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1. This is an announcement of some theorems to appear in full detail else­
where [2]. 

Let X, Y be smooth manifolds, with dim X < dim Y and ƒ : X —> Fa gen­
eric immersion. To ƒ we will attach two numerical invariants M2(/) an(* v3(f), 
which will be described in the next paragraphs; it is conceivable that a more co-
homological, characteristic-classes-type approach to these invariants should be 
possible. Anyway, granted their definition one has the following results: 

THEOREM. Let ƒ : X —• Y be a generic immersion as above. The necessary 
F 

and sufficient condition for the existence of a smooth embedding X —> Y x R 
lifting f is that ju2(/) = *>3( ƒ) = 0. D 

F "lifts/" means that the following diagram is commutative: 

Y x R 

F>^* I 

X >Y 
f 

COROLLARY 1. Suppose that itxX = 0. The necessary and sufficient con­
dition for the existence of a smooth embedding X —> Y x Sx lifting f is that 
M2( / ) = v3(f) = 0. D 

The next corollary has some connection with the group ©3 of Milnor and 
Kervaire [1]. We consider a smooth homotopy 3-sphere 2 3 and two points p0, 
px G S3 (p0 =É px). We consider two small 2-spheres, in 2 3 , of centers p0 and 
px : S 2, SI. By the Smale-Hirsch immersion theory there is a (generic) regular 
homotopy: 

ƒ G Imnij (52 x ƒ, (S3 - {p0, pt}) x I) 

connecting S^S^. (The subscript / means that ƒ is level-preserving.) 

COROLLARY 2. Let S3 be a smooth homotopy 3-sphere, and f some gener-
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ie regular homotopy as above. If'M2( ƒ ) = ^(/) = °> tnen S 3 & h-cobordant to 

S3. D 

2. We shall define now the invariant jii2. Let M\f) denote the /-tuple 
points of ƒ at the source X: 

XDM2(f)DM3(f)D • • • DM\f)DMi+1(f)D • • • 

M\f) is a smooth manifold with singularities. Ml+1(f) C M\f) is exactly the 
singular set. 

Now, for an arbitrary set E, we consider the j'th cartesian power E\ the /th 
symmetric power SlE*-i-El, and the two diagonals: {*, . . . ,*} = diagf. ZT C 
Diag,. E C E'. f\ X—+Yinduces ƒ': X1 —* F1 and we define the i-tuple points 
at the X'', or ^ 'X level, by: 

Mt{f) = ( f O''(diag, Y) - Diag/ X C * ' , 

M / ( / ) = P / M / ( / ) C ^ X 
Note that Pt :Mt(f) —>Mt(f) is a covering space, and that the spaces involved 
are smooth (nonsingular) manifolds. Let -n^M^f) denote the set of connected 
components of Mt(f). The invariant ix2 is a function: JJL2: ^^^{f) ~~* i®> ^ 
where M2(a) = 0 iff the covering P2

l(a) —-* a is trivial. In view of Corollary 2, 
the following remark might be useful: 

PROPOSITION. Let M, N be manifolds of dimensions 2 and 3, M closed, 
dN = 0. M and N are supposed orientable and 

ƒ 
M xi J- >N xl 

is a generic regular homotopy. Then /z2( ƒ ) = 0 if and only if M2(f) is 
orientable. D 

3. We will define now invariants V3,P4, . . . which are the "good" generali­
zation of n2. Only P3 is need here, but it is perhaps more enlightening to define 
them all. 

We consider the inverse system: 

M2(f) 

Mtif) 

where da, da • • • are the i(i - 1) natural ways of an oriented /-tuple point to de­

generate into an oriented double point. 
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The "limit" of this system Hes in M2 x Mt x M., and its projection in M2 x 
Mt is denoted by S2 f.. One has a natural projection, which is a covering map 

Qi ~ 
S2 t — • Mt and if M{ B x = {xx, . . . , jcf}(the set of distinct points xx, . . . , 
x() then Qfx(x) — x x x - diag x. 

The structural group of the fibration Qt is reduced; instead of being S(i(i - 1)) 
it is 5(0 = Perm {x1, . . . , xf}. 

On 5 2 t we introduce the equivalence relation ~ (~.) which is, by defini­

tion, the smallest equivalence relation with the followign properties: 
(a) (x', x") ~ ( / , y") - (x", x') ~ ( / ' , y'). 

(b) If (x', x"), ( / , y") G S2J C M2 x Mt — M2 

have their images in the same connected components of M2, they are equivalent. 

(c) Let x E M. and consider g G S(i), a circular permutation of length /, 

acting on the fiber Qfx(x). If 

(xr, x,.)=y ~gy ~g2y - • •• ~g*-2y = (xf9xk), 

then (xr, xk) ~ (xr, xf). 

If / = 3, property (c) means just that 

(xr,xf) - (xf, xk) => (xr, xf) - (xr, xk). 

(Note that in (c) everything is in one fiber; in (a), (b) this is not necessarily so.) 
We shall define p.: fnQMi —• {0, 1, . . . } ( / > 3), as follows: 
If x G a E n0M., we consider the number of distinct subsets E C Qfx(x) 

such that: 
(a) E has / elements. 
(b) There exists y = (x;., xk) G. Q^x(x) and g G S(i), circular permutation 

of length /, such that E = {y, g, y, . . . , gt~1y}. 

(c) y ~gy - ' • ' - ^ ' " V 
[Two sets E, E' obtained one from the other by (x-, xk) —• (xk, x) will not be 
regarded as distinct.] 

The number of distinct E's is, by definition, P;(<*). (This number is inde­
pendent of x G a.) 

FINAL REMARKS. (1) The notations of [2] are slightly different from the 
notations used here. In [2], M. becomes M,- and S2 t becomes S2 r M. from 
[2] is the set of i-tuple points in X x Sl~lX. Looking at the i-tuple points at the 
level X x Sl~lX means, exactly, blowing up the singularities of Ml( f ) C X in 
order to get a smooth manifold (i.e., what one gets at the X x Sl~lX level is the 
"resolution of singularities" for M\f)). 

(2) We have assumed here that dim X < dim Y (or dim X = dim Y9 3 Y = 
0, X compact bounded, and ƒ | bX generic). Otherwise, the preceding theory is 
to be replaced by the following remark: A (connected) covering map X —> Y 
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can be lifted to Y x R if and only if it is infinitely cyclic. 
(3) The invariant JU2 (for the case dim X = dim 7 = 3 , . . . ) turns out to 

be deeply connected to the handle-body structure of Z3 x I [3]. 
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