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BY HASKELL P. ROSENTHAL 

My concern in this talk is with isomorphic, as opposed to isometric, 
properties of Banach spaces. I shall present here a limited discussion, from 
the isomorphic viewpoint, on the vast domain of the Banach spaces C(K) and 
LP(JLL). The study of these spaces from this viewpoint leads to deep applications 
of many results in classical analysis and probability theory, and also to the 
discovery of new results which should be of classical interest. This study also 
provides a unified manner in which to comprehend a great deal of classical 
mathematics. 

These special Banach spaces play a vital role in the study of general Banach 
spaces. They admit beautiful characterizations singling them out from the 
general theory. Their particular structure is rich and remarkable. Moreover, 
invariants for general Banach spaces have resulted from some of those 
initially established for these special spaces. 

We take up the structure of quotient spaces and complemented subspaces 
of C([0,1]) in §1. In §2 we briefly review the results concerning com­
plemented subspaces of Lp([0,1]) and in §3 we discuss reflexive subspaces of 
L1. We also include some Banach-space consequences of the Radon-
Nikodym property in an Appendix. We do not discuss here one of the 
powerful general techniques in Banach space theory, that of p-summing 
operators from a C(K)-space to a given Banach space. This technique was 
used in [36] for studying quotient spaces of C(K)-spaces; the methods 
developed there have turned out to hold in considerable generality. For an 
expository account of these developments, see [39]. We refer the reader to 
the recent book of Lindenstrauss and Tzafriri [25] for general background 
information on Banach space theory as well as much important information 
on such special spaces as the Lp and C(K)-spaces which we have not included 
here. 

For the sake of convenience, we deal with real Banach spaces, although all 
stated results hold for complex ones as well. By a C(K)-space, we mean the 
space of all continuous real-valued functions on a compact Hausdorff space 
K, under the supremum norm; by an Lp(fx)-space, the space of all equivalence 
classes of pth-power integrable functions defined on some measure space 
(X, &>, JLL), under the norm ||/||Lp(|l>)=(f |/ |p djui)1/p. We use the notation C=C(K) 
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for K=[0 ,1 ] and LP=LP(/UL) for jut equal to Lebesgue-measure with respect to 
the Lebesgue measurable subsets of [0,1]. In reality, C and Lp are the most 
important cases of C(K) and Lp(/ui)-spaces; we shall primarily discuss only 
these, their sequential analogues c0 and P, and their finite-dimensional 
analogues IZ and 11. (For l^p^oo, fp (resp. In) equals LP(JJL) where JUL is the 
"counting" measure with respect to the family of all subsets of N, the positive 
integers (resp. {1, 2, • • • n}); c0 denotes the space of all sequences vanishing at 
infinity under the supremum norm.) 

For A ^ l , Banach spaces X and Y are said to be A-isomorphic if there 
exists an invertible linear operator T from X onto Y with ||T|| |lT_1||^A. If X is 
a subspace of Y, X is A-complemented in Y if there is a linear projection P 
from Y onto X with ||P||^A. The Banach spaces X and Y are said to be 
isomorphic (resp. isometric) if they are A-isomorphic for some A (resp. 
1-isomorphic); if X<=Y, X is said to be complemented in Y if it is 
A-complemented in Y for some A ^ l . By "operator" we mean a bounded 
linear operator; an operator T:X^>Y is called an isomorphism if it is 
injective and bicontinuous between X and TX; it is not required that Y=TX; 
equivalently T is an isomorphism if there is a ô > 0 so that ô ||x||^||Tx|| for all x 
in X. 

Throughout, "Banach space" shall refer to an infinite-dimensional separable 
complete normed linear space, unless stated otherwise; "subspace" or 
"quotient-space" shall refer to a Banach subspace or quotient space of some 
Banach space. 

1. Complemented subspaces and quotient-spaces of C. Why study C? 
We offer a few results as partial motivation. An early result of Mazur is that 
every Banach space is isometric to a subspace of C and a quotient space of V 
(in fact of I1). On the other hand, a striking result of Grothendieck asserts that 
a Banach space is isomorphic to Hilbert space if and only if it is isomorphic to 
a quotient of C and a subspace of L1. (See [11], [23]; derivations from the 
techniques presented here may be found in [26] and [39].) We note 
incidentally that the isometric analogue of this result is open for all spaces of 
dimension n where 3^n^<»; however every 2-dimensional Banach space is 
isometric to a subspace of L1 (cf. [22]). Thus the study of quotients of C is 
possibly a reasonable domain to try to comprehend; we shall see later that the 
structure of these spaces is quite rich. 

Say that a Banach space B is universal if every Banach space is isomorphic 
to a subspace of B. A remarkable result of A. Pefczyiiski [30] asserts that a 
Banach space B is isomorphic to C if and only if B is universal and isomorphic 
to a complemented subspace of every other universal space. A theorem of 
Mulutin asserts that C(K) is isomorphic to C for every uncountable compact 
metric space K (see [27] and [5]). Thus C is just a convenient representative 
of this isomorphism class. Actually, C(A) is often more convenient to work 
with than C, where A denotes the Cantor discontinuum. All of the results that 
we intend to discuss in some detail, with the exception of the Appendix, are 
consequences of the statements or techniques of proof of the following two 
more recent discoveries, due to the author. 
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THEOREM 1 [33]. Every complemented subspace of C with nonseparable 
dual is isomorphic to C. 

THEOREM 2 [36]. Every reflexive quotient space of C is isomorphic to a 
quotient space of IF for some 2^p<<x>. 

Evidently Theorem 1 shows that Pefczynski's result may be sharpened as 
follows: A Banach space B is isomorphic to C if and only if B* is 
nonseparable and B is isomorphic to a complemented subspace of every 
universal Banach space. It also provides a partial answer to the following 
fundamental open question: Is every complemented subspace of C isomor­
phic to C(K) for some compact metric space K? The techniques of proof for 
all the known results related to this question involve a careful study of the 
dual of C, identified with the space of all Borel signed measures on [0,1], 
which of course can also be regarded as an L1(u)-space. It may be that 
"honest" C(K)-techniques, rather than L1(u)-techniques, need to be de­
veloped to answer this question. 

