SOME INVARIANTS OF GENERIC IMMERSIONS AND THEIR GEOMETRIC APPLICATIONS

BY V. POÉNARU

Communicated June 20, 1975

1. This is an announcement of some theorems to appear in full detail elsewhere [2].

Let X, Y be smooth manifolds, with dim $X < \dim Y$ and $f: X \longrightarrow Y$ a generic immersion. To f we will attach two numerical invariants $\mu_2(f)$ and $\nu_3(f)$, which will be described in the next paragraphs; it is conceivable that a more cohomological, characteristic-classes-type approach to these invariants should be possible. Anyway, granted their definition one has the following results:

THEOREM. Let $f: X \to Y$ be a generic immersion as above. The necessary and sufficient condition for the existence of a smooth embedding $X \xrightarrow{F} Y \times R$ lifting f is that $\mu_2(f) = \nu_3(f) = 0$. \square

F "lifts f" means that the following diagram is commutative:

COROLLARY 1. Suppose that $\pi_1 X = 0$. The necessary and sufficient condition for the existence of a smooth embedding $X \xrightarrow{G} Y \times S_1$ lifting f is that $\mu_2(f) = \nu_3(f) = 0$. \square

The next corollary has some connection with the group Θ_3 of Milnor and Kervaire [1]. We consider a smooth homotopy 3-sphere Σ_3 and two points p_0 , $p_1 \in \Sigma_3$ ($p_0 \neq p_1$). We consider two small 2-spheres, in Σ_3 , of centers p_0 and $p_1 \colon S_2^0$, S_2^1 . By the Smale-Hirsch immersion theory there is a (generic) regular homotopy:

$$f \in \operatorname{Imm}_{_{\boldsymbol{1}}}(S_2 \times I, (\Sigma_3 - \{p_0, p_1\}) \times I)$$

connecting S_2^0 , S_2^1 . (The subscript I means that f is level-preserving.)

COROLLARY 2. Let Σ_3 be a smooth homotopy 3-sphere, and f some gener-

AMS (MOS) subject classifications (1970). Primary 22-XX.

ic regular homotopy as above. If $\mu_2(f) = \nu_3(f) = 0$, then Σ_3 is h-cobordant to S_3 . \square

2. We shall define now the invariant μ_2 . Let $M^i(f)$ denote the *i*-tuple points of f at the source X:

$$X \supset M^2(f) \supset M^3(f) \supset \cdots \supset M^i(f) \supset M^{i+1}(f) \supset \cdots$$

 $M^{i}(f)$ is a smooth manifold with singularities. $M^{i+1}(f) \subseteq M^{i}(f)$ is exactly the singular set.

Now, for an arbitrary set E, we consider the *i*th cartesian power E^i , the *i*th symmetric power $S^iE \xleftarrow{P_i} E^i$, and the two diagonals: $\{x, \ldots, x\} = \operatorname{diag}_i E \subset \operatorname{Diag}_i E \subset E^i$. $f: X \longrightarrow Y$ induces $f^i: X^i \longrightarrow Y^i$ and we define the *i*-tuple points at the X^i , or S^iX level, by:

$$M_i(f) = (f^i)^{-1}(\operatorname{diag}_i Y) - \operatorname{Diag}_i X \subset X^i,$$

 $\hat{M}_i(f) = P_i M_i(f) \subset S^i X.$

Note that $P_i: M_i(f) \to \hat{M}_i(f)$ is a covering space, and that the spaces involved are smooth (nonsingular) manifolds. Let $\pi_0 \, \hat{M}_i(f)$ denote the set of connected components of $\hat{M}_i(f)$. The invariant μ_2 is a function: $\mu_2: \pi_0 \hat{M}_2(f) \to \{0, 1\}$ where $\mu_2(\alpha) = 0$ iff the covering $P_2^{-1}(\alpha) \to \alpha$ is trivial. In view of Corollary 2, the following remark might be useful:

PROPOSITION. Let M, N be manifolds of dimensions 2 and 3, M closed, $\partial N = \emptyset$. M and N are supposed orientable and

is a generic regular homotopy. Then $\mu_2(f) = 0$ if and only if $\hat{M}_2(f)$ is orientable. \square

3. We will define now invariants ν_3 , ν_4 , ... which are the "good" generalization of μ_2 . Only ν_3 is need here, but it is perhaps more enlightening to define them all.

