should be mentioned as of value in 
connection with mechanical proof-procedures. 

What is less persuasive in Kreisel's view is the ex cathedra manner of 
acceptance of current systems of analysis and set theory. Not that the mental 
picture of the cumulative hierarchy is not convincing enough to warrant 
believing the consistency of set theory-indeed this picture provides quite an 
infallible guide when working within ZF; rather, it is that we really do not 
know what set-theoretical statements mean in the same way that we know 
what arithmetical statements mean. For, we have a complete mental picture of 
the totality N of natural numbers as generated from 0 by the successor 
operation, but no such picture of the supposed totality 9(N) of subsets of N. 
Thus the meaning of a statement A containing quantifiers \/x G 9(N)( • • • ) 
does not have the same definite character in our understanding as that of an 
arithmetical statement. Since the basic principle asserted for 9(N) is the 
existence, for any given property A(n% of a set X E ^(N) such that 
V«[« G X s A(ri)] (i.e., of {n G N\A(n)}) we have here the typical implica­
tive situation where an object (X) is supposed to be defined by reference (via 
second-order quantification in A(n)) to a totality (9(N)) of which it is a 
member. No interpretation of 9(N) as the set of all subsets of N definable in 
previous terms can satisfy this principle. (Gödel's interpretation in the 
constructible sets requires for its explanation the impredicative concept of 
arbitrary countable well-ordering or ordinal.) 

In view of the intuitive difference for us of number theory and set theory, it 
is thus natural to try to isolate that part of mathematics whose meaning is 
reducible to that of the natural numbers (so-called predicative mathematics) 
and to measure its practical extent. Recent results of Friedman and of the 
reviewer are of interest in this connection. Friedman found a fragment S of 
set theory in which all of Bishop's constructive analysis [B] can be formalized, 
and yet such that S is a conservative extension of (intuitionistic) PA ; a similar 
result was then found by me for a fragment of one of my systems of 'explicit 
mathematics'. The practical significance comes from the fact that [B] provides 
constructive versions of all of classical analysis and a good deal of modern 
analysis; moreover, as Bishop remarks [B, p. 9], each of his theorems implies 
the corresponding classical result when one adds decidability of numerical 
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quantification. (This part of mathematics is thus completely predicative.) Even 
the n}-comprehension axiom goes far beyond what is needed for foundations 
of actual analysis, though it does enter with descriptive set theory (Borelian 
mathematics). Practically speaking then, this part of mathematics rests not 
only on a secure but computationally and concretely meaningful basis. 
Without denying the possibility (by GödePs theorem) that set-theoretically 
abstract principles may really be needed to make advances on concrete open 
problems, there has yet to be found a mathematically interesting example of 
such. This explains perhaps the source of confidence in daily mathematics, and 
at any rate the irrelevance of most of proof theory to any qualms about that. 
On the other hand, it is the logicians' task qua logician to investigate broad 
underlying concepts and points of view about mathematics such as finitist, 
intuitionist, predicativist, and platonist-realist, and to formulate these in 
precise terms and in as great generality as possible. One then tries to illuminate 
our understanding of these by myriad models, interpretations, and interreduc-
tions. 

Despite my many criticisms of this book I believe it should be on the shelf 
of any serious student of proof-theory, alongside the classic source papers in 
[vH] and [G], the classic text [H, B], and the more up-to-date [S]. In addition, 
one should mention Prawitz [P] (cf. also [SL, pp. 235-307]) to see Gentzen's 
systems of natural deduction put to work, Troelstra [T] for the metamathemat-
jcs of intuitionistic systems and for the very important functional interpreta­
tion of Gödel, and [Fl] for infinitary systems and model-theoretical applica­
tions. The present book has much that is not to be found in these other 
references, and does show how far one can push Gentzen's direct approach. 
In particular, the work on n}-comprehension reveals Takeuti as a master of 
reductive syntactic proof-theory, and provides a challenge yet to be met by 
other and hopefully more transparent methods. Unfortunately, the student 
will not be able to go far in this subject before plunging into the current 
literature, which is both extensive and difficult. One may start with [Kl], [K2], 
and [F2] as guides and proceed to the collections [IPT], [SL], and [PTS] for 
much representative work. Despite confusions and conflicts of aims, or 
perhaps because of them, there is still much to be learned and done. 
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