We shall first summarize two of these other known results which bear on 
this problem, then pass to a sketch of the proof of Theorem 1. We first note 
the basic weak compactness criterion: Let Wbe a bounded subset of C*. If Wis 
weakly compact, there exists a probability measure JLL on [0,1] so that the 
members of W are uniformly absolutely continuous with respect to jui; i.e. 
supvew |u(E)| -» 0 as fx(E) —» 0. On the other hand, if W is not weakly compact, 
then there exist 8, e with 0 < e < 8 , disjoint open subsets Uu U2, • • • and /xi, 
jUL2, • • • in W so that for all n, |jXn(Un)|>8 and |/UL„| (U**n Uj)<s. (The first 
assertion essentially follows from the Vitali-Hahn-Saks theorem (see [7]); the 
second assertion may be deduced from a result of Grothendieck (see [10] and 
[35]).) This criterion leads rather simply to 

A. (A. Pelczynski [31]). Every complemented subspace of C contains an 
isomorph of c0. 

Let X be a complemented subspace of C and T : C —» X a projection. The first 
part of the criterion yields Grothendieck's result that X cannot be reflexive, 
i.e. T cannot be weakly compact. For were T weakly compact, L = T*SX* 
would be weakly compact, where Sx* denotes the unit ball of X*. Now let 
ƒ„—>0 weakly, (ƒ„) a sequence in C. Of course then /n—»0 pointwise. 
Choosing JUL as in the criterion, choose (f'n) a subsequence of (ƒ„) so that ƒ£-» 0 
jut-almost uniformly. It follows easily that ||T/J|—»0; thus the unit ball of X 
would be compact, hence X would be finite-dimensional. (Of course the first 
part of the argument yields the Dunford-Pettis theorem (cf. [7, p. 494]): if T 
is a weakly compact operator on C, then \\Tfn\\ -> 0 for any sequence (ƒ„) with 
fn-+0 weakly.) Now applying the second part of the criterion, choose for each 
n a continuous <pn of sup-norm one, supported in Un, with ƒ <pn d/ut„>ô, where 
e, 8, (Un), and (JUL„) are chosen as in the criterion. It then follows that setting 
Y = [<pn] (the closed linear span of the <p„'s in C), that Y is isometric to c0 and 
T\ Y is an isomorphism. (Here too, we are really only using the fact that T is 
nonweakly compact to produce Y and hence the consequence that X 
contains an isomorph of c0.) 
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B. (Lewis and Stegall [21]). Let X be a complemented subspace of C and 
suppose X* is separable. Then X* is isomorphic to I1. 

It is easily seen that X* is isomorphic to a complemented subspace Y of 
L*[0,1] which has the Radon-Nikodym property. Lewis and Stegall proved 
that any such space is isomorphic to I1. Their result shows the paramount 
importance of this property to Banach space theory. We sketch a proof of 
their result and give some equivalences to the Radon-Nikodym property in 
the Appendix. 

The proof of Theorem 1 requires the following special case, due to 
Pekzynski [30]: A complemented subspace of C which contains an isomorph 
of C is itself isomorphic to C. This is proved by applying the "decomposition 
method" together with an interesting topological result of Kuratowski's: if <p 
is a continuous map of a compact metric space K onto A, there is a subset U 
of K, homeomorphic to A, such that <p\U is a homeomorphism. A deduction 
of this special case from Kuratowski's result, somewhat simpler than the one 
given in [30], may be found in [12, pp. 56-58]. Theorem 1 is an immediate 
consequence of this special case and the following theorem, which is in fact 
the main result of [33]. 

THEOREM 1'. Let X be a (separable) Banach space and T:C^>X an 
operator with T*X* nonseparable. Then there is a subspace Y of C with Y 
isometric to C(A) so that T\Y is an isomorphism. 

Evidently Theorem 1' implies that every quotient space of C with a 
nonseparable dual, contains an isomorph of C. One of the main themes of this 
talk is that the quotient spaces of C provide a special but extremely rich class 
of Banach spaces. An interesting result of Johnson and Zippin [17] asserts 
that this class includes all (separable) L^preduals, i.e. Banach spaces whose 
duals are isometric to V(p,) for some measure JUL. It is immediate that if Z is a 
quotient space of C, then Theorem 1' remains valid if "Z" is substituted for 
"C" in its statement. 

The proof of Theorem 1' is rather involved, using several classical 
techniques from other areas. We shall state the various ingredients of the 
proof, then show how they fit together. The basic approach is to set 
W={T*x* :||x*||^l, x*eX*} , and then to prove that there is a Y as in the 
statement of Theorem V so that W norms Y; i.e. so that for some ô>0, 

8 ||y||^sup|w(y)| for all y G Y 
wew 

The argument actually shows that any nonseparable bounded W, contained in 
C*, norms such a Y 

The ingredients consist of two reduction steps, a representation result, and 
an existence step. 

STEP I. The reduction to the case where W equals the unit ball ofl^T) for some 
uncountable set I\ By using transfinite induction, it is proved that W contains 
an uncountable family of almost-pairwise-singular measures. Precisely, there 
is a ô > 0 such that for all e>0 , there exists an uncountable family {wa}aer of 
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elements of W and a family ofpairwise singular signed Borel measures {jULa}aer 

such that for all a, ||fjia||^ô and ||jma-wa||^e. 
STEP II. The reduction to the case where W equals the unit ball of a 

subspace Z isometric to L1. Precisely, it is proved that there exists a subspace U 
of C*, isometric and weak* isomorphic to C(A)*, such that for all feC, 
sup [u(/)|^sup« |||ULa||-1 \fjia(f)\, the supremum taken over all ueU of norm l .Of 
course, U contains a subspace Z isometric to L1. This step is accomplished as 
follows: one first chooses a countable infinite subset of {||fx«||_1 fx« :a eT} 
dense-in-itself in the weak*-topology. Then one constructs a subset L of the 
unit ball of C*, homeomorphic to the Cantor set, so that the natural map j of 
C into C(L) defined by (jf)(l) = l(f) is actually a surjective quotient map. This 
construction involves modifications of arguments of Pelczynski [29] and 
Stegall [41]. 