We consider the inverse system:

where d_{α} , d_{β} · · · are the i(i-1) natural ways of an oriented *i*-tuple point to degenerate into an oriented double point.

The "limit" of this system lies in $M_2 \times M_i \times \hat{M}_i$, and its projection in $M_2 \times \hat{M}_i$ is denoted by $S_{2,i}$. One has a natural projection, which is a covering map $S_{2,i} \xrightarrow{Q_i} \hat{M}_i$ and if $\hat{M}_i \ni x = \{x_1, \ldots, x_i\}$ (the set of distinct points x_1, \ldots, x_i) then $Q_i^{-1}(x) = x \times x - \text{diag } x$.

The structural group of the fibration Q_i is reduced; instead of being S(i(i-1)) it is $S(i) = \text{Perm } \{x_1, \ldots, x_i\}$.

On $S_{2,i}$ we introduce the *equivalence relation* $\sim (\sim_i)$ which is, by definition, the smallest equivalence relation with the followign properties:

- (a) $(x', x'') \sim (y', y'') \Rightarrow (x'', x') \sim (y'', y')$.
- (b) If $(x', x''), (y', y'') \in S_{2,i} \subset M_2 \times \hat{M}_i \longrightarrow M_2$

have their images in the same connected components of M_2 , they are equivalent.

(c) Let $x \in \hat{M}_i$ and consider $g \in S(i)$, a circular permutation of length i, acting on the fiber $Q_i^{-1}(x)$. If

$$(x_r, x_j) = y \sim g \ y \sim g^2 y \sim \cdots \sim g^{j-2} y = (x_j, x_k),$$

then $(x_r, x_k) \sim (x_r, x_i)$.

If i = 3, property (c) means just that

$$(x_r, x_i) \sim (x_i, x_k) \Rightarrow (x_r, x_i) \sim (x_r, x_k).$$

(Note that in (c) everything is in one fiber; in (a), (b) this is not necessarily so.) We shall define ν_i : $\pi_0 \hat{M}_i \longrightarrow \{0, 1, \dots\}$ $(i \ge 3)$, as follows:

If $x \in \alpha \in \pi_0 \hat{M}_i$, we consider the number of distinct subsets $E \subset Q_i^{-1}(x)$ such that:

- (a) E has i elements.
- (b) There exists $y = (x_j, x_k) \in Q_i^{-1}(x)$ and $g \in S(i)$, circular permutation of length i, such that $E = \{y, g, y, \dots, g^{i-1}y\}$.
 - (c) $y \sim g y \sim \cdots \sim g^{i-1}y$.

[Two sets E, E' obtained one from the other by $(x_j, x_k) \longrightarrow (x_k, x_j)$ will not be regarded as distinct.]

The number of distinct E's is, by definition, $\nu_i(\alpha)$. (This number is independent of $x \in \alpha$.)

FINAL REMARKS. (1) The notations of [2] are slightly different from the notations used here. In [2], M_i becomes M_i and $S_{2,i}$ becomes $S_{2,i}$. M_i from [2] is the set of i-tuple points in $X \times S^{i-1}X$. Looking at the i-tuple points at the level $X \times S^{i-1}X$ means, exactly, blowing up the singularities of $M^i(f) \subset X$ in order to get a smooth manifold (i.e., what one gets at the $X \times S^{i-1}X$ level is the "resolution of singularities" for $M^i(f)$.

(2) We have assumed here that dim $X < \dim Y$ (or dim $X = \dim Y$, $\partial Y = \emptyset$, X compact bounded, and $f \mid \partial X$ generic). Otherwise, the preceding theory is to be replaced by the following remark: A (connected) covering map $X \xrightarrow{f} Y$

can be lifted to $Y \times R$ if and only if it is infinitely cyclic.

(3) The invariant μ_2 (for the case dim $X=\dim Y=3,\ldots$) turns out to be deeply connected to the handle-body structure of $\Sigma_3\times I$ [3].

BIBLIOGRAPHY

- 1. M. A. Kervaire and J. W. Milnor, *Groups of homotopy spheres*. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584.
 - 2. V. Poénaru, Homotopie régulière et isotopie (to appear).
- 3. ——, Sur la structure des sphères d'homotopie lisses en dimension 3, I, II (to appear).

DÉPARTMENT OF MATHEMATICS, FACULTE DES SCIENCES D'ORSAY, 91-ORSAY, FRANCE