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Looking for a research area in which you can start at the ground floor? This 
is it—the classification of varieties in dimensions three and higher. Of course 
the prerequisites might sound a little stiff: algebraic geometry, complex 
analytic geometry, and the "classical" classification theory in dimensions one 
and two, but in reality it's not as bad as one might fear. The author of the text 
under review gave an informal course on the subject at the University of 
Mannheim in 1972, and the lecture notes (by P. Cherenack) form the basis of 
the text. At the very least this book is a way to take a peek at what is going 
on in this new field, and maybe even it is a way to get into it. 

The first pleasant surprise the neophyte encounters in the study of geometry 
is that the two main categories in which geometers work-the analytic category 
and the algebraic category-actually have a very large overlap. Thus studying 
one category allows one to absorb "by osmosis" results in the other. The 
terminology is sometimes different; for example, here is a short, rough, 
transliteration guide: 

Algebraist's term Analysts' term 

complete compact 
separated Hausdorff 
nonsingular variety manifold 
algebraic space (complete) Moishezon space (compact) 
projective variety Kahler variety (compact) 
rational map meromorphic map 
birational map bimeromorphic map 
curve Riemann surface 

Many other terms (e.g. proper, normal, irreducible) have the same geometric 
content but a particular formulation of a definition in one category may not 
make sense in the other. For example the characterization of a proper map as 
being universally closed works in both categories, while the characterization 
that the inverse image of compact is compact is too weak in algebraic 
geometry. The author basically works in the analytic category with compact, 
reduced and irreducible, complex spaces, but he devotes much of the first 
chapter stating the details of the correspondences which connect these two 
categories. He also reviews the basic theorems in geometry-Stein factorization, 
Grauert's theorem on the coherence of the higher direct images of a coherent 
sheaf, resolution of singularities, modifications, etc. There are of course few 
proofs given here, but references to the literature are given, and the presence 
of the statements greatly enhances the clarity of the entire exposition. 
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The adjective "algebraic" is used when dealing with compact Moishezon 
spaces. These are complex analytic spaces V where the C-transcendence 
degree a(V) of C(K), the field of meromorphic functions V ~» C, equals the 
dimension dim V of the space. (A reducible space is Moishezon if each 
irreducible component is Moishezon.) Any projective variety is Moishezon. If 
M is any complex space, one can easily construct a fiber map (the author's 
term for a surjective morphism with connected fibers)/: M* -* Kof nonsin­
gular spaces where M* is bimeromorphically equivalent to Af, V is projective, 
and/induces an isomorphism C(K) ^ C(M*) = C(M). Such a map is called 
an algebraic reduction and provides a link between nonalgebraic and alge­
braic spaces. (Cf. [5] for a nice application.) 

The first unpleasant surprise one discovers in studying classification theory 
is that it is not a classification at all, but rather an informative grouping of 
varieties by means of certain birational invariants. This grouping has much the 
flavor of grouping nonsingular projective curves according to their genus, but 
as we shall see this grouping in higher dimensions is not nearly as good as 
grouping curves by their genus! 

The first and most basic invariant which is studied in this theory is the 
Kodaira dimension of a vareity K, thus it is worth understanding its definition. 
To simplify, let's assume V is nonsingular (in addition to the standing 
assumptions of compactness, irreducibility, etc.) of dimension n. If L is a line 
bundle on V then we can define a meromorphic mapping <f>L: V ~~* PN by 
4>L(Z) = (<t>o(z): <fr(z): ' • • : <ftv(*)) w h e r e foo^i* •••»*#} i s a b a s i s f o r 

