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General systems theory: Mathematical foundations, by M. D. Mesarovic and 
Y. Takahara, Mathematics in Science and Engineering, Vol. 113, 
Academic Press, New York, 1975, xii+268 pp., $20.00. 

Historically, serious mathematical research on systems theory is traceable 
to solutions of difficult physical problems in dynamics connected with 
so-called systems of the world based on efforts by Ptolemy, Copernicus, 
Kepler, Galileo, Newton, Euler, Laplace, and Gauss, among others. These 
scientific investigations provide an interesting mixture of knowledge for its 
own sake and knowledge for the sake of commerce in the form of improved 
navigational techniques. In more recent times, systems theory, orienting 
itself still more with technology, has been influenced by physico-
mathematical inquiries underlying the operation and design of hardware 
associated with power-plant governors (J. C. Maxwell); the position control 
system of the steering engine of ships (N. Minorsky); extrapolation ser-
vomechanisms and other cybernetic systems (N. Wiener); communication 
systems, secrecy systems, and digital switching systems (C. E. Shannon); 
general linear filters (R. E. Kalman); and adaptive or self-organizing control 
systems (W. R. Ashby, R. E. Bellman and L. A. Zadeh). 

The purpose of the research monograph under review is to provide a 
unified and formalized mathematical approach to all major systems con­
cepts. Neither practical applications nor philosophical ramifications of gen­
eral systems theory are discussed. The authors promise to present these 
elsewhere. Special attention is devoted to formal aspects of deterministic 
input-output systems. Learning systems, decision-making systems, and goal-
seeking systems, per se, are discussed only incidentally in the appendices. 
The point of entry for the authors' development of a general systems theory 
is the identification of a system with a set-theoretical relation. This approach 
certainly has the feature of generality and abstractness to it. With this 
degree of generality and abstraction one might expect, and rightly so, little 
content in the results. Indeed, the authors prove little that does not depend 
on the use of more formidable algebraic structure for the sets; e.g., that the 
sets are linear spaces over the same ground field. However, by adding 
algebraic structure prematurely, the authors miss a wonderful opportunity to 
apply the deep mathematical theory of ordinal relations (not necessarily 
finite), as developed by C. S. Peirce, E. Schroder, and A. Tarski, to the 
theory of general systems. The authors profess to develop an axiomatic 
approach to systems theory based on set-theoretical concepts. Nevertheless, 
they fall short of this desirable goal on two counts. First, they could have 
reduced their prime notion of a relation to a purely set-theoretical concept 
(say, by using Wiener's definition of a relation or Kuratowski's modification) 
and, then, used a suitable axiomatic set theory to underpin their whole 
edifice. Thus, a system becomes a set of sets (the notion of a relation being 
redundant) in, say, ZF set theory. This proposal has a hidden bonus: it more 
completely aligns systems theory with an axiomatic set theory; a link that 
might have pleased Minkowski, but saddened Hardy. Then it becomes 
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possible to interpret independence results for axiomatic set theory (see, e.g., 
P. J. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 
1966 or J. B. Rosser, Simplified independence proofs, Academic Press, New 
York, 1969) in the context of modern dynamical systems. In the reviewer's 
opinion, independence results for set theory have applications to physical 
theory with potential impact on society at least as great as those applications 
of independence results for classical geometry. 

Linear systems occupy a central position in the authors' theory. Indeed 
their deepest results deal with these systems, which have a global response 
function with an additive representation whose summands are linear map­
pings on linear spaces over the same ground field. The authors' proof of this 
result uses Zorn's lemma twice! Surely there must be a constructive proof of 
this basic result; i.e., a proof that allows one to construct the required 
response function. Although classical realization theory for networks and 
linear feedback control systems depends heavily on concepts from analysis 
(e.g., positive real functions, orthogonal functions and Hurwitz polynomials), 
the authors' realization theory is more oriented toward algebraic notions 
(e.g., commutative diagrams and semigroups). Indeed, the algebraic ap­
proach pervades the methodology of the authors. To this extent, the book is 
far more a sequel to Ashby's approach to cybernetical systems than to 
Wiener's equally important (and somewhat deeper) analytical approach. 
This correlative comment is based on the reviewer's attendance at several of 
their formal lectures and seminars as well as on his reviews of their 
independent cybernetical investigations; e.g., MR 22 #4569 and MR 23 
#B1040. 

