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1. Introduction. We introduce three partial orders arising from multiplica­
tion alteration by two-cocycles and show how some order properties of an 
algebra are related to its structure. Throughout this note C is an (associative) al­
gebra with unit 1 over a commutative ring k, o = 2 a( <8> bt ® ct in C ® C <8> C 
is a C-two-cocycle with unity element ea, and C° is the A;-algebra obtained from 
C and o with product x° * y° - (J^^xb^c^f. The reader is referred to [2] for 
the basic theory of multiplication alteration by two-cocycles. The author extends 
thanks to Moss Sweedler for directing this research. 

2. Definitions. In this section we define three partial orders on the class 
of fc-algebras which are due to Sweedler. 

DEFINITION 2.1. C, D ^-algebras. C Amitsur dominates D if there is a C-
two-cocycle o with D = C° as ^-algebras. C is an Amitsur atom if C Amitsur 
dominates D implies D = C. 

EXAMPLE. The ^-algebra of two by two upper triangular matrices with 
entries in k is an Amitsur atom. 

Given a C-two-cocycle o and a CCT-two-cocycle r, writing out (x°)T * (ya)T 

suggests a candidate for a C-two-cocycle y with (C a ) r = C7 via (x°)T <-> xy. 

Direct calculation shows this element is a C-two-cocycle. 

PROPOSITION 2.2. Amitsur dominance is a partial order on the class of k-

algebras. 

We define a map <pCT: C° <S> C°° -+ C ® C° by <pa(x
ff ® y°°) = 2 a{afxbf 

® (Çjbiyci)°> where C° is the opposite algebra of C. A straightforward calcula­
tion using the C-two-cocycle relations for o shows that y0 is a fc-algebra map. Let 
the change of rings functor induced by </?a from the category M(C) of C-bimodules 
to the category M(C°) of Ca-bimodules be denoted ( )°. 

DEFINITION 2.3. C, D fc-algebras. C Hochschild dominates D if there is a 
C-two-cocycle o with Z> = C° as /:-algebras and ( ) a is dense. C is a Hochschild 

atom if ( ) a is dense for all C-two-cocycles a. 

PROPOSITION 2.4. Hochschild dominance is a partial order. 

AMS (MOS) subject classifications (1970). Primary 16A48, 18H15; Secondary 16A16. 
Copyright © 1976, American Mathematical Society 



336 DAVE RIFFELMACHER 

Let A(C) be the category of fc-algebras over C. Define a functor F°: A(C) 
- * A(C°) by F°(C -£>D) = Ca -£+ Df(<°\ where f°(aa) = f(aY(<j) and ftp) = 
/®3(a), and 

c / c° 

with h(df(a)) = / i (^ ( < 7 ) . 
DEFINITION 2.5. C, Z) ^-algebras. C categorically dominates D if there is a 

C-two-cocycle a with Z> a Ca as fc-algebras and F a : 4(C) —* 4(Ca) is dense. C 
is a categorical atom if F a is dense for all C-two-cocycles o. 

PROPOSITION 2.6. Categorical dominance is a partial order. 

3. Three characterization theorems. We present one theorem to indicate 
how each of the partial orders from §2 may be used to characterize a type of k-
algebra. The first theorem provides the converse of a result of [2]. 

THEOREM 3.1. k field. C k-algebra of k-dimension n. The following are 
equivalent: 

(a) C is a central simple k-algebra. 
(b) C Amitsur dominates all k-algebras of k-dimension n. 
(c) C Amitsur dominates k © •" • © k and k[x] l(xn). 
(d) C Amitsur dominates a k-separable algebra and a k-purely inseparable 

{cf. [3]) algebra. 

INDICATION OF PROOF, (a) implies (b) is [2, Theorem 6.1]. The implica­
tion (d) => (a) follows from the behavior of the center Z(C) of C and the Jacobson 
radical J(C) of C under multiplication alteration by two-cocycles. 

Before stating the next two theorems, we recall a class of C-two-cocycles 
mentioned in [2]. 

EXAMPLE (WATERHOUSE). Let B be a -̂separable subalgebra of C with 
separability idempotent e. Then aB = e ® l + l ® e - ( l ® e)(e ® 1) is a C-
two-cocycle with ea = 1. 

THEOREM 3.2. k field. C an algebraic k-algebra with nilpotent Jacobson 
radical J(C) and C/J(C) locally finite. The following are equivalent: 

(a) ( )a: M(C) —-> M(Ca) is an equivalence for all o. 
(b) C is a Hochschild atom. 
(c) All k-separable subalgebras of C are central 
(d) ya is an isomorphism for all C-two-cocycles o. 

INDICATION OF PROOF. The implication (b) =• (c) follows from a study of 
the functors ( )°B for Waterhouse two-cocycles. To show (c) implies (d), one 
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proves that under the condition of (c) the hypothesis of the following lemma 
holds for all o. 

LEMMA 3.3. Let o = 2 at ® bt ® ct be a C-two-cocycle and 

*a = Z V / ®z{C)bl ® c,hi ®z(c)c? 

in C ®z(c)C° ® C ®z(c)C°- ÏÏ zo zs invertible, ipQ is an isomorphism. 

THEOREM 3.4. k field. C an algebraic k-algebra with nilpotent Jacobson 
radical J(C) and C/J(C) locally finite. The following are equivalent: 

(a) F°: A(C) —• A(Ca) is an equivalence for all o. 
(b) C is a categorical atom. 
(c) C has no k-separable subalgebras (except k). 
(d) All C-two-cocycles are invertible. 

INDICATION OF PROOF. The implication (b) =» (c) follows from a study of 
the functors F°B for Waterhouse two-cocycles. One proves (c) and (d) are equi­
valent using Wedderburn-Artin structure theory (cf. [1]) and the theory of purely 
inseparable algebras [3]. Then, after a reduction to the case ea = 1, one shows 
that under the hypotheses of (c) and (d), the condition of the following lemma 
holds for all C-two-cocycles a with ea = 1. 

LEMMA 3.5. Let o = Xat® bt ® ci be a C-two-cocycle with ea = I and 
let 

"o = Z(%%%\)° ® \ ® (%V° ® %\ ® ( V ' i ) 0 ® ch 
in (C° ® O 3. If ooG is invertible, there is a C-two-cocycle r with F* o Fa = 

4. Remark. If d is any element of C ® C ® C, we may still define a func­

tor F6 on A(C). Then the image of F6 is in A(C8) iff ô is a C-two-cocycle. 

This provides an easy proof of Proposition 2.2. 
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