STEP III. The representation of a subspace Z of C*, isometric to L1, is as 
follows: There is a Borel probability measure (JL on [0, 1], a Borel measurable 
function 0 such that \0\ = 1 and a «• -algebra £f of the Borel subsets of [0, 1] so 
that JUL|5̂  is. a purely nonatomic measure and Z = 6L1(^L\^); i.e. Z={ve 
C*:dv = 0fdpi where f is £f -measurable and fx-integrable}. (I am indebted to 
Professor T. Ito for pointing out that the statement of Proposition 2 of [33] 
is incorrect; the function 6 as given in Step III was omitted in [33]. The 
proof of Step IV involves only a minor modification of the argument in [33], 
using Lusin's theorem. Full details of the necessary corrections will appear.) 

STEP IV. The existence step, which easily produces the desired Y, consists 
of the following density lemma: Let ja, 6 and tf be as in Step III. For every 
£>0, there is a continuous map <p from a compact subset K of [0, 1] onto A 
with 6 \k continuous relative to k, so that f or every nonempty closed-and-open 
subset B of A, there is an Se£f with <Ç~\B)ŒS and 
jLt(<p-1(B))^(l-£)jLi(S)>0. That is, there is a Cantor-like subset cp'^K) so 
that the ^-measurable sets are e-dense in the clopen subsets of (p'^K). 
There is some delicacy in the construction of cp_1(K), which in appearance is 
like the classical construction of the Cantor set. The concept of conditional 
expectation is used in an essential way in this construction. 

These ingredients are put together as follows: First choose 8 as in Step I, 
then let e > 0 be such that ô - 2 e ô - e > 0 ; let the /LL«'S and w«'s be chosen as in 
Step I. Now choose U as in Step II, then select Z a subspace of U isometric to 
L\ 

Representing Z as in Step III, we have for all h e C, 

sup J hf dfx ^ s u p J h djULa/||jUL«|| 

the sup of the left side extending over all ƒ e SL1^ \Sf) with ||f | | i ^ l . Now choose 
K and <f> satisfying the conclusion of Step IV. Finally, let E : C(K) -> C be an 
isometric extension operator; i.e. E is a linear isometry so that Ef \K=f for all 
feC(K) (the existence of such an E is a standard exercise in most real 
variable courses). Let Y=E(0<p#(C(A))) where cp#h = h°<p for all fi€C(A). 
The proof that W norms Y is completed by using the above inequality and the 
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conclusion of Step IV to show that sup a e r |w a (h ) | ^ô-2eô-e for any 
norm-one function h which is the image under E of a finite-valued function in 
0<p#(C(A)). 

We conclude our discussion of Theorem 1 with the following open-ended 
question: Can one give non tri vial conditions on an operator T.C-+C which 
imply that T*C* is nonseparable? For example, is this always the case if T\X 
is an isomorphism for a reflexive X, or perhaps even for an X which contains 
no isomorph of c0? 

2. Complemented subspaces of Lp. One of the fascinating problems in 
this area is the determination of the isomorphic classification of com­
plemented subspaces of Lp. Let l<p<<», p ^ 2 . There are ten known distinct 
isomorphism types of complemented subspaces of Lp ; it is an open question if 
there are infinitely many isomorphism types.2 There is also quite a nice theory 
connected with these spaces; we briefly sketch some of the known results. 

Let l^p^oo. A Banach space is called an j£p space if there is a constant K 
so that each of its finite-dimensional subspaces is contained in another 
subspace which is K-isomorphic to a finite-dimensional Lp-space; i.e. to 11, for 
some n. These spaces were introduced in [23], where it was proved that if B is 
an «Sfp -space, then B** is isomorphic to a complemented subspace of LP(JÜL) 

for some /UL ; evidently for separable B and l<p<o°, B itself is isomorphic to a 
complemented subspace of Lp. 

In [24] it is proved that every complemented subspace of an U -space is 
either an 5EP -space or an j£2-space. Moreover, it is shown that an i£p -space has 
the stronger property that there is a K so that each of its finite-dimensional 
subspaces is contained in a K-complemented K-isomorph of a finite-
dimensional Lp-space. For even "tighter" properties of i£p-spaces, see [32]. 

Now let K p < o ° , p ^ 2 . It can be seen that the closed linear span of a 
sequence of independent standard normal random variables is complemented 
in Lp and isometric to I2. Thus the complemented subspaces of Lp are 
precisely the !£v -spaces, up to isomorphism, and of course I2. If for some À, 
Xi, X2, • • • are each À-complemented subspaces of Lp, then so is 
( X i 0 X 2 0 • • -)P (which by definition equals all sequences (x„) with xn e Xn for 
all n and ||(Xn)||=ŒIW|p,)1/p<00). Since I2 is a complemented subspace of Lp, 
one easily obtains the five spaces Lp, lp, I2, P©JP, and (P©i2© • • -)P as factors 
of Lp. I2 may also be realized as a complemented subspace of Lp by 
considering the span of a sequence of 2-valued symmetric identically 
distributed independent random variables. It is proved in [37] that if xu 

x2, • • • is a sequence of 3-valued symmetric independent random variables, 
then [x,]p, the closed linear span of these variables in Lp, is again a 
complemented subspace of Lp. This space will be isomorphic either to I2, lp, 
l2(Blp or a different space, denoted Xp. The latter occurs if, for example, 

(A) w n ^ 0 and £ w
2p/(p-2)=oo, 

2ADDED IN PROOF. This has recently been answered in the affirmative by G. Schechtman. 



1975] THE BANACH SPACES C{K) AND Lp(p,) 769 

where p>2 and w„=||x„||2/||xn||p for all n. It is shown in [37] that for any 
sequence of scalars (a,), Z afc converges in Lp if and only if 

max{(£ a2
rtw

2)1/2, ( £ |an|p)1/p}<°°. 

Xp is then defined to be the space of all sequences of scalars (a,) satisfying the 
above condition, where (wn) is any fixed sequence of positive reals satisfying 
(A). Xp is thus realized as a subspace of i2©lp. Indeed, if (en) denotes the usual 
basis of I2 and (bn) the usual basis of fp, then Xp equals the closed linear span 
in I2©lp of the sequence (wnen+bn). It is proved that Xp is not a continuous 
linear image of l2©lp; for further properties, see [38]. 

Another space, Bp, is constructed as follows: For each n, let Bp,n consist of 
all square summable sequences (a,) of scalars under the norm 

I K a O l k ^ m a x I n - ^ ^ E h | T 2 , ( I k | T p } . 

