CLASSIFICATION OF AUTOMORPHISMS OF HYPERFINITE FACTORS OF TYPE II₁ AND II_{∞} AND APPLICATION TO TYPE III FACTORS

BY A. CONNES

Communicated by I. M. Singer, April 10, 1975

ABSTRACT. For each integer $p = 0, 1, 2 \cdots$ and complex number γ , $\gamma^p = 1$ ($\gamma = 1$ for p = 0) we define an automorphism s_p^{γ} of the hyperfinite factor of type II₁, R. For any automorphism α of R there is a unique couple (p, γ) and a unitary $v \in R$ such that α is conjugate to Ad $v \circ s_p^{\gamma}$. Let $R_{0,1}$ be the tensor product of R by a I_{∞} factor. There is, up to conjugacy, only one automorphism θ_{λ} of $R_{0,1}$ such that θ_{λ} multiplies the trace by λ , provided $\lambda \neq 1$.

Introduction. The classification of type III factors that we proposed in [2] relates isomorphism classes of type III_{λ} factors, $\lambda \in]0, 1[$ with outer conjugacy classes of automorphisms of factors of type II_{∞} . An obvious criticism to the value of such a relation is then the following: Is it possible to classify automorphisms even for the simplest factor of type II_{∞} , namely $R_{0,1}$ the tensor product of R, the hyperfinite II_1 , by a I_{∞} factor. We answer this question in this paper, showing that for any $\lambda \in]0, 1[$ there is only one automorphism, up to conjugacy, of $R_{0,1}$ which multiplies the trace by λ . The proof of this fact relies on the classification of automorphisms of the hyperfinite factor R (see Theorem 1) which in turn uses mainly the analogy between classical ergodic theory and ergodic theory on a nonabelian von Neumann algebra.

Automorphisms of the hyperfinite factor of type II₁. Recall that if M is a factor and $\theta \in \text{Aut } M$, one defines the outer period $p_0(\theta)$ as the period of θ modulo inner automorphisms (i.e. $\theta^k \in \text{Int } M \Leftrightarrow k \in p_0(\theta)Z$). Also the obstruction of θ , noted $\gamma(\theta)$, is the root of unity in C such that $(\theta^{P_0} = \text{Ad } v, v \text{ unitary}$ in $M) \Rightarrow \theta(v) = \gamma v$. Finally α and $\beta \in \text{Aut } M$ are outer conjugate iff β is conjugate to the product of α by an inner automorphism.

THEOREM 1. Two automorphisms α , β of R are outer conjugate if and only if $p_0(\alpha) = p_0(\beta)$ and $\gamma(\alpha) = \gamma(\beta)$.

In particular, any two aperiodic automorphisms α , β of R are outer conjugate. This relies on an analogue of Rokhlin's theorem. In the case $p_0(\alpha) \neq 0$ the proof uses the tensor product as a group structure on the set Br(Z/p, R) of

AMS (MOS) subject classifications (1970). Primary 46L10.

outer conjugacy classes of α 's with $p_0(\alpha) = p$ (see [5]). For $p \neq 0$ and $\gamma \in \mathbb{C}$, $\gamma^p = 1$, there is, up to conjugacy, only one automorphism s_p^{γ} of R with period p order γ and invariants p, γ . This automorphism s_p^{γ} has been described in [4], [5]. For p = 0 we let s_0 be the bilateral shift on R when R is written $R = \bigotimes_{\nu \in \mathbb{Z}} (R_1)_{\nu}$ with R_1 isomorphic to R.

Theorem 1 means that up to conjugacy any automorphism of R is the product of an s_p^{γ} by an inner automorphism.

COROLLARY 2. The group $\operatorname{Out} R = \operatorname{Aut} R/\operatorname{Int} R$ has no nontrivial normal subgroup.

In particular the center of Out R is trivial, unlike for any type III factors [2, 1.2.8b].

Corollary 2 means that R cannot break in a significant and invariant way into simpler objects.

COROLLARY 3. Let N be a finite von Neumann algebra generated by a hyperfinite von Neumann subalgebra P and a unitary U, $UPU^* = P$, then N is hyperfinite.

One shows, using Theorem 1, that any automorphism α of P generates the same full group [2, 1.5.4] as an automorphism β such that for some increasing sequence of finite dimensional subalgebras K_{ν} , $\nu \in N$, of P one has $\beta(K_{\nu}) = K_{\nu}$ for all ν , and $\bigcup_{\nu=1}^{\infty} K_{\nu}$ dense in P. Then one replaces U, Ad $U/P = \alpha$ by a unitary $V \in N$ such that Ad $V/P = \beta$.

With Corollary 3 one can then prove a result, due to Golodets when N is properly infinite (see [6]).

COROLLARY 4. Let P be a hyperfinite von Neumann algebra and G a solvable group of unitaries in L(H) such that $vPv^* = P$ for all $v \in G$; then $(P \cup G)''$ is hyperfinite.

In particular, any representation of a solvable group generates a hyperfinite von Neumann algebra.

Automorphisms of the known hyperfinite factor of type II_{∞} . Let N be a factor of type II_{∞} , τ a faithful semifinite normal trace on N, $\theta \in Aut N$; then we call the unique $\lambda \in R^*_+$ such that $\tau \circ \theta = \lambda \tau$ the module of $\theta \colon \lambda = \mod \theta$.

THEOREM 5. Let $R_{0,1} = R \otimes L(H)$ be the known hyperfinite factor of type II_{∞} . For any $\lambda \in R_{+}^*$, $\lambda \neq 1$, there is up to conjugacy only one $\theta \in$ Aut $R_{0,1}$ with module equal to λ .

Also, two automorphisms α , β or $R_{0,1}$ with module equal to 1 are outer conjugate iff they have the same outer period and the same obstruction.

COROLLARY 6. An automorphism $\theta \in \operatorname{Aut} R_{0,1}$ is a commutator $\theta =$

 $\alpha\beta\alpha^{-1}\beta^{-1}$ for $\alpha, \beta \in Aut \ R_{0,1}$ if and only if its module is equal to 1.

COROLLARY 7. Let M be a factor of type III_{λ} and $M = W^*(\theta, N)$ its discrete decomposition [2, Theorem 4.4.1]. Then M is isomorphic to Powers factor R_{λ} iff N is isomorphic to $R_{0,1}$.

BIBLIOGRAPHY

1. A. Connes and W. Krieger, Outer conjugacy of noncommutative Bernouilli shifts (to appear).

2. ____, Une classification des facteurs de type III, Ann. Sci. École Norm Sup. (4) 6 (1973), 133-252.

3. ———, On hyperfinite factors of type III₀ and Krieger's factors, J. Functional Analysis (to appear).

4. -----, A factor not antiisomorphic to itself, Bull. London Math. Soc. (to appear).

5. ——, Periodic automorphisms of the II₁ hyperfinite factor, Queen's preprint, 1974-25.

6. A. Connes, P. Ghez, R. Lima, D. Testard and E. J. Woods, Review of *Crossed prod*ucts of von Neumann algebras (paper of Golodets).

DEPARTMENT OF MATHEMATICS, QUEEN'S UNIVERSITY, KINGSTON, ON-TARIO, CANADA