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1. All rings are commutative with identity. We announce a presentation 
for the K2 of a class of rings which includes the local ones. We also give a 
presentation for the relative K2 of a homomorphism that splits and has its kernel 
in the Jacobson radical. These results generalize (and were suggested by) various 
earlier ones: the presentation of Matsumoto for the K2 of (infinite) fields [6] , 
[7, §11, 12] ; the presentation of Dennis and Stein for the K2 of discrete valua­
tion rings and homomorphic images thereof [2] ; stability results of the same 
authors [4] ; the presentation for the relative K2 of dual numbers, by one of us 
[5]. We reproved most of the earlier results and generalized them in the process. 

2. The functor D (cf. [3, §9]). 
2.1. Let R be a ring, R* its group of units. We define the abelian group 

D(R) by the following presentation: 
Generators are the symbols (a, b) with a, b G R such that 1 + ab E R*. 

Relations are: (DO) commutativity. 

(Dl)(a, b){-b, -a)= 1. 
(D2) (a, b) (a, c) = (a, b + c + abc). 

(D3)<a, bc) = (ab, c) (ac, b). 

In all of these relations it is assumed that the left-hand sides make sense. For 
instance, in (D3) one needs a, b, c ER with 1 + abc GR*. D is a functor from 
(commutative) rings to abelian groups. It commutes with finite direct products. 

2.2. Put K2(n, R) = ker(St(n, R) —* SL(n, R)), so that K2(R) = 

lim K2(n, R). Put K2(°°, R) = K2(R). Relations (Dl), (D2), (D3) imply the 
relations in [3, §9] and vice versa. So the rule 

(a, b) ^ ^ 2 1 ( j r ^ J ^ 1 2 ( û ) x 2 1 ( Z ? ) x 1 2 ^ Y - ^ j ^ ( l +ab) 

defines a homomorphism D(R) —• K2(R) factoring through K2(3, R). 
2.3. DEFINITION. R is called 3-fold stable if, for any triple of unimodular 

sequences (ax, b1),(
a2* ^2)» (03**3) t n e r e e x i s t s r e R s u c n t n a t ai + bf G R* 

for 1 = 1, 2, 3. (Recall that (a, b) is called unimodular if aR + bR = R.) Similar 
definitions can be given for fc-fold stability, e.g., 1-fold stability is the strongest 
of Bass' stable range conditions SRn(R) [1] . The condition of 3-fold stability is 
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still stronger than that of 1-fold stability. 

2.4. THEOREM 1. Let R be local or 3-fold stable. Then D(R) —• 
K2(n, R) is an isomorphism for 3 < n < °°. 

2.5. Now let ƒ be an ideal contained in the Jacobson radical Rad(7?) of R. 

The abelian group D(R, I) is defined by the following presentation: 
Generators are the (a, b) with a G R, b G I or a G ƒ, b E R. 

Relations are: commutativity; (Dl) for a G I, b G R\ (D2) for a ER, b, c 

G ƒ; (D2) and (D3) for aei,b,cGR. (See 2.1 and compare [8, §2].) As in 
2.2, one has a homomorphism D(R, I) —+ K2(R). It factors through D(R). 

2.6. THEOREM 2. Let I be an ideal, contained in Rad(R), such that R —> 
R/I splits. Then 

1 - * D(R, I) - > K2(n, R) - * A-2(«, R/I) - > 1 

w sp//Y extfcf /or 3 < « < °°. 

2.7. THEOREM 3. Let ƒ: /? —• S be a homomorphism of rings inducing an 

isomorphism R/Rzd(R) —> 5/Rad(5). If3<n<°°and D(R) —• iT2(/i, ^ ) M an 
isomorphism, then D(S) —• AT2(«, 5) is an isomorphism. 

2.8. EXAMPLES AND REMARKS. (1) A semilocal ring is fc-fold stable if 
and only if all its residue fields contain at least k + 1 elements. 

(2) The ring of continuous complex valued functions on a 1-dimensional 
complex is fc-fold stable for any k G N. 

(3) The ring of all totally real algebraic integers in C is k-fold stable for any 
k G N (H. W. Lenstra). 

(4) If R is 5-fold stable, then we can also show that K2(R) can be presented 
by Matsumoto's relations [3, §11]. For local rings with infinite residue fields 
the analogous result holds for any type of Chevalley group (cf. [6, Corollaire 
5.11]). 
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