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Let A be a multivalued monotone operator on a real Hubert space H and 
let Cbe a nonempty closed convex subset of D(A). If/ E ƒƒ, by a solution of 
the variational inequality 

(1) (z0~f, x-uo)>0 VxGC, 

we mean a pair (or, sometimes, just the first component of a pair) [w0, z0] E A 

satisfying (1) such that u0 G C. We denote the set of solutions u0 by E. We 
shall assume the existence of a solution of (1) and show how to construct it as 
the weak limit of a sequence {xn} satisfying 

(2) xn+1 =P(xn-tn(vn - ƒ ) ) , vn eAxn, 

where {tn} C [0, °°) and P is the proximity mapping of H onto C. For condi­
tions sufficient to guarantee E ¥= 0 , see Browder [4], Lions [10]. 

THEOREM 1. Suppose there exists u0 G E such that 

(3) {(y -f,x-u0) = 0,xeCfveAx}^xGE. 

If, in (2), Xtn = oo, X\\tn(vn - f)\\2 < oo, and {vn} is bounded, then {xn} 

converges weakly to a point of E, 

Note, in particular, that if A is bounded on C, then for any nonnegative 

sequence {tn} in l2\lx the conditions on {tn} and {u„}are automatically satisfied. 

THEOREM 2. If A has the property 
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(4) {zt EAxx,z2 GAx2,(z1 -z2,x1 -x2) = 0} => z2 GAxt, 

then A satisfies (3) on any C for which E ¥= 0. 

Condition (4) is satisfied by a very wide class of monotone operators which 
have arisen in several different contexts: strictly monotone operators, subdifferen-
tials of proper Ls.c. convex functions, the maximal monotone trimonotone op­
erators of Brezis and Browder [1], [2], maximal monotone operators satisfying 
condition (1) of [1], and the class M2 of Browder and Petryshn [5] (single-valued 
operators satisfying {Ax - Ay, x-y)> 8\\Ax - Ay\\2 for some 8 > 0). In 
particular, (2) can be applied to minimize a convex functional on a constraint 
set under much weaker hypotheses than has heretofore been possible (compare 
with Goldstein [9]). 

Moreover, in an important special case (3) is satisfied by an otherwise 
arbitrary monotone operator. 

THEOREM 3. IfintC^0,Cis rotund, and (1) has a solution [u0, z0] 
with z0 ¥=f, then A satisfies (3) and u0 is the unique solution of(l). If, in 
addition, C is uniformly rotund, then in Theorem 1 the hypothesis that {vn} is 
bounded may be deleted and the conclusion strengthened to: {xn} converges 
strongly to the solution of (I). 

PROOFS. In what follows, we shall normalize to ƒ = 0. For any solution 
[u, z] of (1) we find 

0 < 2tn(z, xn~u)< 2tn(vn ,xn-u) 

<\\xn~u\\2-\\xn+1-u\\2 + \\tnvn\\2 

by virtue of the nonexpansiveness of P, Pu = u, the monotonicity of A, and the 
fact that [u, z] is a solution of (1). Inequality (5) permits three conclusions: 
(a) limjlx,, - u\\ exists for each u GE; (b) 2 tn(vn,xn - u0) is a convergent 
positive-term series, hence lim infn(vn,xn - u0) = 0; (c) if a subsequence {*„/,)} 
converges weakly to x and l i m ^ u ^ , x n ^ - u0) = 0, then x GE (because 0 < 
(z0, xn - u0) < (vn, xn - u0) and (3) is satisfied). An appeal to a variant of 
[3, Lemma 6] (or a direct appeal to Opial's lemma [11]) establishes the unique­
ness of x in (c), i.e., 

3x* e E such that xn(n —* x*y{xn(i)} 
(6) 

satisfying 1imfi)n{i)9 xn(i) - u0) = 0. 

For 8 > 0 put P = {n: (vn, xn - u0) > 8} and note that (5), the nonexpansive­
ness of P, and the boundedness of {vn} imply that 2w e p | |x„ "Xn+1\\ converges. 
With (6) this implies xn —* x*. 

The proof of Theorem 2 is simple computation which we omit. The proof 
of Theorem 3 is based on the observation that if [u0> z0] is a solution of (1) 
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with z0 =£ O, then necessarily u0 E bdry C and the hyperplane u0 + z^ supports 
C at w0. Any solution [x, v] E A, x E C of (v, x - u0) = 0 must have x Eu0 + 
z^ because 0 = (u, x - u0) > (z0, x - u0) > 0; by the rotundity of C, therefore, 
x — uQ, i.e., (3) is satisfied. This implies, incidentally, that the solution u0 of 
(1) is unique (although z0 may not be unique). 

If C is also uniformly rotund, then, as in the proof of Theorem 1, there 
exists x* E E for which (6) is valid (and such subsequences {xn^\} do exist). 
But a sequence in a uniformly rotund convex set which converges weakly to a 
point on the boundary must converge strongly; since limw||xw - x*\\ exists, there­
fore limjl*,, -x*| | = linifllx^Q -x*| | = 0. 

For related iterative solutions of f Ex + Ax and f E Ax (without use of 
the projection P) see [7], [8]. The proof of Theorem 1 is based on an idea of 
[6]. Complete proofs, other consequences, extensions of the results of [8] to 
variational inequalities, as well as sequential analogue of [6, Theorem 5] for even 
convex functions, will appear elsewhere. 
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