One shows that there is a A depending only on p so that Bp,n is 
À-isomorphic to a À-complemented subspace of Lp, by considering a sequence 
of identically distributed 3-valued symmetric independent random variables 
Xi, x2, • • • so that ||xi||2/||xi||p = n~(p~2)/2p. One then sets Bp=(Bp,i©Bp,2© • • OP-
Combining Xp and Bp with the spaces mentioned above, one finally obtains 
the five additional spaces Xp, Bp, (i2©f2© • • -)p©Xp, BP©XP, and 
(Xp©Xp© • • -)p as factors of U. 

It is a rather important fact that U itself has an unconditional basis, the 
Haar-basis (cf. [3] and [28]). Evidently every subsequence of the Haar basis 
spans a complemented subspace of Lp. However Gamlen and Gaudet show in 
[9] that the possible isomorphism types thus obtained are only lp and Lp. It is 
proved in [15] that every (separable) S£p-space has a basis (for p = 1 or oo also). 
It is unknown whether every <2?p -space has an unconditional basis. 
Schechtman proves in [40] that every j£p -space with an unconditional basis is 
isomorphic to a complemented subspace of U spanned by a block basis of the 
Haar basis. 

Results of Johnson, Zippin, and Odell show that the richness of the 
«2p -space theory requires the presence of Hubert space. Indeed, Johnson and 
Zippin prove in [16] that every S£p-subspace of lp is isomorphic to lp; on the 
other hand, Johnson and Odell prove in [14] that for p>2, any subspace of Lp 

imbeds in lp if it does not contain an isomorph of J2. It follows that an 
S£p-space which contains no isomorph of I2 is isomorphic to lp for Kp<oo (for 
K p < 2 one needs the additional fact that Hubert space-isomorphs in LF 
contain complemented-in-Lp subspaces (cf. [32]). 

One of the deepest problems in this area is the characterization of the 
complemented subspaces of L1. In contrast to the reflexive Lp-case, it seems 
likely that there are only two isomorphic possibilities; I1 and L1. We have 
previously noted the striking result of Lewis and Stegall that every com­
plemented subspace of L1 with the Radon-Nikodym property is isomorphic to 
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I1. We also note the recent difficult result of Enflo; for l^p<oo if X®Y=LP, 
then either X or Y is isomorphic to Lp ; that is, Lp is a primary Banach space. 

In a different direction, one can consider the class of Banach spaces X such 
that every embedding of X into U is complemented. It is known that for 
2^p<oo, this class consists of Hilbert space alone, while for K p < | , the class 
is empty. The determination of the class is an open question for p = 1 and 
! ^ p < 2 . 

For p > 2 , the fact that Hilbert space has this property is proved in [18]; a 
''localized version" is given in [32]. It is shown in [37] that P contains 
uncomplemented isomorphs of itself for all 2<p<o°. Since every com­
plemented subspace of Lp contains a complemented isomorph of P (pro­
vided it is not isomorphic to Hilbert space), the result follows for p > 2 . 

It does seem likely that the class is empty for f ^ p < 2 ; however the situation 
for p = l seems unclear to me. The basic question here is: does I1 contain an 
uncomplemented isomorph of J1? For some equivalences related to this as 
well as references for the case l < p < | , see [24]. 

3. Reflexive subspaces of V and a variation-of-density lemma. The 
remainder of our discussion shall be concerned with Theorem 2 and the 
rather general techniques which arise from its proof. It is known that for all 
2^p<cx>, Lp is isometric to a quotient space of C; for 2^p<q<oo ? Lp is 
isometric to a quotient space of Lq but P is not isomorphic to a quotient space 
of Lp. Thus Theorem 2 is "tight" in a sense. 

All these results are established by duality, which immediately leads to the 
study of reflexive subspaces of L1. The fact that Lr isometrically imbeds in U 
for all l ^ s < r ^ 2 is a fairly simple consequence of the existence and 
properties of stable random variables of exponent r; moreover (for r^2) 
there is no other known way of establishing this fact. We recall briefly the 
definitions; fix l < r ^ 2 . A symmetric stable random variable of exponent r is 
by definition a measurable function ƒ defined on some probability space 
(X, Sf, JU,) so that for some nonzero c, Jx e

ltf(x) djm(x) = exp(-|cf|r) for all real t. 
For the sake of definiteness, we shall take X to be [0,1], Sf the Lebesgue 
measurable sets, JUL Lebesgue measure. 

It is a nontrivial fact (established in the'30's) that such a function ƒ exists; 
moreover one has Jo|/|sdf<°° for all s<r (cf. most standard texts on 
probability theory or [38]). It follows from the method of characteristic 
functions that if Xi, x2, - • * are independent identically distributed symmetric 
stable random variables of exponent r, then for any n and choice of scalars 
Ci, • * * , c„, X cixi h a s t r ie same distribution (i.e. has the same nondecreasing 
rearrangement) as (£ |cj|r)1/rXi. Consequently for any s<r, 

nicixiii.=(Zicir)ifriNi. 
which shows immediately that the closed linear span of the x,'s in U is 
isometric to V. (For isometrically imbedding U into Ls, see [2] and [23].) 

Theorem 2 itself, by duality, follows immediately from the following result, 
which is the main point of [36]: 
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THEOREM 2'. Let l ^ p < 2 and Xbe a subspace of If. Then either X contains 
a complemented isomorph of lp or there is a p'>p so that X imbeds in If'. 

(We restrict ourselves to If here only for convenience. Actually If could be 
replaced by LP(JUL) for any measure \L on some measurable space.) 

Of course an immediate consequence is the somewhat surprising fact that 
every reflexive subspace of L1 imbeds in If for some p > l . The techniques 
used are those of the basic paper of Kadec and Pefczynski [18] and a 
variation-of-density lemma to be discussed shortly. 

If p = l and X is not reflexive or p > l and the p and 1-norms are not 
equivalent on X, then the techniques of [18] yield that for all A>1, X contains 
a À-complemented (in If) A-isomorph of lp. On the other hand, if X is 
reflexive in case p = 1 or if the p and 1-norms on X are equivalent for the case 
p > l , it is proved that there is a probability density <p on [0, 1] (i.e. fj <p dt= 1 
and <p>0) and a p'>p such that JJ \fl<p\p <p dt<°° for all feX. This means that 
X is imbedded in If in a surprisingly simple fashion. 