Z/°(K,L), the group of global sections of L. If V(L) denotes the image of </>L, 
we define the L-dimension of V to be K(L, V) = max{dim V(l?m): m > 0}. 
(The dimension of the empty set is taken to be — oo.) When we take L to be 
the canonical bundle Sly of «-forms on V we get the Kodaira dimension of K, 
K(V) = /c(£2£, V). For example, for a curve C: K(C) — —oo if C is rational 
(genus g = 0), /c(C) = 0 if C is elliptic (genus g = 1), and K(C) = 1 otherwise 
(genus g > 2). The Kodaira dimension is the basis for the grouping of 
varieties mentioned already, and here with curves we can see that the Kodaira 
dimension is a very crude invariant indeed. In the case of surfaces, just how 
the Kodaira dimension fits into the classification scheme is well understood 
(cf. [2, p. 415] for a nice table): If K denotes the divisor class of the canonical 
bundle üy on a surface V then K(V) > 0 if and only if K • D > 0 for all 
divisors D > 0 in which case 0 < K(V) < 1 if K2 = 0 and K(V) « 2 if 
K2 > 0. Another nice example is when V is an n dimensional "complete 
intersection" defined in pm+n by homogeneous polynomials Fx, . . . , Fm of 
degree dX9...9dm then K(V) = -oo, 0, n according to whether 2 rfy is 
< , = , > than m 4- n -f 1. Thus three-folds in P4 of degree < 4, 5, > 6 have 
Kodaira dimension — oo, 0, and 3 respectively. Of course, when L is ample, i.e. 
when some tensor power of L gives a projective embedding, then /c(L, V) 
= dim V. This occurs for instance when V = D/T where D is a bounded 
domain in Cn and T is a discontinuous group of automorphisms acting freely 
on D with compact quotient. In this case Kodaira has shown that the 
canonical bundle is ample. These and other examples are discussed in detail 
in Chapter two of the text. 
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The author spends much of his book discussing both results and conjectures 
on these dimensions. For example one has the following facts: 

1.K(L, V) < a(V) < dimK. 
2. If ƒ: V -» W is a fibre map, V and W nonsingular, then for any line 

bundle L on V there is a dense open subset U of W such that for w G U 

K(L,V)<K(LW,VW) + dim W 

where Lw denotes the restriction of L to the fiber Vw = /~!(w). 
3. If ƒ is as in (2) and M is a line bundle on W then *(ƒ* M, K) = K(A/, W). 
4. ^ X K2) = K{VX) + zc(K2). 

Despite the plethora of such results, much remains unknown about even the 
Kodaira dimension. For example the inequality in (2) is rather weak, because 
the term dim W does not involve L. In the case of the Kodaira dimension one 
has the following conjecture for spaces V of dimension n: 

Cn: For a fiber map ƒ: V —» W between nonsingular algebraic varieties, 
K(V) > K{W) + K{VW) for a dense open set of w in W. 

Putting this together with (2) above would give K(W) < K(V) - K(VW) 
< dim W. This holds for n = dim V = 2, but it is unknown in higher 
dimensions except in special cases. The author even spends an entire chapter 
proving this inequality in the case that ƒ is a fiber bundle map whose fiber F 
is algebraic and whose structure group is the entire automorphism group 
Aut(F) of F. While this case may seem rather special, the author concludes 
this chapter with a counterexample to this inequality where/: V —> E is a fiber 
bundle over an elliptic curve £, the fiber F is a nonalgebraic three dimensional 
torus, and the structure group is Aut(F). 

The first three chapters conclude with a proof of Iitaka's "fundamental 
theorem of classification theory". While the name is a little pompous, the 
theorem is nice. Under the hypothesis K(V) > 0, the theorem asserts the 
existence and essential uniqueness of a modification (= a blowing up) 
K* -* V and a surjective map ƒ: K* -» W* where W* is nonsingular and 
projective, dim W* = K(K), and for a dense subset U of IV* the fibers of ƒ 
over U are irreducible, nonsingular, and have Kodaira dimension zero. (There 
is also a similar theorem for the L-dimension.) Of course the map ƒ is induced 
by one of the pluri-canonical mappings </>L where L = ü^m for some large 
m > 0, and the key point of the theorem is that most fibers will have Kodaira 
dimension zero and geometric dimension dimK—K(K). For example if 
dim V = 2 there are only two cases: K(V) = 1 and K(V) = 2. In the first case 
the pluri-canonical mappings (for large m) have curves as images and genus 
one (K = 0) curves (dim = 2 — 1 = 1) for fibers. In the second case when 
K(V) = 2, the canonical bundle is not quite ample, but for large m the pluri-
canonical mappings <f>L : V -> W are isomorphisms except along certain curves 
in V which get collapsed to points in W (these points are in fact rational 
singularities). Here we see why both V and W are replaced by V* and W* in 
the conclusion of the theorem. Note also that the general fiber here is just a 
point as is always the case when K(V) = dim V. Thus the moral of the 
theorem is that one way to get a classification theory in dimensions n > 2 is 
to proceed as follows: Kodaira dimensions K = — oo, 0, n have to be handled 
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separately, while the intermediate cases K — 1, . . • , « — 1 are reduced to these 
by studying the fiber map ƒ given by the theorem. Note that when K ~ «, the 
space is automatically algebraic by property (1) above. 

