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For a nice discussion pertaining to the essential spectrum of a single opera­
tor (bounded linear transformation) in a complex separable infinite dimensional 
Hubert space H, the reader is referred to Fillmore, Stampfli and Williams [4]. 
The purpose of this note is to announce analogous results concerning the joint es­
sential spectra of «-tuples of operators in H. 

Joint essential spectrum. In the sequel L(H) denotes the algebra of all op­
erators on H and K denotes the ideal of compact operators on H. Let v be the 
canonical homomorphism from L(H) onto the Calkin algebra L(H)IK = C. If 
A = (Ax, . . . , An) is an w-tuple of operators on tf, then we write v(Aj) = a^ the 
coset containing Aj for each /, 1 < ƒ <n, and a = (at, . . . , an). 

The joint essential spectrum of an w-tuple of operators A denoted by oe(A) 
is defined to be the joint spectrum o(a) of a. 

Here o(a) = ol(a) U or(a), where the left (right) joint spectrum ol(a) 
(or(a)) is defined as the set of all z = (zx, . . . , zn) in Cn (w-fold Cartesian prod­
uct of the set of all complex numbers C) such that \a, - z,-}1<7-<w generates a 
proper left (right) ideal in the Calkin algebra C. For this notion of joint spectrum, 
the reader may consult [1] and [5]. We call the set ol(a) (or(a)) as the left (right) 
joint essential spectrum and denote it by ol

e(A) (or
e(A)). Clearly, ol

e(A) C ol(A), 
or

e(A) C or(A)\ and hence oe(A) C o(A). Further, ifA = (Al9...9 An) is an 
«-tuple of essentially commuting (commuting modulo the compacts) operators, 
then oe(A) is a nonempty compact subset of Cn. 

The following theorem describes the relationship between the joint spectrum 
and the joint essential spectrum of an «-tuple of operators. 

THEOREM l.Let A = (Al9 . . . ,An) be an n-tuple of operators on H. 
Then o(A) = oe(A) U op(A) U op(A*)*, where A* = (A*, . . . , A*) and star on 
the right represents complex conjugates. 

A point z = (Zj, . . . , zn) of Cn is in op(A) (the joint eigenvalue of A) if 
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and only if there exists a nonzero vector ƒ in H such that (Aj - zj)f = 0 for each 

/, 1 < ƒ <n (consult [3]). 

COROLLARY l.Let A = (At, . . . , An) be as given above. Then: 
(a) ol(A) consists of o\{A) together with the joint eigenvalues of finite mul­

tiplicity. 
(b) or(A) consists of or

e(A) together with the set ofallz = (z1,..., zn) in 
Cn such that z* is a joint eigenvalue of finite multiplicity of A*. 

The next theorem characterizes the joint essential spectrum of special op­
erators. 

THEOREM 2. Let A = (At, . . . 9An) be an n-tuple of essentially hyponor-
mal operators {a^af < a*af9 1 < ƒ < n). Then oe(A) = or

e(A). 

COROLLARY 2 [2, LEMMA 2.1]. Let A = (At, . . . , An) be an n-tuple of 

essentially normal (A*Aj - AjA* is compact for each j , 1 < ƒ <n) operators. 
Then oe(A) = ol

e(A). 

Joint eigenvalues in the Calkin algebra. It is known that if b G C and z G 
o(b)9 then there is a projection p =£ 0 such that bp = zp or pb = zp [4]. The fol­
lowing theorem is an extension of this result to «-tuples of elements in C. 

THEOREM 3. Let a = (at, . . . , an) be an n-tuple of elements in the Calkin 
algebra C and z = (zx, . . . , zn) G o(a). Then there is a projection p =£ 0 such 
that either a^p = ZjP for all j , 1 < ƒ <n,or paf = zfp for all j , 1 < j < n. 

COROLLARY 3. Let A = (Ax, . . . , An) be an n-tuple of essentially commut­
ing operators. Then there are orthogonal projections P and Q of infinite rank and 
nullity and a point z = (zl9...,zn)ofCn such that {Aj - zj)P is compact for 
allj, 1 < ƒ <n9 and Q(Aj - zj) is compact for allj, 1 <j<n. 

COROLLARY 4. Let A = (Al9 . . . , An) be an n-tuple of essentially com­
muting operators. Then the operators A x, . . . , An have a common invariant sub-
space "modulo the compacts". 

THEOREM 4. Let a = (a19 . . . ,an) be an n-tuple ofhyponormal elements 
in the Calkin algebra C. Then: 

(a) z = (Zj, . . . , zn) G o(a) if and only if there is a projection p =£ 0 such 
that a*p = z*p for all j , 1 < j < n. 

(b) If p is a projection such that a^p — z^p9 1 < ƒ < n9 then a*p — z*p, 
1 < ƒ < # ! . 

The essential key to most of the results above is the following: 

THEOREM 5. The following statements are equivalent: 

(I) 0 = (0909 . . . 90) G o'e(A19 . . . 9An). 

( 2 ) 0 G a e ( 2 ; = 1 ^ . ) . 
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(3) There exists an orthogonal sequence {ek} such that \\A-ek\\ —> 0 as 

k —* °°, for each /, 1 <j<n. 

(4) There exists an infinite dimensional projection P such that AjP is com­

pact for each / , 1 < ƒ < n. 
(5) 2?=1A?Af is not Fredholm. 

( 6 ) 0 G a / ( a 1 , . . . , O -
(7)0 G a ^ *;*,). 

REMARK. Most of the results above can be extended to sequences {An} of 
operators with very little modifications in the proofs. However, for brevity, we 
have chosen to discuss them for «-tuples of operators in H. 
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