In turn the existence of this density is demonstrated as follows: If there is 
no such <p and p'>p, then one may use the theory of p-absolutely summing 
operators to show that for each p'>p there exist finite dimensional-subspaces 
X' of X so that inf<p supxCf |x'/<p|p <pd01/P is arbitrarily large (where the 
infimum is taken over all probability densities <p, the supremum over all x' in 
X' of I^-norm one). Alternatively if one is only interested in the existence of 
an imbedding, one may simply note that if this could not be done then all 
finite-dimensional subspaces of X would uniformly imbed in If for some 
pf>p, which would yield that X itself imbeds (cf. [23]). The variation-of-
density lemma then shows that for each s > 0 and n, there exist n norm-1 
elements in X which "1+e -dominate" the usual l^-basis, in the iZ-norm. 
Properties of stable random variables are finally used to show that the p and 
1-norms on X could not have been equivalent after all (or in the p = l case, 
one obtains that the unit ball of X is not uniformly integrable and conse­
quently X is not reflexive). Rather than using properties of stable random 
variables, one may use instead a truncation lemma due to P. Enflo and the 
author [8]. A detailed exposition of this alternate route is given in [39]. 

We pass now to a discussion of this lemma, which may be formulated as 
follows: 

VARIATION-OF-DENSITY LEMMA. Let X be a Banach space, (O, if, JUL) a 
probability space, Kp<a>, and TiX-^L1^) a norm-1 operator such that 

(1) N=sup||Tx||Lp(t.)<oo 
HxINi 

and 
(2) N^sup||Tx/<p||Lp(<PdM.) 

l|x||Sl 

for all positive JUL -probability densities <p. 
Then given n and 0 < o < l , there is an M depending only on p, n, and 8, so 

that if N^M, there exist Xi, • • •, x„ in X of norm one and disjoint measurable 
sets Ei,-', En so that NÔ^(JEi |Txt|p d/x)1/p for all i. 
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This result is proved in [36] for the case where XczL 1 ^) and T is the 
identity injection; this case is all that is needed for Theorem 2. As observed 
by Maurey [26], exactly the same proof as in [36], namely that of the 
Sublemma on p. 362, yields the more general statement. We prefer, however, 
to phrase the argument somewhat differently than in [36] so that the 
intuitions involved will be more apparent. (For expositions of consequences 
of this more general statement of the lemma, see [39] and [26].) 

The result is proved by playing off the following two facts against each 
other. The first fact is standard: given ƒ in LP(JH) with ||/||p almost N (which is 
assumed very large) and | | / | | i ^ l , there must exist a set F of small measure so 
that (JF |ƒ|p dj^)1/p is also almost N. Precisely, let 8 < 1 and suppose F is a 
measurable set such that jF\f\pdyi^EpNp and | | / | | i ^ l . Then setting 
E={x: | / (x) |>N}fïF, we have 

(3) ^E)<jf and J \f\pdtL^8pNp-Np-\ 

The second fact is proved by the variation-of-densities technique, and is as 
follows: Given E of small measure, there exists an x e X of norm one so that 
f~E |Tx|p djx is almost Np. We see this by applying (2) to a probability density <p 
of the form <p = axE+b*~E where a and b are constants. Assume (x(E)^n/N. 
The requirement ƒ <pdfx = l means that l = a^i(E)-hb(l-ix(E)), or 

l - q f x ( £ ) > on 
0 1 - | U L ( E ) = 1 a ' x ^ = 1 N * 

Now given T J > 0 , we can choose x with ||x||=l and ƒ |Tx|p/<pp-1 d/x>Np-Tj, by 
(2). Evaluating, 

J | T x | 7 c p p - 1 ^ = ^ J j T x | p d | a + ^ J E | T x | p d f x 

by (1), hence 

(4) jjT^^^y-y^y^ 
To achieve what we wish, we let a depend on N in such a way that a(N)-»oo 
yet a=o(N). A convenient choice is to simply let a=N1/2. 

Now intuitively, the argument goes as follows. By (1), choose Xi of norm 
one so that ||Txi||P is almost N. Choose Ei by the first fact so that 
(JEl |Txi|pdjx)1/p is also almost N, Ei of small measure. Now by the second 
fact, choose x2 of norm one so that (J~El |Tx2|

p dfx)1,p is almost N. By the first 
fact, choose E2c=~Ei, E2 of small measure, so that (f~E2 |Tx2|

pd|ui)1/p is 
almost N. Since EiUE 2 will be of small measure, by the second fact we may 
choose x3 of norm 1 so that (J~(ElUE2) |Tx3|

p d/m)1/p is almost N. As we have set 
things up, we may continue this process n times (so that the conclusion of 
the lemma holds) if we first choose 8 < 8 < 1 , then choose M so large that for 
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all N>M, 

(1 - n/JNf^Wd - N~ip-1)/2) > 8PNP > 8PNP - Np_1 > 8PNP. 

Since TJ can be then arbitrarily small, for each j<n, setting E = |JI=i Et, we 
will have jm(E)^j/N^n/N. Consequently the x = xJ+i that we choose satisfying 
(4) will have the property that |~E |Tx|p d/uL^ôpNp; hence by (3) we can choose 
E,+i<=~E with JUL(EJ+1)<1/N and JEj+1 |Tx|pdjx>ôpNp. 