There is a third fiber map used in this theory. Recall that to each compact 
complex manifold Vthere is a complex torus A(V) (which is an abelian variety 
if V is algebraic) and a map a: V -* A(V) with the following universal 
property. If g: V -» T is any map of V into a complex torus T then there is a 
unique Lie group homomorphism h: A(V) —> Tand a unique / E Tsuch that 
g(x) = h(a(x)) -f t for all JC G V. Thus a is essentially unique and is called 
"the" albanese mapping; A(V) is called the albanese torus. Unfortunately in 
general a is not surjective, nor does K-* a(V) have connected fibers. The 
third fiber map fi comes from the Stein factorization of a: 

V >a(V)CA(V) 

One has dim^(F) < dim//°(F, closed 1 forms) < dimH°(V,Ql
v) with 

equality when V is algebraic. To study a and /3 the author studies subvarieties 
of complex tori and concludes for example, if V is nonsingular then K(/?(F)) 
> K(OC(V)) > 0 and K((X(V)) = 0 if and only if a is surjective. 

To get a feeling for these results, let's suppose conjecture Cn above is true. 
Then K(V) > K(VW) -f K(P(V)) > K(VW) + /c(a(F)). Suppose also K(V) = 0, 
then there is a nonzero element y G H°(V, Qy®m) for some m > 0, and a not 
too difficult argument shows that almost everywhere y induces a nonzero 
element in the corresponding group of the fiber, hence we may assume 
K{VW) > 0. Collecting these inequalities together implies that 0 > K(\Ç) 
4* K{OL(V)) > 0 hence K(VW) = 0 and /c(a(F)) = 0. By the result mentioned in 
the previous paragraph we can conclude that a is surjective, and also we have 
that the fibres (of /?) have Kodaira dimension zero. The author's strongest 
conjecture about algebraic varieties of Kodaira dimension zero concludes not 
only what we have here using conjecture Cw, but also that the fibres of a are 
connected, i.e. that a = /3. These conjectures are related to other, more 
striking, conjectures discussed at the end of Chapter four. 

In addition to results already mentioned, the remainder of the book 
contains rather special results. There are some results on complex spaces 
whose algebraic dimension, a{V\ is zero. These are the spaces which are the 
least algebraic in terms of having meromorphic functions. Here K = -oo or 0, 
the albanese map a is surjective, and the albanese torus also has algebraic 
dimension zero. Thus one can squeeze out some information on what kinds of 
fibers a has in this case. There are special results on Kummer manifolds-
nonsingular models of quotients of an abelian variety by a finite group of 
analytic automorphisms. Here K < 0, the albanese is a fiber map, and K = 0 
if and only if there exists a birationally equivalent manifold whose albanese 
mapping is an analytic fiber bundle whose fiber is a Kummer manifold with 
Kodaira dimension zero. In this section also are some calculations with the 
Kummer manifolds associated to Cn modulo a cyclic action. There is a section 
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on complex parallelizable manifolds-which are all of the form G/T where G 
is a 1-connected complex Lie group and T is a discrete subgroup. There is a 
section on complex structures on a product of two odd dimensional spheres, 
e.g. the Hopf manifolds structures on Sl XS2""1 . Finally, if these results 
aren't miscellaneous enough, there is a section entitled "Miscellaneous results" 
and a final section on the classification of surfaces which might be useful to 
glance at but should be studied elsewhere. 