The penultimate Chapter 11 on computability, consistency and complete­
ness is less clear to this reviewer than some of the other more polished 
chapters. The authors subsume all computational systems under systems 
which reach an equilibrium state in finite time. Note that there is no 
effective way of deciding for an arbitrary system whether or not it has 
reached an equilibrium state. The authors' interesting analogue of GödeVs 
first incompleteness theorem (pp. 214-215) is not altogether convincing since 
there is no mention of either effectivity of processes or the specific structure 
of the system K which makes it either inconsistent or incomplete. E.g., the 
result seems to fail in case K is the monadic functional calculus of first order 
or K is the system of well-formed formulas in Skolem normal form for 
satisfiability in the pure first-order functional calculus. Indeed, it is not 
apparent whether the authors' argument produces a recursively generated 
logic. On the other hand, E. L. Post's rigorous, beautiful, and elegant 
"miniature" proof (Bull. Amer. Math. Soc. 50 (1944), 284-316) of Gödel's 
theorem based on the theory of recursively enumerable sets would easily fit 
into two pages and enhance the value of any treatment of general logical 
systems. Further, the authors appear to have missed an excellent opportun­
ity to exploit P. R. Halmos' deep results on Algebraic logic, Chelsea, New 
York, 1962 for the study of logical systems and on the related algebraic 
version of logical completeness: every polyadic algebra is semisimple. 
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The authors' most significant achievement is the systematic application of 
ideas of elementary category theory to systems theory; not that this ap­
proach to systems study is new. E.g., such ideas are used by Eilenberg 
(Automata, languages and machines, Academic Press, 1975), Arbib and 
Manes (Arrows, Structures, and Functors, Academic Press, 1975), Dididze 
(Russian), and Bautor (German) for the study of logical systems. The 
authors of the monograph under review provide elegant, if not tightly 
reasoned, arguments in this area. On the other hand, there is an undesirable 
trend in this kind of enterprise. Researchers seem to insist on the develop­
ment of category-theoretic abstractions of the notion of recursivity rather 
than developing a "recursive category theory" which begins with a recur­
sively enumerable class of objects together with various recursive functors. 
Use of recursion-theoretic ideas is not likely to enfeeble the wings of that 
soaring eagle, category theory. In any case, Von Neumann has warned us all 
about the adverse things that can happen to the fabric of the mathematical 
sciences as our theories, governed by aesthetical desiderata alone, recede 
further and further from contact with physical reality. 

In conclusion, this fine work is only a first try at the much desired 
paradigm for systems theory. Axiomatization is never achieved and much in 
the overview is left unanswered (e.g., (1) how is the structure of nonlinear 
systems clarified and extended by the authors' approach, and (2) what new 
systems, if any, are predicted by the present approach). Nevertheless, this 
carefully written and attractively reproduced treatise passes the BUNTSI 
test for scientific punishability: much of the material is Beautiful, Useful, 
New, True, Serious, and Interesting. 

ALBERT A. MULLIN 

An introduction to invariant imbedding, by R. Bellman and G. M. Wing, 
John Wiley & Sons, New York, 1975, xv+250 pp., $18.95. 

This book gives an introduction at an elementary level to a method for 
solving boundary value problems in one independent variable. The method 
is called invariant imbedding and sometimes it is also referred to as the 
method of continuation. The idea is to let the basic interval, over which the 
solution is defined, vary and replace the boundary value problem by an 
initial value problem with the width of the interval as independent variable. 
For analytical, as well as computational reasons, the initial value problem 
that ensues is more convenient. However, even linear boundary value 
problems lead to corresponding nonlinear initial value problems which have 
the form of Riccati equations. 

The idea described above frequently has a clear physical interpretation 
and the quantity that satisfies the initial value problem has physical signifi­
cance; for example, it may be the reflection coefficient in transport or wave 
processes. It was first used by Stokes (1862) in a somewhat crude discrete 