Maurey observed in [26] that this lemma leads to results of considerable 
generality; his formulations also clarify the Lp-case. Let l ^ q < p ^ 2 , let X be 
an arbitrary Banach space, and T:X-^Lq a given operator. Suppose there is 
no K and no probability density <p on [0,1] so that 

(j|Tx/9^|p(pdt)1/P^K||x|| 

for all x e X . Then Maurey's generalization asserts that for all n and A>1, 
there exist an operator S from X to lp with ||S||^A and norm-one elements 
Xi, • • •, xn in X so that Sx» = e( for all i, where (eu • • •, en) is the usual basis for 
lp 

I'M* 

For the case q = l, one may use the theory of p-absolutely summing 
operators to show that for all M<o°, there is a fx and a T satisfying the 
hypotheses of the variation-of-density lemma for some N>M. The functions 
(Txi)r=i in its conclusion are almost-disjointly supported, hence for 8 close 
enough to 1, a standard perturbation argument produces a good projection 
from Lp onto their linear span which will in fact be almost isometric to 11. This 
projection in turn leads to the operator S. Precisely, the standard perturbation 
argument yields that A and p given, there is a 8<1 so that if fl9 • • •, fn are 
elements of the unit ball of Lp(jx) for which there exist disjoint measurable 
sets Ei, •• -, En with 8^(JEi \fi\

p d^i)1/p for all i, then there exists an operator 
UiLF-^ll with ||U||^A and Ufi = ei for all i (i.e. the /i's span a space almost 
isometric to lp which is the range of an almost-contractive projection). Thus 
one only has to choose M large enough so that the conclusion of the lemma is 
satisfied for n and 8; then S = (1/N)UT is the desired operator. The general 
case requires a minimax lemma due to Maurey, although its finite-
dimensional version does not. Again, one reduces to the lemma; the proof 
holds with almost no changes if one simply replaces "L^JUL)" by "Lq(jm)" 
everywhere in its statement. Maurey [26] has also used these techniques to 
obtain results about subspaces of U for p < l . As mentioned before, a detailed 
exposition of the consequences of the lemma to general Banach space theory, 
in terms of the notion of p-absolutely summing operators, is given in [39]. 

We pass now to some consequences of Theorem 2' and also some open 
questions. Let JUL be a probability measure on some measurable space, let X 
be a subspace of L^JUL), and let Kp<oo. Let IP(X) equal the infimum of those 
numbers K so that there is a JLL -probability density <p with 

(ƒ l*|P(0<P1_P(0 djx(t)V/P ^ K [ | X ( 0 | dii(t) for all x e X ; 
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if there is no such K, put Ip(X)=oo. It follows from the results of [36] that for 
K p ^ 2 , Ip(x)<oo if and only if X is isomorphic to a subspace Y of U{v) for 
some probability measure v, such that the p and 1 norms are equivalent on Y. 
By our preceding remarks, we thus obtain that if Ip(X)<oo for some p<2, then 
Ip'(X)<«> for some p'>p; that is, the set of p<2 such that IP(X)<<», forms an 
open interval. Moreover, the interval is nonempty provided X is reflexive; 
suppose this is the case. Let q be the right-end point of this interval. Does X 
contain a subspace which imbeds in Lq? We have been able to show that an 
affirmative answer implies an affirmative answer to the question: Does X 
contain a subspace isomorphic to V for some r, K r ^ 2 ? 

As shown in [36], IP(X) is actually attained by a particular choice of a 
probability density ç (with the property that for all x e X, the null set of x is 
contained up to a set of measure zero in the null set of <p); moreover, 
Ip(X)=sup IP(F), the supremum taken over all finite-dimensional subspaces F 
of X. This shows the finite-dimensional character of these concepts and 
results. 

It would seem appropriate to find natural classes of spaces X so that 

(*) X is already contained in Lp if IP(X) is finite. 

One such class has been found by Bachelis and Ebenstein [1]; namely, the 
class of subspaces X of V^x), where JX is normalized Haar-measure on a 
compact abelian group G and X is a translation invariant subspace. A slightly 
different version of their argument is as follows: Let K=Ip(X)<o°. Choose a 
probability density (p on G so that for all x in X, 

£ \x\%g)<p1-p(g)dijL(g)^Kp\\x\\l 

Now fix x in X; then for each g' in G, since X is translation invariant, 

j |x(g + gl)lp91"p(g)dfi(g)^K'||x||!. 

Integrating this inequality with respect to g' and changing the order of 
integration, one obtains that 

J|x(g)|' dft(g)jV-'(g) M g ) ^ ' ||x|Ü. 

If we assume that X is nonzero, then the translation invariance of X implies 
that <p is strictly positive almost everywhere. Hence 

Jç1-p(g)dfi(g)^(j(i)9a|i)P = l; 

therefore ||x||p^K ||x||i for all xeX. (Actually, this argument holds for 
arbitrary compact groups G, not just the abelian ones.) 

It is a standard fact that such an X equals the closed linear span in L1 of a 
subset E of the characters of G. E is called a A(p)-set if the q- and p-norms are 
equivalent on X for all 0<q<p. As shown in [1], the above considerations 
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yield that for all l ^ p < 2 , every A(p)-set is a A(p')-set for some p'>p. It is an 
open question if every such set is already a A(2)-set. (For other applications of 
these ideas to harmonic analysis, see pp. 83-86 of [26].) 

Another class of spaces satisfying (*) are those subspaces X of L1 equal to 
the closed linear span of a sequence Xi, x2, • • • of identically distributed 
independent random variables. This fact is easily deduced from the results of 
[36] as follows: Suppose Ip(X)<oo. Then Lemma 3 of [36] yields that 
ƒ |xi|p dt<*>. Now let y be in X, and let Nu N2, • • • be infinite disjoint subsets 
of the positive integers. We may choose for each j a yt in [x„]„eN, so that yt has 
the same distribution as y. But then yi, y2, • • • is also a sequence of identically 
distributed independent random variables and Ip([yj])^Ip(X)<oo. Hence 
ƒ | y i |

p dt=J |y|pdr<oo, i.e. X c L p , 
We conclude with the following open question concerning a permanence 

property of subspaces of Lp. Suppose K p ^ 2 and X is a Banach space such 
that ( X 0 X © • • -)P imbeds in L1. Does X imbed in LP? By suitably varying the 
techniques so far mentioned we have been able to show (unpublished) that 
under these hypotheses, X does imbed in Lq for all q<P-
It follows for all l ^ q < p , that (Jq©fq© • • -)P does not imbed in L\ 

Appendix. Complemented subspaces of V and the Radon-Nikodym 
property. In [21], Lewis and Stegall prove the following remarkable result: 

THEOREM A l . Let B be an infinite-dimensional complemented subspace of 
^([0 ,1] ) , and suppose that B is isomorphic to a conjugate Banach space. Then 
B is isomorphic to I1. 

We present here alternate derivations of this and some of the other 
structural results obtained by Lewis and Stegall. These results make use of the 
notion of a Radon-Nikodym derivative. The main tool is Theorem A3, which 
yields the fact that a Banach space has the Radon-Nikodym property if and 
only if every operator from V into the space factors through l\ (All results 
presented are known, some implicit in the writings of the above authors and 
earlier ones such as A. Grothendieck.) 