So to where has classification theory progressed? For curves there are even 
moduli spaces-varieties whose points are in natural one-one correspondence 
with the isomorphism classes of the objects you are classifying-which are 
"understood" for genus g < 10 (cf. [6] for an utterly delightful account). 
While these moduli spaces still offer good research problems, the classification 
per se is complete. The rough classification for surfaces, while not completely 
finished, is certainly a rather sophisticated one. Moduli spaces only exist now 
for surfaces of general type (K = dim = 2) and are not well understood. 
None the less, the theory is complete enough to want to look at three-folds. 
Here, the subject is miserable in its infancy. The five possible Kodaira 
dimensions give five fertile and essentially unplowed areas of research: 

K = -oo. There is no "Castelnuovo's criterion" for a ruled variety (bimer­
omorphically equivalent to P1 X V) as there is for surfaces, nor is there a 
criterion for rationality (bimeromorphically equivalent to Pw). The flurry of 
activity on cubic three-folds a couple years ago (cf. [1], [3], [4]) produced some 
methods to distinguish a rational from a unirational (finite image of a rational) 
variety. Thus we know that cubic three-folds in P4~which are easily seen to be 
unirational-are not rational, but it is still not known whether the quartic three-
folds (still K = — oo) are all unirational. Also, many classical claims (cf. [8]) 
about Fano threefolds (where the dual of Sly is ample) remain unproven 
despite recent work (cf. [10]). 

K = 0. As we saw above the albanese mapping comes into play. Just 
glancing at the classification of surfaces of Kodaira dimension zero gives 
another reason to expect abelian varieties and tori to enter the picture. Indeed, 
one of the conjectures in the text is that an algebraic three-fold in this class 
has a finite (ramified) cover which is birationally equivalent to the product of 
an abelian surface and an elliptic curve. One technical problem here is that it 
is not necessarily true for three-folds with ic = 0 that a multiple of the 
canonical class is trivial as is the case for surfaces with K = 0. Curiously even 
quintic threefolds seem to be unstudied. 

K = 1. Here the high pluri-canonical mappings have curves as images and 
surfaces of Kodaira dimension zero as fibers, but studies of families of surfaces 
aren't too common (cf. however, [7], [9]). Actually we have several moduli 
problems here depending upon where you are in the classification of these 
surfaces, and none of these moduli problems is well understood. 

K = 2. In this case the high pluri-canonical mappings have surfaces as 
images and elliptic curves as fibres. One would think that this case would be 
amenable to attack. It should be noted that the author has generalized 
Kodaira's "canonical bundle formula" in this situation when the branch locus 
has normal crossings to give an explicit formula for a multiple of the canonical 
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class on the three-fold [this is (11.8.1) of the text], 
K = 3. For surfaces of maximal Kodaira dimension the higher pluri-

canonical mappings are morphisms; it is unknown whether this is the case for 
three-folds. It is also not known whether deformations of such three-folds still 
have K = 3. One would hope that a moduli space would exist for such three-
folds as one does for surfaces of general type; indeed, some work towards this 
goal has been accomplished now. Again the case of sextic three-folds in P4 

doesn't seem to have been studied. 
The author has indeed provided the mathematical community with a 

valuable manuscript. It could well serve as the basis for independent study or 
for a seminar; although, for a seminar topic perhaps a detailed look at the 
classification theory of surfaces would be more profitable. As a reference it 
serves best as a guide to the literature; although one notable feature is that it 
includes some new and better proofs of published results. 
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Let us begin with a brief history of why physicists attach great importance 
to the quantum theory of fields. Dirac, Heisenberg and other great scientists 
conceived this theory as a synthesis of two extremely fruitful ideas. On the one 
hand, relativistic quantum mechanics (the Dirac equation) had extended 
Schrödinger mechanics to predict quantitatively the fine structure of the 
hydrogen atom spectrum. It also suggested the existence of antimatter. On the 
other hand, classical field theory (Maxwell's equations for electromagnetism 
and the Newton-Einstein theory of gravity) provided the theoretical basis for 
macroscopic physics. The hypothesis of quantum field theory was that 


