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Let G denote the complex symplectic group which may be defined by the 
equation 

G = J ^ GL(2fc, C): gskg* = sk, sk = 

In this paper we shall give a simple and concrete realization of a set of representa­
tives of all irreducible holomorphic representations of G. This realization, which 
involves the G-module structure of a symmetric algebra of polynomial functions 
is inspired by the work of B. Kostant [1] and follows the general scheme formu­
lated in [2]. Detailed proofs will appear elsewhere. 

1. The symmetric algebra S(E *). Set E = Cn X2k with k>n>2\ then 
G acts linearly on E by right multiplication. Let ( • , • ) denote the skew-sym­
metric bilinear form on E given by 

(X, Y) = trace (Xsk Y')9 VX, Y G E. 

IfXGE, let X * denote the linear form Y —• (X, Y) on E. The map X—» X * 
establishes an isomorphism between E and its dual E*. Let S(E*) denote the 
symmetric algebra of all complex-valued polynomial functions on E. The action 
of G on E induces a representation R of G on S(E*) defined by 

(R(g)p) (X) = p(Xg)9 yPes(E*)9 vxeE. 

IfXGE, define a differential operator X *(D) on S(E *) by setting 

(X*(D)f)(Y) ={(d/dt)f(Y+tX)}t=0, 

for all ƒ G S(E *), t G R, and X, YGE. 

Define (X* • • • X*)(D)f = X*{D\{X* • • • X* )(D)f ) inductively on n. If 
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m and / are nonnegative integers and if Sm denotes the symmetric group on m 

elements, then it may be shown that 

[X* • • - x;(D)]Y* • • • Y* 

I 0, if m < /, 

= | / _ W 

[ (m _ /)f ^ Xi ( y a( i ) ) * * ' xi*(YZ(i))Y*(/+D * ' * Ya(my 

if m > I 

It follows from the above equation and by linearity that the map X * —> X *(D) 
extends to an isomorphism p —• p(P) between S(E*) and the symmetric algebra 
S(E) of differential operators on E. 

A polynomial ƒ E S (E *) wül be called G-invariant if R(g) f = f Vg E G. 
A differential operator /?(£>) E S (E) will be called G-invariant if R(gXP(D)f) = 

p(D)(R(g)f), for all g E G, ƒ E S(£ *). It is then shown that p E S (E *) is 
G-invariant if and only if p(D) is G-invariant. 

Let J(E*) (resp. / ( # ) ) denote the subalgebra of S(E*) (resp. of S(E)) con­
sisting of all G-invariant polynomials (resp. of all G-invariant differential operators). 
Let J+(E*) denote the set of all G-invariant polynomials without constant terms; 
J+(E) is then defined in a similar fashion. 

A polynomial ƒ E S (E *) is said to be G-harmonic if p(D)f= 0 for all p E 
J+(E*). Let H(E *) denote the subspace of S(E *) consisting of all G-harmonic 
polynomials. Let J+(E *)S(E *) be the ideal in S(E *) generated by J+(E *), 
and denote by V the algebraic variety in E of common zeros of polynomials in 
the ideal J*(E *)S(E *). It follows from the theory of polynomial invariants 
(cf. [3, Chapter VI]) that J(E*) is generated by the constant function 1 and 
n(n — l)/2 polynomials p(J- defined by 

% ( * ) = £ ; (Xu+kXfl-XnXu+k), Ki<i<n;X = (Xrs)eE. 
1=1 

Moreover, we have V= {XEE;XskX
f = 0} and that H(E*)= {f<ES(E*): p^D)/ 

= 0, V i, ƒ, 1 < i < ƒ < n). It is then shown that the ideal / +(E *)S(E *) is prime. 

THEOREM 1.1. The space S(E *) is decomposed into a direct sum as S(E *) 
= ƒ + ( £ * ) £ ( £ * ) © # ( £ * ) . Moreover, S(E*) = J(E*) ®H(E*) andH(E*) is 
spanned by all polynomials (X*)m, m = 1, 2, . . . , for all X E V. 

COROLLARY 1.2. IfS(V) denotes the ring of functions on V obtained by 
restricting elements of S(E *) to V, then the restriction mapping f—• f/V ( ƒ E 
H(E*)) is a G-module isomorphism of H(E*) onto S(V). 

2. The irreducible holomorphic representations of G. Let B denote the 
lower triangular subgroup of GL(«, C) and define a holomorphic character % = 
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%(m1, . . . , mn) of B by setting 

where the ra/s (1 < i < «) are integers satisfying mj > m 2 > • • • > m „ > 0 . A 
polynomial ƒ E S(£ *) will be called £-covariant if f(bX) = %(b)f(X), V (6, X) E 
B x E. Let //(£, | ) denote the subspace of H(E*) consisting of all £-covariant 
G-harmonic polynomials. 

THEOREM 2.1. If R(* , £) denotes the representation of G which is obtain­
ed by right translation on H(E, £) then R(- 9%)is irreducible and its highest 
weight is indexed by (mv m2, . . . , mn, 0, . . . , 0) (k factors). 

PROOF. Let 

C = U A E GL(2k, C): c diagonal k x k matrix > 

and 

ILW2 MlJ \ 
ux lower triangular unipotent \ ; 

then CU is a Borel subgroup of G. Define a holomorphic character f on Cf/ by 
setting 

Ucu) = c™i . . . c^n9 VcueCU. 

Let Hol(G, f ) denote the space of all f-covariant holomorphic functions on G. 
Then by the Borel-Weil-Bott theorem the representation 7r( • , ?) of G which is 
obtained by right translation on Hol(G, f) is irreducible (see also [4, Chapter 
XVI]). Let I = [In 0] E E, then Orb (I) = {lg: g E G} is a dense subset of V. 
Define a map $ from H(E9 £) into Hol(G, f) by the equation (<ï>ƒ)fe) = ƒ(&), 
V / E #(£ , £), V# ^ G. Then it follows from Corollary 1.2 that 3> is a G-module 
isomorphism. D 

When k = n, the following theorem is an immediate consequence of Theo­

rem 2.1. 

THEOREM 2.2. Suppose that 

E=zCkx2k (k>2) and S = i(ml,m29...9mky9 

then the representations R(*, £) of G on the various spaces H(E, £) realize up 
to equivalence all irreducible holomorphic representations of G when the mfs 
(1 < i < k) are allowed to take all integral values subject to the condition 
mi ^ m2 ^ * * * ^ mk ^ 0- Moreover, to each representation /?(•, £) cor­
responds a highest weight vector f^ E S(E*) defined by the equation 
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where the \{X) (1 < i < k) are the principal minors of X. 

REFERENCES 

1. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 
(1963), 327-404. MR 28 #1252. 

2. T. Ton-That, Lie group representations and harmonic polynomials of a matrix vari­
able, Ph. D. Dissertation, Univ. of California, Irvine, Calif., 1974. 

3. H. Weyl, The classical groups. Their invariants and representations, Princeton Univ. 
Press, Princeton, N. J., 1939. MR 1, 42. 

4. D. Zelobenko, Compact Lie groups and their representations, "Nauka", Moscow, 
1970; English transi., Transi. Math. Monographs, vol. 40, Amer. Math. Soc, Providence, R. I., 
1973. 

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, 
MASSACHUSETTS 02138 


