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Consider the Volterra integral equation 

(E) U(t) = - ƒ J A{t - T)g(u(j)) dr + ƒ (f), t > 0, 

on a Hilbert space H. A(t) is a family of bounded, linear, selfadjoint operators 

on H and g is a nonlinear bounded map from H into itself. If f(t) —• f0(t) 

as t —• °° then 

(E0) u0(t) = - ƒ " A(r)g(u0(t - T))dr + f0(t), t > 0, 

will be called a limit equation for (E). The following result appears in [7]. 

THEOREM (MILLER). Let H = Rn. Suppose A G Z,j(0, <*>),ƒ: R+ —• 
Rn is bounded and uniformly continuous, g is continuous. Let (E) have a 

bounded solution u on R*. Then there exist a solution u0 of(E0) and a se­

quence tn —• °° such that u(t + tn) —• u0(f) as n —> «>. 

We give a result complementary to Miller's. We give conditions on A 
and g which guarantee that if (E0) has a bounded solution then all solutions 
of (E) tend to u0 as t —• °°. 

Our hypotheses are taken from [5]. We assume that g is continuous, 
bounded with g(Q) = 0 and that 

(1) (g(u) - g(v), u - v) > m \\u - v II2 for some m > 0. 

We assume that A G C ( 2 ) [0 , <*>), Aik) G I ^ O , «>), k = 0, 1, 2. A also is to 
satisfy 

(2) (A(0)u,u)>ct\\u\\2, <i(0)w, w><-/3llwll2, a > 0, 0 > 0, 

(2\ given any N, there exists d(N)> 0 such that 

<Re A *(iri)u, u)>b(N)\\u II2 for all \q\<N. 
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In (3) A A(s) is the Laplace transform of A. (See [6] for a comparison of (3) 
with the monotonicity and convexity conditions of [4].) ƒ is to satisfy 

(4) ƒ (0 = f0(t) + h(t) where A G Lx(0, ~) n L2(0, - ) . 

THEOREM (1). Suppose (E0) Aas a solution which is bounded on R+. 
Then any solution of (E) satisfies u(t) — u0(t) —• 0 as t —* °°. 

The proof involves ideas from [5]. (E) can be solved for g(u). (E0) can 
be written in the form (E) with a forcing term depending on u0 and the re­
sulting equation solved for g(u0). One subtracts the resulting equations, 
multiplies by u - u0 and integrates from 0 to T. Conditions (1)—(4) then 
yield an energy estimate which shows that u - u0E 1,^(0, °°) n Z,2(0, <*>). 

(E) and (E0) can then be used to establish that u - u0 is uniformly continu­
ous, hence u - u0 —• 0 as t —• °°. 

There are two immediate applications. 

THEOREM (2). Let the hypotheses of Theorem (1) hold and suppose f0(t) 

in (4) equals f0 a constant. Then (E0) has a constant solution u0 and all 

solutions of (E ) tend to u0 as t —• °°. 

PROOF. We need only show that (E0) has a constant solution. From 

(3) it follows that A = A A(0) has a positive selfadjoint square root. The 

equation to be solved can be reduced to 

(5) v0 + A*g(A*v0) = v0+ F(v0) = A-%. 

We have 

<F(v0) - F(vf
0), v0-v'0) = {g(Ax\) - g(4*vÜ9 A*v0 - A%'J 

>m\\Av\v0-v
,
0)\\

2>0. 

Hence F is a continuous monotone operator and it follows by a result of 
Minty [8] that (5) has a solution. 

The second application concerns the existence of periodic limits. Let 
PT denote the set of all T-periodic functions u on L2({- n, it) : H). For 
u E PT we have a Fourier series u = %tZ *V i n t- Consider the linear operator 
À defined by A v(t) = f^ A(j)v(t - r) dr. For v ePT, 

(6) Av = XA*(in)vne
int. 

it is shown in [5] that the hypotheses on A imply that IIJ4 "(s)ll = 0 ( s _ 1 ) 
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as s —• °°. From this one concludes that A is a bounded linear map from 
PT into PT n L^d— n, n) : H). If H is finite dimensional the map from PT 

into itself is compact. The same remarks hold for the nonlinear map v —• 
$$ A(j)g(v(t - T))dT if g satisfies 

(7) tg(v)l<KM. 

Assume now that f0 GPT n L^— n, n) : H) and the hypotheses of 

Theorem (1) hold. 

THEOREM (3). Suppose g(u) = Lu where L is a bounded linear selfad-
foint operator. Then (E0) has a solution u0 EPT O L^d- n, n) : H) and 
all solutions of(E) tend to (E0) as t —•> °°. 

PROOF. A solution can be found in the form u0 = Xu%eint where 

(ƒ 4- A *(iri)L)u°n = 4 ° , f (f) = Xf°eint. The hypotheses on A and L guaran­

tee that for each n, (I + A *(iri)L)~l exists as a bounded operator with 

||(7 4- A A(/«))~ l II < / (see [5] ). It follows easily that the series yields the de­

sired solution. If f0 is continuous then u0 is continuous. 
Theorem (3) can be used with a perturbation argument and the con­

tractive mapping principle to yield the following result. 

THEOREM (4). Let g(u) = Lu + eh(u), where L is as in Theorem (3), 
h(Q) = 0, h satisfies (1) and h is globally Lipschitz. Then for e sufficiently 
small (E0) has a solution u0 and all solutions of (E) tend to u0 as t —> °°. 

On finite dimensional spaces one can use the Schauder theorem to 
establish the existence of solutions of (E0) if g(u) = o(llwll) as llwll —• °° 
(see [1] for a related result) or if g(u) - eh(u) where \\h(u)\\ < k(\\u\\ + 1) 
and e is small. If one has a priori bounds for solutions of (E) then one can 
eliminate the growth condition on g by making use of Miller's result and 
Theorem 1. One situation in which this idea can be applied is that of the 
following lemma which is given for H = R1 in [3]. 

LEMMA . Suppose that f in (E ) is in L^ii — °°, °°) : H). Suppose 
further that the conditions of Theorem (1) hold and that there exists ana>0 
such that eatA(t) still satisfies the hypotheses of Theorem (1). Then there 
exists an M> 0 such that all solutions of(E) satisfy \\u(t)\\ <M for all t>0. 

Similar results to those in this paper can be obtained for the differentia­

ted version of (E ). These are related to the results of [2]. 
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MAXIMA IN BROWNIAN EXCURSIONS 

BY KAI LAI CHUNG1 

Communicated by Daniel W. Stroock, February 25, 1975 

Let {X(t)91 > 0} be the standard one-dimensional Brownian motion 
starting at 0. For t > 0 define 

7X0 = sup {s < t\X(s) = 0}; T\t) = inf {s > t\X(s) = 0}; 

£ - (0 = t - 7X0; L{t) = T'(t) - 7X0; 

M-(0= max \X(s)\\ M(t) = max \X(s)\. 
T(t)<s<t T(t)<s<T'(t) 

The random time interval (7X0, ^'(0) is the excursion interval straddling t, 
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