Throughout, we let (ft, Sf, /UL) denote a probability space; A shall denote a 
(not-necessarily-o--finite) measure on some measurable space, and B an 
infinite-dimensional Banach space. We recall that a function (p:£l-*B is 
called simple if it is measurable with finite range; it is called strongly 
measurable if there exists a sequence (<p„) of simple functions from ft to B 
with <p„ tending to <p pointwise almost everywhere. We let ||-||«> denote the 
essential supremum norm on bounded B -valued measurable functions. The 
following result is easily established, using Egoroff's theorem: 

PROPOSITION A2. Let <p :ft—»B be a bounded strongly measurable function 
and e>0 . Then there exist disjoint measurable subsets fti, ft2, • • • o ƒ ft with 
ft= (Jn=i ftn and simple B-valued functions (<Pn,)n,,=i so that for each n, <pn, is 
supported on ftn for all j , £, ||<Pn,||«<||<p||oo+e, and £, (pn/(û>) = <p(to) for almost all 
0) €ftn . 
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An operator T:L1(JUL)-^B is said to be differentiable if there exists a 
bounded strongly measurable function <p : ft—>B so that 
Tf=Sa<p(a>)f((o) dju,(co) for all feV(ii). 

(An important theorem of Dunford, Pettis and Phillips asserts that every 
weakly compact operator T is differentiable.) We note that if T and cp satisfy 
this relationship, then <p is uniquely determined up to a change on a set of 
measure zero, and moreover 

(5) l|T|| = |M|~. 

We call <p the derivative of T. (To distinguish these notions from the entirely 
different ones of differentiation in the calculus sense, perhaps the terminology 
"Radon-Nikodym-differentiable" and "Radon-Nikodym-derivative" would 
be more suitable.) 

It is trivial that if S and T are differentiable operators from L\IJL) to B with 
derivatives 9 and tjj, respectively, then for any scalars a and b, aS+bT is 
differentiable with derivative acp+bijj. Thus the differentiable operators from 
L^/UL) to B form a Banach space (in the operator norm) isometric to the space 
of all equivalence classes of bounded strongly measurable functions from ft to 
B, under the essential supremum norm. 

We note in passing that operators of the form T:L1(JUL)~»B are in 
one-to-one correspondence with B-valued measures v of bounded variation 
A. Indeed, given T, one sets V(E)=T(XE) for all E e SP. On the other hand, 
given v and A, one may put ju,(E)=A(E)/A(ft) for all EeSf; it is then easily 
seen that there is a T:L 1 (JUL)^B with ||T||=A(ft) so that v(E)=T(*E) for all 
EeSP. 

B is said to have the Radon-Nikodym property (or R.N. property) if for 
every fi on a measurable space, every T:L(IL)->B is differentiable. It is 
known that one may restrict oneself to operators defined on L*([0,1]). The 
connection between operators and B-valued measures yields that B has the 
R.N. property if and only if for every /m on a measurable space and every 
B-valued measure v with JLL-continuous bounded variation A, there exists a 
Bochner-jLL-integrable function <p so that v(E)=lB(pd[x for all EeSP. Of 
course this <p will not be bounded in general; however the scalar-valued 
Radon-Nikodym theorem gives a positive fx-integrable g and a bounded \\i so 
that <p = i/̂ g a.e. 

It is easily seen that I1 has the R.N. property. More generally, any subspace 
of a separable dual has the R.N. property. For this and other related results 
see the expository paper [4] and the references given there. 

The following factorization theorem is our main tool in obtaining structural 
results such as A l from Radon-Nikodym derivatives. Its proof is fairly 
self-contained, resting only on A2 and the fact that I1 has the R.N. property. 

THEOREM A3. An operator T:L 1 (JUL)^B is differentiable if and only if it 
can be factored through V; i.e. there exist operators U.'L^/x)—^I1 and 
V : IX^^B so that T= VU. When this occurs, then for each s >0 , the operators U 
and V may be chosen so that ||U||^||T||+8 and ||V||=1. 
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PROOF. Suppose first that T admits such a factorization. Then U is 
differentiable; let iff be the derivative of U. Then V°i/f is easily seen to be the 
derivative of T. 

Now suppose Tis differentiable with derivative <p. We are indebted to D. 
Lewis for the observation that T may be realized as an "T-surn" of compact 
operators, each of which may be factored through I1 by the "lifting property" 
of L1(À)-spaces. A direct elementary proof is as follows: we consider three 
cases in increasing order of complexity. 

Case 1. <p is simple. We may then choose n and disjoint measurable sets 
Ei, E2, - - - ,En, each of positive measure, and bi, • • •, b„ in B so that 
<p=Lr=ibiXEi. 

Let eu e2,-'- be the usual basis for I1; define UiL^/ui)—»P by 
U/=||T||L-=i(jEj/d^)ei for all feV(n) and V:V-+B by V(e,)=||T||-1bl for 
l ^ j ^ n and V(cJ)=0 for j>n. Since ||T||=supi||bi||, we have that ||V||=1; 
evidently ||U||=||T|| and T=VU. 

Case 2. There are ô>0 and simple functions <p1? <p2, • * * so that £ <Pj = <p 
andX||<Pj||<»<||<p||oo+ô. We shall show that then U and V may be chosen with 
T = V U a n d | | V | | = l , ||U||<||<p||-+8. 

For each j , define T, by Tjf=$ <P\fd[x for all feV(^); then choose 
Uj r L V ) - ^ ' 1 and V,: V-^B so that T, = V,Uh ||V;||=1, and ||U,||=||Tj| (which of 
course equals ||<Pj||oo). Now £ <p, must converge to ç in the ||-||«>-norm and 
lET-i Tj-TIHIE,".! <R,-4p||- for all n, by (5); hence ir- iT, = T. Let 
X=(l1®l1®- • -)i; of course X is isometric to I1. Define LTiL^ixJ-^X by 
U/=(UJ/)r=iforall/GL^JLI); define V:X-*B by V((b,))=I Vfo '\î(b^eXand 
b ^ l 1 for all ƒ. Then ||U||SZ|imi=ZI|T,||=Zlhl|.<lkll-+«, l|V||=l, and 
T=VU. 

