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Let {X(t)91 > 0} be the standard one-dimensional Brownian motion 
starting at 0. For t > 0 define 

7X0 = sup {s < t\X(s) = 0}; T\t) = inf {s > t\X(s) = 0}; 

£ - (0 = t - 7X0; L{t) = T'(t) - 7X0; 

M-(0= max \X(s)\\ M(t) = max \X(s)\. 
T(t)<s<t T(t)<s<T'(t) 

The random time interval (7X0, ^'(0) is the excursion interval straddling t, 
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and X restricted to this interval is the corresponding excursion process. Paul 
Levy initiated the "profound study" of these excursions; see [5, Chapter 6 ] . 
An expanded account is found in Itô-McKean [4]. It turns out that X restrict­
ed to the interval (7X0» 0 *s ^so interesting by itself, and following D. Iglehart, 
we shall call it the meandering process ending at t Iglehart suggested the in­
vestigation of the maximum of the latter process denoted by M~(t) above. It 
will be seen that the conditional distribution of M~{t) given the duration L~(t) 
of the meandering is the same for all t greater than the given value of the 
duration. The conditional distribution of M(i) given L(t) depends neither on t 
nor on 7X0- The latter is a consequence of Levy's results, but the explicit 
determination of the various distributions given below seems to be new, and 
more can be done in this direction. 

Our method is based on an analysis of the last exit from zero occurring 
at 7X0- There is a far-reaching analogy between this and the last exit from an 
arbitrary fixed state in a continuous parameter Markov chain. The facts per­
taining to the latter case are expounded in [1, §11.12] and carried on under 
the guise of a boundary state in [2]. Indeed, the abundant formulas in the 
Brownian case tend to obscure by their explicitness, lending to unperceived 
cancellations and juxtapositions. The ideas are clearer for chains, and transfer­
ring them to Brownian motion is a pleasant and rewarding experience. On the 
other hand, the problem of the maxima is peculiar to the well ordering of the 
reals and furnishes a testing ground for the general methodology. 

Let us put 

pit ; x, y) = p(t ; x, y) - p(t\ -*, y\ 

^ ; 0 'x ) =^F e x p |"iH f ; j f '0 )-
Here then is the fundamental "last exit decomposition": 

(1) p(t; 0,y) = f*QP(t-s'9 0, Ofefc; 09y)ds\ 

for 0 < s < t. As an identity in calculus, this coincides with the "first entrance 
decomposition": 

(2) p(t; 0, y) = jf
oAs'9 0, y)p(t -s;y,y) ds. 
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Thus the entrance law (gt) to the taboo semigroup (pt), which corresponds to 
the difficult (g(Mn Markov chains (see [1, Theorem 3, §11.12]), is identical 
with the exit law (ft) which corresponds to the easy (ftJ) (Theorem 5, loc. cit.). 
But it is the probabilistic meaning of (1) that counts, and this is rendered as 
follows: 

(3) P{X(t) G dy} = f P{T(t) G ds; X(t) G dy}. 
J 5 = 0 

Cf. Theorem 7, loc. cit. Now (3) has a vital extension which will be shown in 
the simplest case. For 0 <s <s + 8 <t9 we have, writing henceforth Y(t) 
for \X(t)\: 

P{T(f) G ds; Y(s + 8)Edx; Y(t) G dy} 
(4) 

= p(s; 0, 0)dsg(8; 0, x)dxp(t -s-8;x, y)dy. 

With the factor g(8; 0, x) above we have made the entrance into the meandering 
and excursion processes, and the path is set. It turns out that conditioning 
with respect to L~(t) will be more appropriate and we obtain for 0 < 6 < r: 

P{Y(8) G dx; Y(r) G dy\L~(t) = r} 

= y/2ÎTrg(8; 0,x)dx p(r ~8;x, y)dy. 

The factor \J2itr is one of those obscurities alluded to above and is really the 
reciprocal of f^g(r; 0, JC) dx. 

The method described above gives quick and standardized derivations of 
results such as those below. 

THEOREM 1. For % > 0, y > 0, 0 < r < t, we have 

P{M~(t) < %; Y{t) G dy\L~{t) = r] 

(6) = V2ÎF] £ g(r; 0, 2n% + y) - £ g(r; 0, 2n% -y)\. 

n2e 

Integrating out dy, we obtain 

oo 

(7) P{M~(f) < £|L-(0 = r} = 1 + 2 X e O" exp j - ' ^ 

It follows from (6) and (1) that 

(8) P{M~{t) < t r (0 G dy} = 2p(t; 0, y) - 2 f ) Rt; 2nt y), 

file:///J2itr
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(9) p{M-(t) < # = 2 £ e- vrnn% <m < (« + I)Ö-
John B. Walsh derived (9) directly by the method of reflections. 

THEOREM 2. For % > 0, 0 < r < min(f, u), we have 

P{M(f) < %\L{t) = u, L-(f) = r} 

= 1 + 2 | i ( l . ( ^ ) e x p j . ^ | . 
It is not obvious that the last expression represents a distribution 

function in £ for 0 < £ < °°, as vouchsafed by the theorem. This can be veri­
fied via Laplace transforms and Euler's great expansion of (ez - l ) " 1 . Another 
independent check was given by W. A. Veech who used the functional equation 
of the the ta function. 

W. D. Kaigh informed me that he had derived the distributions above by 
finding the appropriate limiting theorems for sums of independent and identi­
cally distributed symmetric Bernoullian random variables conditioned on ' T > 
w" or ' T = ri*\ where T is the first time for the sum to be zero. Such a scheme 
was considered by Iglehart [3] who proved an analogue of the classical invar­
iance principle for it. 

A fuller account of the results mentioned here will be published else­
where. 
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