Case 3. This is the general case. By Proposition A2, we may choose Oi, 
ft2, • • • and (çnj)n,j=i as in its statement. Fix j and let JULJ be the measure on 
(ilh 6^nft,) obtained by restricting jx. The argument for Cases 1 and 2 did not 
require that jm be a probability measure; hence we may choose 17, : L1^,)-»!1 

and V ^ T ^ B so that 11̂ 11= l,|m||<||T||+8 and \W- = T |LVi ) -LetXbeas in 
Case 2 and define U:L\ii)-*X and V : X - * B by Uf=(Unf • *<On=i and 
V((bn))= I V A . Fixing feL\^\ we have that 

IIU/N L HUH ||/ . xoJ|i^(||T|| + s) X ||f • *nnM(||T| |+ e) ||/||. 
n = l 

Moreover VUf=Tf and ||V||=1, so the theorem is proved. 
Theorem A l may now be proved as follows: Let B satisfy its hypotheses 

and let PiV-^B be a bounded linear projection from V onto B. Since 
separable duals have the R.N. property, B does also; hence by A3, there exist 
operators U.V-^l1 and V:T->B with P=VU. Since V U | B = I | B , it follows 
that U|B is an isomorphism between B and the subspace U(B) of I1; then UV 
is a projection from I1 into U(B), so U(B) is isomorphic to I1 by a result of 
Pekzynski [31]. (Of course this argument shows immediately that any 
complemented subspace of L1 with the R.N. property is isomorphic to I1. We 
also note that a result in [34] asserts that a conjugate space isomorphic to a 
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complemented subspace of L1^) is separable and hence isomorphic to a 
complemented subspace of V([0,1]). Thus Theorem A l holds if "L\[0,1])" 
is replaced by "L^JUI) for some probability measure JUL" in its statement.) 

We wish finally to indicate some results in a nonseparable setting. Let T be 
a set; ^(T) denotes the space of all scalar-valued functions ƒ defined on T with 
||/||i=Lver I/(7)|<°°. Given T and Banach spaces (E«)«er, (©«er Ea)t denotes 
the space of all LLer-Ea-valued functions ƒ defined on T with 

l|(A)a«H|x=Zll/a|k«». 
aer 

The following factorization theorem is a simple consequence of A3. 

PROPOSITION A4. A Banach space B has the R.N. property if and only if for 
every V^-space and operator T:L1(k)^'B, there exist a set T and operators 
UiVM^VQT) and V:l\r)-*B so that T=VU. 

PROOF. Since ^(O-spaces have the R.N. property, the "if" part is 
immediate. Suppose B has the R.N. property and T:V(k)^B is a given 
operator. If k is cr-finite, then V(k) is isometric to L^JUI) for some JUL, whence 
A3 gives the result. Assume that k is not cr-finite. Then using Zorn's lemma, 
we may choose an uncountable set T and probability measures jma on certain 
measurable spaces for all a G T , so that V(k) is isometric to ( © a e r l ^ d O ) ! . 
For notational convenience let us identify these two spaces. Now fix a e T. Let 
Ta : I/duia)—»B be the obvious operator induced by T; by A3, we may choose 
U . r L ' G O - * ! 1 and V*:l1-+B with Ta = VaUa, ||V«||=1, and ||l7a | |^2||Tj|. Let 
Ea = l1; then evidently Q]a£r©Ea)i is isometric to l\r). 

Now simply define LT:L1(A)-»(©a e rEa)i and V : ( 0 « e r E « ) i - * B by 
Uf=(Uaf)aer and V((/„)„6r)=Z V„(/«). 

The final structural result that we give has an important special case: If a 
j£i-subspace of V([0,1]) is isomorphic to a subspace of a separable dual, then 
it is isomorphic to a subspace of I1. (See §2 for the definition of i£i-spaces.) 

THEOREM A5 (LEWIS AND STEGALL [21]). If the Banach space B is isomor­
phic to a complemented subspace of L*(A) for some k and B has the R.N. 
property, then B is isomorphic to V(T) for some set T. IfB is an X\-space which 
is isomorphic to a subspace of a conjugate Banach space with the R.N. property, 
then B is isomorphic to a subspace of VÇT) for some set T. 

REMARK. Let JUL be given. If T is an uncountable set, then ^(T) does not 
imbed in L^JLL) (cf. [34, p. 214]). Consequently if B is a complemented 
subspace of V^i) with the R.N. property, then B is isomorphic to I1, while if 
B is a i£i-subspace of L^/m) which imbeds in a dual space with the R.N. 
property, then B imbeds in I1. 

PROOF OF A5. The first assertion follows from A4 and the result that a 
complemented subspace of l\F) is isomorphic to V(T') for some T' (due to 
Köthe [19]; cf. also [34]) in the same way that A l follows from A3 and 
Pelczynski's result. 
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It is known that i?i-spaces are isomorphic to spaces whose second 
conjugate spaces are isometric to complemented subspaces of L1(A)-spaces. 
We may then assume without loss of generality that there is a A so that 
B**cL1(A) and so that there is a projection P:L1(A)-^B**. We may also 
choose a conjugate Banach space X with the R.N. property and an isomor­
phic imbedding T:B-+X (where TB is a subspace of X). Now there is a 
projection Q from X** onto X (regarded as canonically imbedded in X**). 
The operator f defined by f= QT**P may then be factored through l\D for 
some set T by operators U and V as in Proposition A4. Since T|B = T is an 
isomorphism, it also follows that U\B is an isomorphism, proving the 
theorem. 

REMARK. The proof shows that A5 remains valid if one replaces 
"isomorphic to a subspace of a conjugate Banach space with the R.N. 
property" by the formally weaker statement "isomorphic to a subspace of a 
space X with the R.N. property such that X is complemented in x**," in its 
statement. 

A fundamental open question is the following: Is every complemented 
subspace of L1 isomorphic to I1 or L1? The work of Lewis and Stegall shows 
that this is equivalent to the question: If a complemented subspace of L1 fails 
to have the R.N. property, is it isomorphic to L1? By some recent (unpub­
lished) work of Enflo, this question has an affirmative answer if the following 
one does: If a subspace of L1 fails to have the R.N. property, does it contain a 
subspace isomorphic to L1? 
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